Ultrasonography, Microcomputed Tomography, and Macroscopic Preparation in an Anatomical Study of the Thoracic Limb of the Golden-Headed Lion Tamarin (Leontopithecus chrysomelas)
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Preparation of the Limb for Ultrasound Imaging
2.3. Microcomputed Tomography
2.4. Traditional Preparation of Muscle and Bones of the Forearm
3. Results
3.1. Anatomical Examination
3.1.1. Extensors
3.1.2. Flexors
3.1.3. Rotators
3.1.4. Abductor
3.2. Ultrasonography Examination
- The radial group included the following muscles: BR, ECRL, and ECRB, which were located at the anterolateral portion of the forearm. US imaging revealed the flat shape and location of the BR muscle belly, which was visible only in a cross-section. The ECRL and ECRB were located at the posterolateral portion of the forearm. They were more cylindrical and elongated. The supinator muscle was not visible in the figure;
- The superficial dorsal group included the EDC and EDM, located at the lateral portion of the forearm;
- The ulnar group was shown with the main visible muscle—the ECU—located at the caudal surface of the forearm from the lateral epicondyle of the humerus. The belly was well visible because of its cylindrical shape. The SDF located at the caudomedial portion of the forearm was the last muscle in this group;
- The deep medial group included the APL, which originated from the interosseous membrane and passed through the wrist as a small tendon. The EPB was not detected. The main mass of the group was represented by the DDF;
- The pronator group included the PT and PQ muscles.
3.3. Microcomputed Tomography Examination (Micro-CT)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Ohsang, K.; Jeong, B.K.; Jihyeung, K.; Hyun, B.G. Computed Tomography Evaluation of Forearm and Hand Muscules in Patients with Distal Radius Fracture. J. Clin. Densitom. 2021, 24, 88–93. [Google Scholar] [CrossRef]
- De Rycke, L.M.; Gielen, I.M.; Van Bree, H.; Simoens, H. Computed Tomography of the elbow joint in clinically normal dogs. Am. J. Vet. Res. 2002, 63, 1400–1407. [Google Scholar] [CrossRef] [PubMed]
- Istrate, A.; Peteoaca, A.; Constantinescu, R.; Angeli, G.; Tanase, A. Radiographic and Computed Tomography findings in dogs with fragmented medial coronoid process. Sci. Works Ser. C. Vet. Med. 2019, 65, 60–65. [Google Scholar]
- Kirberger, R.M.; McEvoy, F.J. Manual of Canine and Feline Musculoskeletal Imaging, 2nd ed.; BSAVA: Quedgeley, UK, 2016; pp. 1–118. [Google Scholar]
- Solis-Chavez, S.; Castillo-Rivera, M.A.; Arteaga-Silva, M.; Ibanez-Contreras, A.; Hernandez-Godinez, B.; Moron-Mendoza, A.; Mendoza-Cuevas, G.; Morales-Guadarrama, A.; Sacristan-Rock, E. Computed tomography is a feasible method for quantifying bone density in Macaca mullata. Vet. Radiol. Ultrasound. 2018, 59, 545–550. [Google Scholar] [CrossRef]
- Thrall, D.E. Textbook of Veterinary Diagnostic Radiology, 5th ed.; Saunders: Raleigh, NC, USA, 2007; pp. 2–805. [Google Scholar]
- Woodruf, W.W. Fundamentals of Neuroimaging; Saunders: Raleigh, NC, USA, 1993; pp. 33–70. [Google Scholar]
- Garvey, C.J. Computed tomography in clinical practice. Br. Med. J. 2002, 324, 1077–1080. [Google Scholar] [CrossRef] [Green Version]
- Samei, E.; Pelc, N.J. Computed Tomography: Approaches, Applications, and Operations; Springer Nature: Cham, Switzerland, 2020; pp. 3–458. [Google Scholar]
- Brant, W.E.; Helms, C.A. Fundamental of Diagnostic Radiology, 4th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2007; pp. 927–1183. [Google Scholar]
- Spoormakers, T.J.P.; Veraa, S.; Graat, E.A.M.; van Weeren, P.R.; Brommer, H. A comparative study of breed differences in the anatomical configuration of the equine vertebral column. J. Anat. 2021, 239, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Darlim, G.; Montefeltro, F.C.; Langer, M.C. 3D skull modelling and description of a new baurusuchid (Crocodyliformes, Mesoeucrocodylia) from the Late Cretaceous (Bauru Basin) of Brazil. J. Anat. 2021, 239, 622–662. [Google Scholar] [CrossRef]
- El-Ansary, D.; Marshall, C.J.; Farragher, J.; Annoni, R.; Schwank, A.; McFarlane, J.; Bryant, A.; Han, J.; Webster, M.; Zito, G.; et al. Architectural anatomy of the quadriceps and the relationship with muscle strength: An observational study utilising real-time ultrasound in healthy adults. J. Anat. 2021, 239, 847–855. [Google Scholar] [CrossRef]
- Graham, K.M.; Kouba, A.J.; Langhorne, C.J.; Marcec, R.M.; Willard, S.T. Biological sex identification in the endangered dusky gopher frog (Lithobates sevosa): A comparison of body size measurements, secondary sex characteristics, ultrasound imaging, and urinary hormone analysis methods. Reprod. Biol. Endocrinol. 2016, 14, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tokunaga, T.; Jomane, F.N.; Mandai, S.; Ishida, T.; Hirooka, H. Estimation of the marbling development pattern in Japanese Black cattle by using serial ultrasound measurement data. Anim. Sci. J. 2021, 92, e13533. [Google Scholar] [CrossRef] [PubMed]
- Canoso, J.J.; Naredo, E.; Martínez-Estupiñán, L.; Mérida-Velasco, J.R.; Pascual-Ramos, V.; Murillo-González, J. Palpation of the lateral bands of the extensor apparatus of the fingers. Anatomy of a neglected clinical finding. J. Anat. 2021, 239, 663–668. [Google Scholar] [CrossRef]
- Keidan, L.; Barash, A.; Lenzner, Z.; Pick, C.G.; Been, E. Sexual dimorphism of the posterior cervical spine muscle attachments. J. Anat. 2021, 239, 589–601. [Google Scholar] [CrossRef]
- Dickinson, E.; Boettcher, M.L.; Smith, M.R.; Worden, N.A.; Swindell, S.R.; Seelye, J.S.; Pastor, F.; Hartstone-Rose, A. Myological variation in the forearm anatomy of Callitrichidae and Lemuridae. J. Anat. 2021, 239, 669–681. [Google Scholar] [CrossRef]
- Weatherall, D. The Use of Non-Human Primates in Research, 1st ed.; Welcome Trust: London, UK, 2006; pp. 11–141. [Google Scholar]
- Diogo, R.; Richmond, B.G.; Wood, B. Evolution and homologies of primate and modern human hand and forearm muscles, with notes on thumb movements and tool use. J. Hum. Evol. 2012, 63, 64–78. [Google Scholar] [CrossRef] [PubMed]
- Diogo, R.; Wood, B.A. Phylogenetic analyses of primates based on the muscles of the head, neck, pectoral region and upper limb. In Comprarative Anatomy and Phylogeny of Primate Muscles and Human Evolution, 1st ed.; CRC Press: Boca Raton, FL, USA, 2019; pp. 313–357. [Google Scholar]
- Diogo, R.; Wood, B.A. In Origin, Development, and evolution o primate muscles, with notes on human anatomical variations and anomalies. In Developmental Approaches to Human Evolution, 1st ed.; Boughner, J.C., Campbell, R., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2016; pp. 167–204. [Google Scholar]
- Cheng, E.C.; Scott, S.H. Morphometry of Macaca mulatta forelimb. I. shoulder and elbow muscles and segment inertial parameters. J Morphol. 2000, 245, 206–224. [Google Scholar] [CrossRef]
- Hb Du Sert, N.P.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; Emerson, M.; et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 2020, 18, e3000411. [Google Scholar] [CrossRef]
- Illemann, J.; Bartscher, M. X-ray spectrum dependence of the magnification of cone-beam CT. In Proceedings of the 7th Conference on Industrial Computed Tomography (iCT2017), Leuven, Belgia, 7–9 February 2017; Available online: www.ndt.net/?id=20827 (accessed on 2 December 2021).
- Grangeat, P. Mathematical framework of cone beam 3D reconstruction via the first derivative of the radon transform. In Mathematical Methods in Tomography. Lecture Notes in Mathematics; Herman, G.T., Louis, A.K., Natterer, F., Eds.; Springer: Berlin, Germany, 2006; pp. 66–97. [Google Scholar]
- Willemink, M.J.; de Jong, P.A.; Leiner, T.; de Heer, L.M.; Nievelstein, R.A.J.; Budde, R.P.J.; Schilham, A.M.R. Iterative reconstruction techniques for computed tomography Part 1: Technical principles. Eur. Radiol. 2013, 23, 1623–1631. [Google Scholar] [CrossRef]
- Nomina Anatomica Veterinaria, 6th ed.; WAVA: Hanover, Germany, 2017.
- Garcia, J.F.V.; Parra, J.E.D.; Rios, J.B. Descriptive Anatomy of Lateral Digital Extensor Muscles of the Hand of the White-Footed Tamarin (Sanguinus leucopus, Gunter, 1876). Int. J. Morphol. 2016, 34, 1123–1127. [Google Scholar] [CrossRef] [Green Version]
- Aversi-Ferreira, T.A.; Aversi-Ferreira, R.A.G.M.F.; Bretas, R.V.; Nishimaru, H.; Nishijo, H. Comparative anatomy of the arm muscules of the Japanese Monkey (Macaca Fuscata) with some comments on locomotor mechanics and behavior. J. Med. Primatol. 2016, 10, 165–179. [Google Scholar] [CrossRef]
- Aversi-Ferreira, R.A.; Bretas, R.V.; Maior, R.S.; Davaasuren, M.; Paraguassú-Chaves, C.A.; Nishijo, H.; Aversi-Ferreira, T.A. Morphometric and statistical analysis of the palmaris longus muscle in human and non-human primates. BioMed Res. Int. 2014, 2014, 1–6. [Google Scholar] [CrossRef]
- Vanhoof, M.J.; van Leeuwen, T.; Vereecke, E.E. The forearm and hand musculature of semi-terrestrial rhesus macaques (Macaca mulatta) and arboreal gibbons (Fam. Hylobatidae). Part I. Description and comparison of the muscle configuration. J. Anat. 2020, 237, 774–790. [Google Scholar] [CrossRef]
- Kikuchi, Y. Comparative analysis of muscle architecture in primate arm and forearm. Ant. Histol. Embryol. 2010, 39, 93–106. [Google Scholar] [CrossRef]
- Boland, M.R.; Spigelman, T.; Uhl, T.L. The Function of Brachioradialis. Journal of Hand Surgery. Am. Soc. Surg. Hand. 2008, 33, 1853–1859. [Google Scholar] [CrossRef] [PubMed]
- Diogo, R.; Patou, J.M.; Pastor, J.F.; de Paz, F.J.; Ferrero, E.M.; Bello, G.; Barbosa, M.; Wood, B.A. Photographic and Descriptive Musculoskeletal Atlas of Gorilla: With Notes on the Attachments, Variations, Innervation, Synonymy and Weight of the Muscles; CRC Press: Boca Raton, FL, USA, 2010; pp. 26–50. [Google Scholar]
- Nayak, S.R.; Krishnamurthy, A.; Pai, M.M.; Prabhu, L.V.; Ramanathan, L.A.; Kumar, C.G.; Thomas, M.M. Multiple variations of the extensor tendons of the forearm. Rom. J. Morphol. Embryol. 2008, 49, 97–100. [Google Scholar]
- Murray, W.M.; Delp, S.L.; Buchanan, T.S. Variation of muscle moment arms with elbow and forearm position. J. Biomech. 1995, 28, 513–525. [Google Scholar] [CrossRef]
- Sweetman, G.M.; Crawford, G.; Hird, K.; Fear, M.W. The benefits and limitations of using ultrasonography to supplement anatomical understanding. Anat. Sci. Educ. 2013, 6, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Beggs, I. Shoulder. In Musculoskeletal Ultrasound, 1st ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2014. [Google Scholar]
- Kramer, M.; Gerwing, M.; Hach, V.; Schimke, E. Sonography of the musculoskeletal system in dogs and cats. Vet. Radiol. Ultrasound. 1997, 38, 139–149. [Google Scholar] [CrossRef]
- Konin, G.P.; Nazarian, L.N.; Walz, D.M. US of the elbow: Indications, technique, normal anatomy, and pathologic conditions. Radiographics 2013, 33, 125–147. [Google Scholar] [CrossRef] [PubMed]
- Bellegard, G.; Lopes, É.R.; Bisetto, S.P.; Hage, M.C.F. Musculoskeletal ultrasonography of the elbow joint in dogs: Applicability and evaluation protocol. Pesqui. Vet. Bras. 2019, 39, 419–428. [Google Scholar] [CrossRef] [Green Version]
- Konschake, M.; Stofferin, H.; Moriggl, B. Ultrasound visualization of an underestimated structure: The bicipital aponeurosis. Surg. Radiol. Anat. 2017, 39, 1317–1322. [Google Scholar] [CrossRef] [Green Version]
- Van Alfen, N.; Mah, J.K. Neuromuscular ultrasound: A new tool in your toolbox. Can. J. Neurol. Sci. 2018, 45, 504–515. [Google Scholar] [CrossRef]
- Duarte, M.L.; Iared, W.; Oliveira, A.S.B.; Santos, L.R.D.; Peccin, M.S. Ultrasound versus electromyography for the detection of fasciculation in amyotrophic lateral sclerosis: Systematic review and meta-analysis. Radiol. Bras. 2020, 53, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Kirberger, R.M. Imaging artifacts in diagnostic ultrasound—A review. Vet. Radiol. Ultrasound. 1995, 36, 297–306. [Google Scholar] [CrossRef]
- Hanson, N.A.; Bagi, C.M. Alternative approach to assessment of bone quality using micro-computed tomography. Bone 2004, 35, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Bribiesca-Contreras, F.; Sellers, W.I. Three-dimensional visualisation of the internal anatomy of the sparrowhawk (Accipiter nisus) forelimb using contrast-enhanced micro-computed tomography. PeerJ 2017, 5, e3039. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Lin, G.; Chen, Y.; Fok, A.; Slack, J.M. Micro-computed tomography for visualizing limb skeletal regeneration in young Xenopus frogs. Anat. Rec. 2012, 295, 1562–1565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamal, B.M. Sequential Pattern of Prenatal Ossification in the Fore Limb Bones in White New Zealand Rabbits by Double Stained Techniques and Computed Tomography. PSM Vet. Res. 2019, 4, 24–35. [Google Scholar]
- Dayan, M.O.; Beşoluk, K.; Eken, E.; Aydoğdu, S.; Turgut, N. Three-dimensional modelling of the femur and humerus in adult male guinea pigs (guinea pig) with computed tomography and some biometric measurement values. Folia Morphol. 2019, 78, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.W. Musculoskeletal Injuries and Conditions: Assessment and Management; Springer Publishing Company: New York, NY, USA, 2017; pp. 1–457. [Google Scholar]
- Wang, W.; Wang, X.; Chen, L.; Li, Z.; Zhang, S.; Su, B.; Zhao, F.F.; Weng, Z.; Guan, H.; Gao, M.; et al. Micro-architecture study of the normal infant auditory ossicles with micro-computed tomography. Int. J. Morphol. 2019, 37, 1387–1390. [Google Scholar] [CrossRef] [Green Version]
- Bakici, C.; Akgun, R.O.; Ekim, O.; Batur, B.; Bakici, M.; Ozen, D.; Soydal, C. Three dimensional modeling and quantitative analysis of long bone parameters of rabbit using micro-computed tomography. Iran. J. Vet. Res. 2021, 22, 140–145. [Google Scholar] [CrossRef]
- Wang, W.; Li, Z.; Qi, Y.; Chen, L.; Yi, P.; Yang, F.; Tang, X.; Tan, M. Micro-architecture study of the normal odontoid with micro-computed tomography. J. Spinal Cord Med. 2020, 43, 211–216. [Google Scholar] [CrossRef] [PubMed]
- Patalas, A.; Łabudzki, R.; Sarbinowski, F.; Gapiński, B.; Talar, R.A. Mechanical analysis of cancellous bone in FEA simulation research and experimental testing with the μct control. In Proceedings of the 6th International Conference on Integrity-Reliability-Failure IRF, Lisbon, Portugal, 22–26 July 2018. [Google Scholar]
- Kaczmarek, J.; Bartkowiak, T.; Schuenemann, R.; Paczos, P.; Gapiński, B.; Bogisch, S.; Unger, M. Mechanical Performance of a Polyaxial Locking Plate and the Influence of Screw Angulation in a Fracture Gap Model. Vet. Comp. Orthop. Traumatol. 2019, 33, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Gapiński, B.; Wieczorowski, M.; Grzelka, M.; Alonso, P.A.; Tome, A.B. The application of micro computer tomography to assess quality of parts manufactured by means of rapid prototyping. Polimery 2017, 62, 53–59. [Google Scholar] [CrossRef]
- Gapiński, B.; Wieczorowski, M.; Marciniak-Podsadna, L.; Domínguez, A.P.; Cepova, L.; Martinez, A. Measurement of Surface Topography Using Computed Tomography. In Proceedings of the 5th International Scientific-Technical Conference Manufacturing, Poznań, Poland, 24–26 October 2017. [Google Scholar]
- Gálvez, A.; Caraballo, J.L.; Manzanares-Cespedes, M.C.; Valdivia-Gandur, I.; Figueiredo, R.; Valmaseda-Castellon, E. Vascular labeling of the head and neck vessels: Technique, advantages and limitations. J. Clin. Exp. Dent. 2017, 9, 682–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakker, E.; Gielen, I.; Caelenberg, A.; Van Bree, H.; Van Ryssen, B. Computed Tomography of canine elbow joints affected by primary and concomitant flexor enthesiopathy. Vet. Radiol. Ultrasound. 2014, 55, 45–55. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zdun, M.; Szczepańska, K.; Grzeczka, A.; Frąckowiak, H.; Gapiński, B.; Wieczorowski, M. Ultrasonography, Microcomputed Tomography, and Macroscopic Preparation in an Anatomical Study of the Thoracic Limb of the Golden-Headed Lion Tamarin (Leontopithecus chrysomelas). Appl. Sci. 2022, 12, 1031. https://doi.org/10.3390/app12031031
Zdun M, Szczepańska K, Grzeczka A, Frąckowiak H, Gapiński B, Wieczorowski M. Ultrasonography, Microcomputed Tomography, and Macroscopic Preparation in an Anatomical Study of the Thoracic Limb of the Golden-Headed Lion Tamarin (Leontopithecus chrysomelas). Applied Sciences. 2022; 12(3):1031. https://doi.org/10.3390/app12031031
Chicago/Turabian StyleZdun, Maciej, Katarzyna Szczepańska, Arkadiusz Grzeczka, Hieronim Frąckowiak, Bartosz Gapiński, and Michał Wieczorowski. 2022. "Ultrasonography, Microcomputed Tomography, and Macroscopic Preparation in an Anatomical Study of the Thoracic Limb of the Golden-Headed Lion Tamarin (Leontopithecus chrysomelas)" Applied Sciences 12, no. 3: 1031. https://doi.org/10.3390/app12031031
APA StyleZdun, M., Szczepańska, K., Grzeczka, A., Frąckowiak, H., Gapiński, B., & Wieczorowski, M. (2022). Ultrasonography, Microcomputed Tomography, and Macroscopic Preparation in an Anatomical Study of the Thoracic Limb of the Golden-Headed Lion Tamarin (Leontopithecus chrysomelas). Applied Sciences, 12(3), 1031. https://doi.org/10.3390/app12031031