Fertilization and Soil Microbial Community: A Review
Abstract
:1. Introduction
2. Materials and Methods
- -
- Type of publications (only original studies or reviews were considered);
- -
- The main direction of the systematic review consisted in reviewing the fertilizer types and fertilizer treatments used in different countries of the world;
- -
- Effects of chemical fertilizer management on soil microorganisms in agroecosystems across the world, also compared with organic fertilization;
- -
- Influence of intensive and/or long fertilization on the numbers and activities of microbial communities in soils;
- -
- Comparison between the various fertilizer regimes and their effects on soil microorganisms.
- -
- Editorials;
- -
- Studies published in a language other than English;
- -
- Studies in specific extreme areas (e.g., arctic or arid soils).
3. Results and Discussion
3.1. Effects of Chemical Fertilizers on Biomass, Activity and Diversity of Soil Microorganisms
3.2. Types of Fertilizers Used and Their Influence on Soil Microbial Community
3.3. Bacterial and Fungal Species Affected by Chemical or Organic Fertilizers
3.4. Negative Effects of Chemical Fertilizers on Soil Ecosystem
4. Some Consideration for Organic Amendments Used as Fertilizer
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Winkler, K.; Fuchs, R.; Rounsevell, M.; Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef] [PubMed]
- FAO. The World Bank Data, Food and Agriculture Organization. 2018. Available online: https://data.worldbank.org/indicator/AG.LND.AGRI.K2 (accessed on 10 November 2021).
- ISO. ISO 8157:2015, Fertilizers and Soil Conditioners; ISO: Geneva, Switzerland, 2015; Available online: https://www.iso.org/standard/59567.html (accessed on 10 November 2021).
- Thapa, S.; Bhandari, A.; Ghimire, R.; Xue, Q.; Kidwaro, F.; Ghatrehsamani, S.; Maharjan, B.; Goodwin, M. Managing Micronutrients for Improving Soil Fertility, Health, and Soybean Yield. Sustainability 2021, 13, 11766. [Google Scholar] [CrossRef]
- Zhang, W.-F.; Dou, Z.-X.; He, P.; Ju, X.-T.; Powlson, D.; Chadwick, D.; Norse, D.; Lu, Y.-L.; Zhang, Y.; Wu, L.; et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc. Natl. Acad. Sci. USA 2013, 110, 8375–8380. [Google Scholar] [CrossRef] [Green Version]
- Farrauto, R.J. Industrial Catalysis: A Practical Guide. In Kent and Riegel’s Handbook of Industrial Chemistry and Biotechnology; Aftalion, F., Ed.; Springer: Boston, MA, USA, 2007; pp. 271–304. [Google Scholar]
- Johnston, A.E.; Poulton, P.R.; Fixen, P.E.; Curtin, D. Phosphorus: Its efficient use in agriculture. In Advances in Agronomy; Sparks, D.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 177–228. [Google Scholar]
- Scherer, H.W. Fertilizers and fertilization. In Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 20–26. [Google Scholar]
- Gouda, S.; Kerry, R.G.; Das, G.; Paramithiotis, S.; Shin, H.-S.; Patra, J.K. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol. Res. 2018, 206, 131–140. [Google Scholar] [CrossRef]
- Dasgupta, D.; Kumar, K.; Miglani, R.; Mishra, R.; Panda, A.K.; Bisht, S.S. Microbial biofertilizers: Recent trends and future outlook. In Recent Advancement in Microbial Biotechnology; Elsevier: Amsterdam, The Netherlands, 2021; pp. 1–26. [Google Scholar]
- Singh, D.; Thapa, S.; Geat, N.; Mehriya, M.L.; Rajawat, M.V.S. Biofertilizers: Mechanisms and application. In Biofertilizers; Elsevier: Amsterdam, The Netherlands, 2021; pp. 151–166. [Google Scholar]
- FAO. World Fertilizer Trends and Outlook to 2020, Summary Report; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; Available online: https://www.fao.org/3/i6895e/i6895e.pdf (accessed on 10 December 2021).
- Chai, R.; Ye, X.; Ma, C.; Wang, Q.; Tu, R.; Zhang, L.; Gao, H. Greenhouse gas emissions from synthetic nitrogen manufacture and fertilization for main upland crops in China. Carbon Balance Manag. 2019, 14, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bijay-Singh; Craswell, E. Fertilizers and nitrate pollution of surface and ground water: An increasingly pervasive global problem. SN Appl. Sci. 2021, 3, 518. [Google Scholar] [CrossRef]
- Lawrencia, D.; Wong, S.K.; Low, D.Y.S.; Goh, B.H.; Goh, J.K.; Ruktanonchai, U.R.; Soottitantawat, A.; Lee, L.H.; Tang, S.Y. Controlled Release Fertilizers: A Review on Coating Materials and Mechanism of Release. Plants 2021, 10, 238. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Bai, J.; Xie, T.; Wang, W.; Zhang, G.; Yin, S.; Wang, D. Effects of biological nitrification inhibitors on nitrogen use efficiency and greenhouse gas emissions in agricultural soils: A review. Ecotoxicol. Environ. Saf. 2021, 220, 112338. [Google Scholar] [CrossRef]
- Trenkel, M.E. Improved Fertilizer Use Efficiency. Controlled-Release and Stabilized Fertilizers in Agriculture; International Fertilizer Industry Association: Paris, France, 1997. [Google Scholar]
- Byrne, M.P.; Tobin, J.T.; Forrestal, P.J.; Danaher, M.; Nkwonta, C.G.; Richards, K.; Cummins, E.; Hogan, S.A.; O’Callaghan, T.F. Urease and Nitrification Inhibitors—As Mitigation Tools for Greenhouse Gas Emissions in Sustainable Dairy Systems: A Review. Sustainability 2020, 12, 6018. [Google Scholar] [CrossRef]
- Van de Wiel, C.C.M.; van der Linden, C.G.; Scholten, O.E. Improving phosphorus use efficiency in agriculture: Opportunities for breeding. Euphytica 2016, 207, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, A. Changing Environmental Condition and Phosphorus-Use Efficiency in Plants; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Bindraban, P.S.; Dimkpa, C.O.; Pandey, R. Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biol. Fertil. Soils 2020, 56, 299–317. [Google Scholar] [CrossRef] [Green Version]
- Du Preez, C.C.; van Huyssteen, C.W.; Kotzé, E.; van Tol, J.J. Ecosystem services in sustainable food systems: Operational definition, concepts, and applications. In The Role of Ecosystem Services in Sustainable Food Systems; Rusinamhodzi, L., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 17–42. [Google Scholar]
- Li, Z.; Zhang, R.; Xia, S.; Wang, L.; Liu, C.; Zhang, R.; Fan, Z.; Chen, F.; Liu, Y. Interactions between N, P and K fertilizers affect the environment and the yield and quality of satsumas. Glob. Ecol. Conserv. 2019, 19, e00663. [Google Scholar] [CrossRef]
- Khan, S.A.; Mulvaney, R.L.; Ellsworth, T.R. The potassium paradox: Implications for soil fertility, crop production and human health. Renew. Agric. Food Syst. 2014, 29, 3–27. [Google Scholar] [CrossRef] [Green Version]
- Onet, A.; Dincă, L.C.; Grenni, P.; Laslo, V.; Teusdea, A.C.; Vasile, D.L.; Enescu, R.E.; Crisan, V.E. Biological indicators for evaluating soil quality improvement in a soil degraded by erosion processes. J. Soils Sediments 2019, 19, 2393–2404. [Google Scholar] [CrossRef]
- Umesha, S.; Manukumar, H.M.G.; Chandrasekhar, B. Sustainable Agriculture and Food Security. In Biotechnology for Sustainable Agriculture; Singh, R.L., Mondal, S., Eds.; Woodhead Publishing: Cambridge, UK, 2018; pp. 67–92. [Google Scholar]
- Lewu, F.B.; Volova, T.; Thomas, S.; Rakhimol, K.R. Controlled Release Fertilizers for Sustainable Agriculture; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Karthik, V.; Kumar, P.S.; Vo, D.-V.N.; Sindhu, J.; Sneka, D.; Subhashini, B.; Saravanan, K.; Jeyanthi, J. Hydrothermal production of algal biochar for environmental and fertilizer applications: A review. Environ. Chem. Lett. 2021, 19, 1025–1042. [Google Scholar] [CrossRef]
- Kavitha, B.; Reddy, P.V.L.; Kim, B.; Lee, S.S.; Pandey, S.K.; Kim, K.-H. Benefits and limitations of biochar amendment in agricultural soils: A review. J. Environ. Manag. 2018, 227, 146–154. [Google Scholar] [CrossRef]
- Juriga, M.; Šimanský, V. Effect of biochar on soil structure-review. Acta Fytotech. Zootech. 2018, 21, 11–19. [Google Scholar] [CrossRef]
- Mącik, M.; Gryta, A.; Frąc, M. Biofertilizers in agriculture: An overview on concepts, strategies and effects on soil microorganisms. Adv. Agron. 2020, 162, 31–87. [Google Scholar]
- Kumar, S.; Diksha; Sindhu, S.S.; Kumar, R. Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Curr. Res. Microb. Sci. 2022, 3, 100094. [Google Scholar] [CrossRef]
- Sharma, B.; Sarkar, A.; Singh, P.; Singh, R.P. Agricultural utilization of biosolids: A review on potential effects on soil and plant grown. Waste Manag. 2017, 64, 117–132. [Google Scholar] [CrossRef]
- Pepper, I.L.; Brooks, J.P.; Gerba, C.P. Land Application of Organic Residuals: Municipal Biosolids and Animal Manures. In Environmental and Pollution Science; Elsevier: Amsterdam, The Netherlands, 2019; pp. 419–434. [Google Scholar]
- Vijayakuma, S.; Saravanan, V. Biosurfactants-Types, Sources and Applications. Res. J. Microbiol. 2015, 10, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Sachdev, D.P.; Cameotra, S.S. Biosurfactants in agriculture. Appl. Microbiol. Biotechnol. 2013, 97, 1005–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsipa, A.; Stylianou, K.; Papalli, M.; Papageorgiou, E.; Kyriakou, L.; Rigopoulos, I.; Ioannou, I.; Pinakoulaki, E. Iron-Stimulated Production and Antimicrobial Potential of a Novel Biosurfactant Produced by a Drilling Waste-Degrading Pseudomonas citronellolis Strain. Processes 2021, 9, 686. [Google Scholar] [CrossRef]
- Bernal, M.P.; Sommer, S.G.; Chadwick, D.; Qing, C.; Guoxue, L.; Michel, F.C. Current Approaches and Future Trends in Compost Quality Criteria for Agronomic, Environmental, and Human Health Benefits. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 143–233. [Google Scholar]
- Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 laying down rules on the making available on the market of EU fertilising products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003. Off. J. Eur. Union 2019, L 170/1, 1–114. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019R1009 (accessed on 18 January 2022).
- EC. COM(2010)235 final-Communication from the Commission to the Council and the European Parliament on Future Steps in Bio-Waste Management in the European Union; EC: Bruxelles, Belgium, 2010; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52010DC0235 (accessed on 18 January 2022).
- Weithmann, N.; Möller, J.N.; Löder, M.G.J.; Piehl, S.; Laforsch, C.; Freitag, R. Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci. Adv. 2018, 4, eaap8060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visca, A.; Barra Caracciolo, A.; Grenni, P.; Patrolecco, L.; Rauseo, J.; Massini, G.; Miritana, V.M.; Spataro, F. Anaerobic digestion and removal of sulfamethoxazole, enrofloxacin, ciprofloxacin and their antibiotic resistance genes in a full-scale biogas plant. Antibiotics 2021, 10, 502. [Google Scholar] [CrossRef] [PubMed]
- Visca, A.; Rauseo, J.; Spataro, F.; Patrolecco, L.; Grenni, P.; Massini, G.; Mazzurco Miritana, V.; Barra Caracciolo, A. Antibiotics and antibiotic resistance genes in anaerobic digesters and predicted concentrations in agroecosystems. J. Environ. Manag. 2022, 301, 113891. [Google Scholar] [CrossRef] [PubMed]
- Loyon, L. Overview of Animal Manure Management for Beef, Pig, and Poultry Farms in France. Front. Sustain. Food Syst. 2018, 2, 2. [Google Scholar] [CrossRef]
- Barra Caracciolo, A.; Visca, A.; Massini, G.; Patrolecco, L.; Miritana, V.M.; Grenni, P. Environmental Fate of Antibiotics and Resistance Genes in Livestock Waste and Digestate from Biogas Plants. Environ. Sci. Pollut. Res. Manag. 2020, 2020, ESPRM-102. [Google Scholar] [CrossRef]
- Miritana, V.M.; Massini, G.; Visca, A.; Grenni, P.; Patrolecco, L.; Spataro, F.; Rauseo, J.; Garbini, G.L.; Signorini, A.; Rosa, S.; et al. Effects of Sulfamethoxazole on the Microbial Community Dynamics During the Anaerobic Digestion Process. Front. Microbiol. 2020, 11, 537783. [Google Scholar] [CrossRef]
- Rayne, N.; Aula, L. Livestock Manure and the Impacts on Soil Health: A Review. Soil Syst. 2020, 4, 64. [Google Scholar] [CrossRef]
- Mupambwa, H.A.; Mnkeni, P.N.S. Optimizing the vermicomposting of organic wastes amended with inorganic materials for production of nutrient-rich organic fertilizers: A review. Environ. Sci. Pollut. Res. 2018, 25, 10577–10595. [Google Scholar] [CrossRef] [PubMed]
- Ali, U.; Sajid, N.; Khalid, A.; Riaz, L.; Rabbani, M.M.; Syed, J.H.; Malik, R.N. A review on vermicomposting of organic wastes. Environ. Prog. Sustain. Energy 2015, 34, 1050–1062. [Google Scholar] [CrossRef]
- Sulaiman, I.S.C.; Mohamad, A. The Use of Vermiwash and Vermicompost Extract in Plant Disease and Pest Control. In Natural Remedies for Pest, Disease and Weed Control; Elsevier: Amsterdam, The Netherlands, 2020; pp. 187–201. [Google Scholar]
- Sharma, K.; Garg, V.K. Vermicomposting: A Green Technology for Organic Waste Management. In Waste to Wealth. Energy, Environment, and Sustainability; Singhania, R., Agarwal, R., Kumar, R., Sukumaran, R., Eds.; Springer: Singapore, 2018; pp. 199–235. [Google Scholar]
- FAO; ITPS; GSBI; SCBD, EC. State of Knowledge of Soil Biodiversity–Status, Challenges and Potentialities. Summary for Policy Makers; FAO: Rome, Italy, 2020; ISBN 978-92-5-133583-3. Available online: https://www.fao.org/3/cb1928en/cb1928en.pdf (accessed on 18 January 2022).
- Mercado-Blanco, J.; Abrantes, I.; Barra Caracciolo, A.; Bevivino, A.; Ciancio, A.; Grenni, P.; Hrynkiewicz, K.; Kredics, L.; Proença, D.N. Belowground microbiota and the health of tree crops. Front. Microbiol. 2018, 9, 1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barra Caracciolo, A.; Grenni, P. Bio-remediation of soil ecosystems from triazine herbicides. In Pesticides in Soils: Occurrence, Fate, Control and Remediation; Rodríguez-Cruz, M., Sánchez-Martín, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar]
- Saleem, M.; Hu, J.; Jousset, A. More Than the Sum of Its Parts: Microbiome Biodiversity as a Driver of Plant Growth and Soil Health. Annu. Rev. Ecol. Evol. Syst. 2019, 50, 145–168. [Google Scholar] [CrossRef]
- Paz-Ferreiro, J.; Fu, S. Biological Indices for Soil Quality Evaluation: Perspectives and Limitations. Land Degrad. Dev. 2016, 27, 14–25. [Google Scholar] [CrossRef]
- Singh, J.S.; Gupta, V.K. Soil microbial biomass: A key soil driver in management of ecosystem functioning. Sci. Total Environ. 2018, 634, 497–500. [Google Scholar] [CrossRef]
- Schloter, M.; Nannipieri, P.; Sørensen, S.J.; van Elsas, J.D. Microbial indicators for soil quality. Biol. Fertil. Soils 2018, 54, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Doran, J.W.; Zeiss, M.R. Soil health and sustainability: Managing the biotic component of soil quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Karlen, D.L.; Mausbach, M.J.; Doran, J.W.; Cline, R.G.; Harris, R.F.; Schuman, G.E. Soil Quality: A Concept, Definition, and Framework for Evaluation. Soil Sci. Soc. Am. J. 1997, 61, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, M.; Frey, B.; Mayer, J.; Mäder, P.; Widmer, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME J. 2015, 9, 1177–1194. [Google Scholar] [CrossRef] [Green Version]
- Cai, F.; Pang, G.; Li, R.-X.; Li, R.; Gu, X.-L.; Shen, Q.-R.; Chen, W. Bioorganic fertilizer maintains a more stable soil microbiome than chemical fertilizer for monocropping. Biol. Fertil. Soils 2017, 53, 861–872. [Google Scholar] [CrossRef]
- Oneț, A.; Teușdea, A.; Boja, N.; Domuța, C.; Oneț, C. Effects of common oak (Quercus robur L.) defolition on the soil properties of an oak forest in Western Plain of Romania. Ann. For. Res. 2016, 59, 1. [Google Scholar] [CrossRef] [Green Version]
- FAO. Keep Soil Alive, Protect Soil Biodiversity–Global Symposium on Soil Biodiversity 19–22 April 2021. Proceedings; Food and Agriculture Organization of the United Nations: Rome, Italy, 2021; Available online: https://www.fao.org/documents/card/en/c/cb6005en (accessed on 18 January 2022).
- EU. COM(2021) 699 Final, Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions EU Soil Strategy for 2030 Reaping the Benefits of Healthy Soils for People, Food, Nature and Climate; EU: Bruxelles, Belgium, 2021; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52021DC0699 (accessed on 18 January 2022).
- Onet, A.; Cimpeanu, C.; Teusdea, A.; Pantea, S.; Modog, T. Evaluation of the Soil Properties Variability in Relation to Different Crop Types. J. Environ. Prot. Ecol. 2016, 17, 1305–1314. [Google Scholar]
- Nannipieri, P.; Kandeler, E.; Ruggiero, P. Enzyme activities and microbiological and biochemical processes in soil. In Enzymes in the Environment: Activity, Ecology and Applications; Burns, R.G., Dick, R.P., Eds.; Marcel Dekker: New York, NY, USA, 2002; pp. 1–33. ISBN 0-8247-0614-5. [Google Scholar]
- Nannipieri, P.; Trasar-Cepeda, C.; Dick, R.P. Soil enzyme activity: A brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biol. Fertil. Soils 2018, 54, 11–19. [Google Scholar] [CrossRef]
- Heyn, P.C.; Meeks, S.; Pruchno, R. Methodological Guidance for a Quality Review Article. Gerontologist 2019, 59, 197–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandic, L.; Djukić, D.; Beatovic, I.; Jovovic, Z.; Pesakovic, M.; Stevovic, V. Effect of different fertilizers on the microbial activity and productivity of soil under potato cultivation. Afr. J. Biotechnol. 2011, 10, 6954–6960. [Google Scholar]
- Chu, H.; Lin, X.; Fujii, T.; Morimoto, S.; Yagi, K.; Hu, J.; Zhang, J. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biol. Biochem. 2007, 39, 2971–2976. [Google Scholar] [CrossRef]
- Joergensen, R.G.; Mäder, P.; Fließbach, A. Long-term effects of organic farming on fungal and bacterial residues in relation to microbial energy metabolism. Biol. Fertil. Soils 2010, 46, 303–307. [Google Scholar] [CrossRef]
- Murugan, R.; Kumar, S. Influence of long-term fertilisation and crop rotation on changes in fungal and bacterial residues in a tropical rice-field soil. Biol. Fertil. Soils 2013, 49, 847–856. [Google Scholar] [CrossRef]
- Tao, R.; Liang, Y.; Wakelin, S.A.; Chu, G. Supplementing chemical fertilizer with an organic component increases soil biological function and quality. Appl. Soil Ecol. 2015, 96, 42–51. [Google Scholar] [CrossRef]
- Li, J.; Zhao, B.; Li, X.; Jiang, R.; Bing, S.H. Effects of Long-Term Combined Application of Organic and Mineral Fertilizers on Microbial Biomass, Soil Enzyme Activities and Soil Fertility. Agric. Sci. China 2008, 7, 336–343. [Google Scholar] [CrossRef]
- Francioli, D.; Schulz, E.; Lentendu, G.; Wubet, T.; Buscot, F.; Reitz, T. Mineral vs. Organic Amendments: Microbial Community Structure, Activity and Abundance of Agriculturally Relevant Microbes Are Driven by Long-Term Fertilization Strategies. Front. Microbiol. 2016, 7, 1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geisseler, D.; Scow, K.M. Long-term effects of mineral fertilizers on soil microorganisms–A review. Soil Biol. Biochem. 2014, 75, 54–63. [Google Scholar] [CrossRef]
- Wang, F.; Han, W.; Chen, S.; Dong, W.; Qiao, M.; Hu, C.; Liu, B. Fifteen-Year Application of Manure and Chemical Fertilizers Differently Impacts Soil ARGs and Microbial Community Structure. Front. Microbiol. 2020, 11, 62. [Google Scholar] [CrossRef] [PubMed]
- Cai, F.; Luo, P.; Yang, J.; Irfan, M.; Zhang, S.; An, N.; Dai, J.; Han, X. Effect of Long-Term Fertilization on Ammonia-Oxidizing Microorganisms and Nitrification in Brown Soil of Northeast China. Front. Microbiol. 2021, 11, 622454. [Google Scholar] [CrossRef] [PubMed]
- Kang, G.S.; Beri, V.; Sidhu, B.S.; Rupela, O.P. A new index to assess soil quality and sustainability of wheat-based cropping systems. Biol. Fertil. Soils 2005, 41, 389–398. [Google Scholar] [CrossRef] [Green Version]
- Nakhro, N.; Dkhar, M.S. Populations and biomass carbon in paddy field soil. J. Agron. 2010, 9, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Sun, R.; Guo, X.; Wang, D.; Chu, H. Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle. Appl. Soil Ecol. 2015, 95, 171–178. [Google Scholar] [CrossRef]
- Cui, J.; Yuan, X.; Zhang, Q.; Zhou, J.; Lin, K.; Xu, J.; Zeng, Y.; Wu, Y.; Cheng, L.; Zeng, Q.; et al. Nutrient availability is a dominant predictor of soil bacterial and fungal community composition after nitrogen addition in subtropical acidic forests. PLoS ONE 2021, 16, e0246263. [Google Scholar] [CrossRef]
- Wang, J.L.; Liu, K.L.; Zhao, X.Q.; Zhang, H.Q.; Li, D.; Li, J.J.; Shen, R.F. Balanced fertilization over four decades has sustained soil microbial communities and improved soil fertility and rice productivity in red paddy soil. Sci. Total Environ. 2021, 793, 148664. [Google Scholar] [CrossRef]
- Goyal, S.; Mishra, M.M.; Hooda, I.S.; Singh, R. Organic matter-microbial biomass relationships in field experiments under tropical conditions: Effects of inorganic fertilization and organic amendments. Soil Biol. Biochem. 1992, 24, 1081–1084. [Google Scholar] [CrossRef]
- Ai, C.; Zhang, S.; Zhang, X.; Guo, D.; Zhou, W.; Huang, S. Distinct responses of soil bacterial and fungal communities to changes in fertilization regime and crop rotation. Geoderma 2018, 319, 156–166. [Google Scholar] [CrossRef]
- Cassman, N.A.; Leite, M.F.A.; Pan, Y.; de Hollander, M.; van Veen, J.A.; Kuramae, E.E. Plant and soil fungal but not soil bacterial communities are linked in long-term fertilized grassland. Sci. Rep. 2016, 6, 23680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, J.; Liu, X.; Yang, W.; Yang, X.; Li, W.; Xia, Q.; Li, J.; Gao, Z.; Yang, Z. Rhizosphere soil properties, microbial community, and enzyme activities: Short-term responses to partial substitution of chemical fertilizer with organic manure. J. Environ. Manag. 2021, 299, 113650. [Google Scholar] [CrossRef] [PubMed]
- Benizri, E.; Amiaud, B. Relationship between plants and soil microbial communities in fertilized grasslands. Soil Biol. Biochem. 2005, 37, 2055–2064. [Google Scholar] [CrossRef]
- Luo, P.; Han, X.; Wang, Y.; Han, M.; Shi, H.; Liu, N.; Bai, H. Influence of long-term fertilization on soil microbial biomass, dehydrogenase activity, and bacterial and fungal community structure in a brown soil of northeast China. Ann. Microbiol. 2015, 65, 533–542. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.J.; Wang, X.J.; Xu, M.G.; Huang, S.M.; Liu, H.; Peng, C. Soil organic carbon dynamics under long-term fertilizations in arable land of northern China. Biogeosciences 2010, 7, 409–425. [Google Scholar] [CrossRef] [Green Version]
- Aref, S.; Wander, M.M. Long-Term Trends of Corn Yield and Soil Organic Matter in Different Crop Sequences and Soil Fertility Treatments on the Morrow Plots. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 1997; pp. 153–197. [Google Scholar]
- Guo, Z.; Han, J.; Li, J.; Xu, Y.; Wang, X. Effects of long-term fertilization on soil organic carbon mineralization and microbial community structure. PLoS ONE 2019, 14, e0211163. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Tian, J.; Fang, H.; Gao, Y.; Xu, M.; Lou, Y.; Zhou, B.; Kuzyakov, Y. Functional Soil Organic Matter Fractions, Microbial Community, and Enzyme Activities in a Mollisol Under 35 Years Manure and Mineral Fertilization. J. Soil Sci. Plant Nutr. 2019, 19, 430–439. [Google Scholar] [CrossRef]
- Tian, J.; Lou, Y.; Gao, Y.; Fang, H.; Liu, S.; Xu, M.; Blagodatskaya, E.; Kuzyakov, Y. Response of soil organic matter fractions and composition of microbial community to long-term organic and mineral fertilization. Biol. Fertil. Soils 2017, 53, 523–532. [Google Scholar] [CrossRef]
- Cookson, W.R.; Abaye, D.A.; Marschner, P.; Murphy, D.V.; Stockdale, E.A.; Goulding, K.W.T. The contribution of soil organic matter fractions to carbon and nitrogen mineralization and microbial community size and structure. Soil Biol. Biochem. 2005, 37, 1726–1737. [Google Scholar] [CrossRef]
- Luo, G.; Friman, V.-P.; Chen, H.; Liu, M.; Wang, M.; Guo, S.; Ling, N.; Shen, Q. Long-term fertilization regimes drive the abundance and composition of N-cycling-related prokaryotic groups via soil particle-size differentiation. Soil Biol. Biochem. 2018, 116, 213–223. [Google Scholar] [CrossRef]
- Šimek, M.; Hopkins, D.W.; Kalčík, J.; Picek, T.; Šantrůčková, H.; Staňa, J.; Trávník, K. Biological and chemical properties of arable soils affected by long-term organic and inorganic fertilizer applications. Biol. Fertil. Soils 1999, 29, 300–308. [Google Scholar] [CrossRef]
- Perrott, K.; Sarathchandra, S.; Dow, B. Seasonal and fertilizer effects on the organic cycle and microbial biomass in a hill country soil under pasture. Soil Res. 1992, 30, 383. [Google Scholar] [CrossRef]
- Fraser, P.M.; Haynes, R.J.; Williams, P.H. Effects of pasture improvement and intensive cultivation on microbial biomass, enzyme activities, and composition and size of earthworm populations. Biol. Fertil. Soils 1994, 17, 185–190. [Google Scholar] [CrossRef]
- Dhull, S.; Goyal, S.; Kapoor, K.; Mundra, M. Microbial biomass carbon and microbial activities of soils receiving chemical fertilizers and organic amendments. Arch. Agron. Soil Sci. 2004, 50, 641–647. [Google Scholar] [CrossRef]
- Bera, T.; Collins, H.P.; Alva, A.K.; Purakayastha, T.J.; Patra, A.K. Biochar and manure effluent effects on soil biochemical properties under corn production. Appl. Soil Ecol. 2016, 107, 360–367. [Google Scholar] [CrossRef]
- Mi, W.; Sun, Y.; Xia, S.; Zhao, H.; Mi, W.; Brookes, P.C.; Liu, Y.; Wu, L. Effect of inorganic fertilizers with organic amendments on soil chemical properties and rice yield in a low-productivity paddy soil. Geoderma 2018, 320, 23–29. [Google Scholar] [CrossRef]
- Nannipieri, P.; Ascher, J.; Ceccherini, M.T.; Landi, L.; Pietramellara, G.; Renella, G. Microbial diversity and soil functions. Eur. J. Soil Sci. 2003, 54, 655–670. [Google Scholar] [CrossRef]
- Blake, L.; Mercik, S.; Koerschens, M.; Moskal, S.; Poulton, P.R.; Goulding, K.W.T.; Weigel, A.; Powlson, D.S. Phosphorus content in soil, uptake by plants and balance in three European long-term field experiments. Nutr. Cycl. Agroecosyst. 2000, 56, 263–275. [Google Scholar] [CrossRef]
- Liu, A.; Hamel, C.; Spedding, T.; Zhang, T.-Q.; Mongeau, R.; Lamarre, G.R.; Tremblay, G. Soil microbial carbon and phosphorus as influenced by phosphorus fertilization and tillage in a maize-soybean rotation in south-western Quebec. Can. J. Soil Sci. 2008, 88, 21–30. [Google Scholar] [CrossRef]
- Beauregard, M.S.; Hamel, C.; Atul-Nayyar; St-Arnaud, M. Long-Term Phosphorus Fertilization Impacts Soil Fungal and Bacterial Diversity but not AM Fungal Community in Alfalfa. Microb. Ecol. 2010, 59, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Enebe, M.C.; Babalola, O.O. Effects of inorganic and organic treatments on the microbial community of maize rhizosphere by a shotgun metagenomics approach. Ann. Microbiol. 2020, 70, 49. [Google Scholar] [CrossRef]
- Zhan, Y.; Liu, W.; Bao, Y.; Zhang, J.; Petropoulos, E.; Li, Z.; Lin, X.; Feng, Y. Fertilization shapes a well-organized community of bacterial decomposers for accelerated paddy straw degradation. Sci. Rep. 2018, 8, 7981. [Google Scholar] [CrossRef]
- Song, Z.; Gao, H.; Zhu, P.; Peng, C.; Deng, A.; Zheng, C.; Mannaf, M.A.; Islam, M.N.; Zhang, W. Organic amendments increase corn yield by enhancing soil resilience to climate change. Crop J. 2015, 3, 110–117. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Chen, M.; Feng, H.; Wei, M.; Song, F.; Lou, Y.; Cui, X.; Wang, H.; Zhuge, Y. Organic and inorganic fertilizers respectively drive bacterial and fungal community compositions in a fluvo-aquic soil in northern China. Soil Tillage Res. 2020, 198, 104540. [Google Scholar] [CrossRef]
- He, J.-Z.; Zheng, Y.; Chen, C.-R.; He, Y.-Q.; Zhang, L.-M. Microbial composition and diversity of an upland red soil under long-term fertilization treatments as revealed by culture-dependent and culture-independent approaches. J. Soils Sediments 2008, 8, 349–358. [Google Scholar] [CrossRef]
- Edmeades, D.C. The long-term effects of manures and fertilisers on soil productivity and quality: A review. Nutr. Cycl. Agroecosyst. 2003, 66, 165–180. [Google Scholar] [CrossRef]
- De Vries, F.T.; Hoffland, E.; van Eekeren, N.; Brussaard, L.; Bloem, J. Fungal/bacterial ratios in grasslands with contrasting nitrogen management. Soil Biol. Biochem. 2006, 38, 2092–2103. [Google Scholar] [CrossRef] [Green Version]
- Ju, X.; Liu, X.; Zhang, F.; Roelcke, M. Nitrogen Fertilization, Soil Nitrate Accumulation, and Policy Recommendations in Several Agricultural Regions of China. AMBIO A J. Hum. Environ. 2004, 33, 300–305. [Google Scholar] [CrossRef]
- Cruz, A.F.; Hamel, C.; Hanson, K.; Selles, F.; Zentner, R.P. Thirty-seven years of soil nitrogen and phosphorus fertility management shapes the structure and function of the soil microbial community in a Brown Chernozem. Plant Soil 2009, 315, 173–184. [Google Scholar] [CrossRef]
- Gu, Y.; Zhang, X.; Tu, S.; Lindström, K. Soil microbial biomass, crop yields, and bacterial community structure as affected by long-term fertilizer treatments under wheat-rice cropping. Eur. J. Soil Biol. 2009, 45, 239–246. [Google Scholar] [CrossRef]
- Hyman, M.R.; Kim, C.Y.; Arp, D.J. Inhibition of ammonia monooxygenase in Nitrosomonas europaea by carbon disulfide. J. Bacteriol. 1990, 172, 4775–4782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zydlik, Z.; Pacholak, E. Effect of soil fatigue prevention methods on microbiological soil status in replanted apple tree orchard. Part III. Number of fungi and Actinomycetes. Electron. J. Polish Agric. Univ. 2006, 9, #58. Available online: http://www.ejpau.media.pl/volume9/issue4/art-58.html (accessed on 18 January 2022).
- Ashworth, A.J.; DeBruyn, J.M.; Allen, F.L.; Radosevich, M.; Owens, P.R. Microbial community structure is affected by cropping sequences and poultry litter under long-term no-tillage. Soil Biol. Biochem. 2017, 114, 210–219. [Google Scholar] [CrossRef]
- Cui, X.; Zhang, Y.; Gao, J.; Peng, F.; Gao, P. Long-term combined application of manure and chemical fertilizer sustained higher nutrient status and rhizospheric bacterial diversity in reddish paddy soil of Central South China. Sci. Rep. 2018, 8, 16554. [Google Scholar] [CrossRef]
- Dijksterhuis, J.; Samson, R.A. Zygomycetes. In Woodhead Publishing Series in Food Science, Technology and Nutrition, Food Spoilage Microorganisms; Blackburn, C.d.W., Ed.; Woodhead Publishing: Cambridge, UK, 2006; pp. 415–436. [Google Scholar]
- Rieke, E.L.; Soupir, M.L.; Moorman, T.B.; Yang, F.; Howe, A.C. Temporal Dynamics of Bacterial Communities in Soil and Leachate Water After Swine Manure Application. Front. Microbiol. 2018, 9, 3197. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, Y.; Reeve, J.R.; Norton, J.M. Soil enzyme activities and abundance of microbial functional genes involved in nitrogen transformations in an organic farming system. Biol. Fertil. Soils 2018, 54, 437–450. [Google Scholar] [CrossRef]
- Tao, R.; Wakelin, S.A.; Liang, Y.; Chu, G. Response of ammonia-oxidizing archaea and bacteria in calcareous soil to mineral and organic fertilizer application and their relative contribution to nitrification. Soil Biol. Biochem. 2017, 114, 20–30. [Google Scholar] [CrossRef]
- Zou, W.; Lang, M.; Zhang, L.; Liu, B.; Chen, X. Ammonia-oxidizing bacteria rather than ammonia-oxidizing archaea dominate nitrification in a nitrogen-fertilized calcareous soil. Sci. Total Environ. 2021, 811, 151402. [Google Scholar] [CrossRef] [PubMed]
- Koch, A.L. Oligotrophs versus copiotrophs. BioEssays 2001, 23, 657–661. [Google Scholar] [CrossRef] [PubMed]
- Yao, F.; Yang, S.; Wang, Z.; Wang, X.; Ye, J.; Wang, X.; DeBruyn, J.M.; Feng, X.; Jiang, Y.; Li, H. Microbial Taxa Distribution Is Associated with Ecological Trophic Cascades along an Elevation Gradient. Front. Microbiol. 2017, 8, 2071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parham, J.A.; Deng, S.P.; Da, H.N.; Sun, H.Y.; Raun, W.R. Long-term cattle manure application in soil. II. Effect on soil microbial populations and community structure. Biol. Fertil. Soils 2003, 38, 209–215. [Google Scholar] [CrossRef]
- Song, H.-K.; Song, W.; Kim, M.; Tripathi, B.M.; Kim, H.; Jablonski, P.; Adams, J.M. Bacterial strategies along nutrient and time gradients, revealed by metagenomic analysis of laboratory microcosms. FEMS Microbiol. Ecol. 2017, 93, fix114. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Li, T.; Wang, C.; Dang, N.; Wang, R.; Jiang, Y.; Wang, H.; Li, H. N and P fertilization enhanced carbon decomposition function by shifting microbes towards an r-selected community in meadow grassland soils. Ecol. Indic. 2021, 132, 108306. [Google Scholar] [CrossRef]
- Sumbul, A.; Ansari, R.A.; Rizvi, R.; Mahmood, I. Azotobacter: A potential bio-fertilizer for soil and plant health management. Saudi J. Biol. Sci. 2020, 27, 3634–3640. [Google Scholar] [CrossRef]
- Styła, K.; Sawicka, A. Microbiological activity of soil against the background of differentiated irrigation and fertilization in apple (Malus domestica) orchard after replantation. Agron. Res. 2010, 8, 827–836. [Google Scholar]
- Cinnadurai, C.; Gopalaswamy, G.; Balachandar, D. Diversity of cultivable Azotobacter in the semi-arid alfisol receiving long-term organic and inorganic nutrient amendments. Ann. Microbiol. 2013, 63, 1397–1404. [Google Scholar] [CrossRef]
- Adediran, J.A.; De Baets, N.; Mnkeni, P.N.S.; Kiekens, L.; Muyima, N.Y.O.; Thys, A. Organic Waste Materials for Soil Fertility Improvement in the Border Region of the Eastern Cape, South Africa. Biol. Agric. Hortic. 2003, 20, 283–300. [Google Scholar] [CrossRef]
- Bokhtiar, S.M.; Paul, G.C.; Alam, K.M. Effects of Organic and Inorganic Fertilizer on Growth, Yield, and Juice Quality and Residual Effects on Ratoon Crops of Sugarcane. J. Plant Nutr. 2008, 31, 1832–1843. [Google Scholar] [CrossRef]
- Schauss, K.; Focks, A.; Leininger, S.; Kotzerke, A.; Heuer, H.; Thiele-Bruhn, S.; Sharma, S.; Wilke, B.-M.; Matthies, M.; Smalla, K.; et al. Dynamics and functional relevance of ammonia-oxidizing archaea in two agricultural soils. Environ. Microbiol. 2009, 11, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, L.-M.; Shen, J.-P.; Wei, W.-X.; He, J.-Z. Abundance and community structure of ammonia-oxidizing archaea and bacteria in an acid paddy soil. Biol. Fertil. Soils 2011, 47, 323–331. [Google Scholar] [CrossRef]
- Ge, Y.; Zhang, J.; Zhang, L.; Yang, M.; He, J. Long-term fertilization regimes affect bacterial community structure and diversity of an agricultural soil in northern China. J. Soils Sediments 2008, 8, 43–50. [Google Scholar] [CrossRef]
- Da Silva, P.; Nahas, E. Bacterial diversity in soil in response to different plans, phosphate fertilizers and liming. Braz. J. Microbiol. 2002, 33, 304–310. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Ni, T.; Li, J.; Lu, Q.; Fang, Z.; Huang, Q.; Zhang, R.; Li, R.; Shen, B.; Shen, Q. Effects of organic–inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice–wheat cropping system. Appl. Soil Ecol. 2016, 99, 1–12. [Google Scholar] [CrossRef]
- Liang, R.; Hou, R.; Li, J.; Lyu, Y.; Hang, S.; Gong, H.; Ouyang, Z. Effects of Different Fertilizers on Rhizosphere Bacterial Communities of Winter Wheat in the North China Plain. Agronomy 2020, 10, 93. [Google Scholar] [CrossRef] [Green Version]
- Maeder, P.; Fliessbach, A.; Dubois, D.; Gunst, L.; Fried, P.; Niggli, U. Soil Fertility and Biodiversity in Organic Farming. Science 2002, 296, 1694–1697. [Google Scholar] [CrossRef] [Green Version]
- Bulluck, L.R.; Ristaino, J.B. Effect of Synthetic and Organic Soil Fertility Amendments on Southern Blight, Soil Microbial Communities, and Yield of Processing Tomatoes. Phytopathology 2002, 92, 181–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.; Gumpertz, M.L.; Hu, S.; Ristaino, J.B. Long-term effects of organic and synthetic soil fertility amendments on soil microbial communities and the development of southern blight. Soil Biol. Biochem. 2007, 39, 2302–2316. [Google Scholar] [CrossRef]
- Moharana, P.C.; Sharma, B.M.; Biswas, D.R. Changes in the soil properties and availability of micronutrients after six-year application of organic and chemical fertilizers using STCR-based targeted yield equations under pearl millet-wheat cropping system. J. Plant Nutr. 2017, 40, 165–176. [Google Scholar] [CrossRef]
- Jenkinson, D.S. The Rothamsted Long-Term Experiments: Are They Still of Use? Agron. J. 1991, 83, 2–10. [Google Scholar] [CrossRef]
- Birkhofer, K.; Bezemer, T.M.; Bloem, J.; Bonkowski, M.; Christensen, S.; Dubois, D.; Ekelund, F.; Fließbach, A.; Gunst, L.; Hedlund, K.; et al. Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity. Soil Biol. Biochem. 2008, 40, 2297–2308. [Google Scholar] [CrossRef]
- Ayoola, O.; Adeniyan, O. Influence of poultry manure and NPK fertilizer on yield and yield components of crops under different cropping systems in south west Nigeria. Afr. J. Biotechnol. 2006, 5, 1386–1392. [Google Scholar]
- Schjønning, P.; Jensen, J.L.; Bruun, S.; Jensen, L.S.; Christensen, B.T.; Munkholm, L.J.; Oelofse, M.; Baby, S.; Knudsen, L. The Role of Soil Organic Matter for Maintaining Crop Yields: Evidence for a Renewed Conceptual Basis. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2018; pp. 35–79. [Google Scholar]
- Ledgard, S.; De Klein, C.; Crush, J.; Thorrold, B. Dairy farming, nitrogen losses and nitrate-sensitive areas. In Proceedings of the New Zealand Society of Animal Production, Mosgiel, New Zealand; 2000; pp. 256–260. Available online: http://www.nzsap.org/system/files/proceedings/2000/ab00066.pdf (accessed on 18 January 2022).
- Sims, J.T.; Wolf, D.C. Poultry Waste Management: Agricultural and Environmental Issues. Adv. Agron. 1994, 52, 1–83. [Google Scholar] [CrossRef]
- Graetz, D.A.; Nair, V.D. Fate of phosphorus in Florida Spodosols contaminated with cattle manure. Ecol. Eng. 1995, 5, 163–181. [Google Scholar] [CrossRef]
- Ullah, S.; Ai, C.; Huang, S.; Zhang, J.; Jia, L.; Ma, J.; Zhou, W.; He, P. The responses of extracellular enzyme activities and microbial community composition under nitrogen addition in an upland soil. PLoS ONE 2019, 14, e0223026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marschner, P. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil Biol. Biochem. 2003, 35, 453–461. [Google Scholar] [CrossRef]
- Dangi, S.; Gao, S.; Duan, Y.; Wang, D. Soil microbial community structure affected by biochar and fertilizer sources. Appl. Soil Ecol. 2020, 150, 103452. [Google Scholar] [CrossRef]
- Chen, L.; Wang, X.; Zhou, W.; Guo, S.; Zhu, R.; Qin, Y.; Sun, J. Responses of crop yields, soil enzymatic activities, and microbial communities to different long-term organic materials applied with chemical fertilizer in purple soil. Eur. J. Soil Biol. 2021, 105, 103319. [Google Scholar] [CrossRef]
- Yang, Y.; Li, G.; Min, K.; Liu, T.; Li, C.; Xu, J.; Hu, F.; Li, H. The potential role of fertilizer-derived exogenous bacteria on soil bacterial community assemblage and network formation. Chemosphere 2022, 287, 132338. [Google Scholar] [CrossRef]
- Bonanomi, G.; De Filippis, F.; Zotti, M.; Idbella, M.; Cesarano, G.; Al-Rowaily, S.; Abd-ElGawad, A. Repeated applications of organic amendments promote beneficial microbiota, improve soil fertility and increase crop yield. Appl. Soil Ecol. 2020, 156, 103714. [Google Scholar] [CrossRef]
- Anwar, M.; Patra, D.D.; Chand, S.; Alpesh, K.; Naqvi, A.A.; Khanuja, S.P.S. Effect of Organic Manures and Inorganic Fertilizer on Growth, Herb and Oil Yield, Nutrient Accumulation, and Oil Quality of French Basil. Commun. Soil Sci. Plant Anal. 2005, 36, 1737–1746. [Google Scholar] [CrossRef]
- Kaur, K.; Kapoor, K.K.; Gupta, A.P. Impact of organic manures with and without mineral fertilizers on soil chemical and biological properties under tropical conditions. J. Plant Nutr. Soil Sci. 2005, 168, 117–122. [Google Scholar] [CrossRef]
- Masto, R.E.; Chhonkar, P.K.; Singh, D.; Patra, A.K. Changes in soil biological and biochemical characteristics in a long-term field trial on a sub-tropical inceptisol. Soil Biol. Biochem. 2006, 38, 1577–1582. [Google Scholar] [CrossRef]
- Zhang, Q.-C.; Shamsi, I.H.; Xu, D.-T.; Wang, G.-H.; Lin, X.-Y.; Jilani, G.; Hussain, N.; Chaudhry, A.N. Chemical fertilizer and organic manure inputs in soil exhibit a vice versa pattern of microbial community structure. Appl. Soil Ecol. 2012, 57, 1–8. [Google Scholar] [CrossRef]
- Corbu, V.; Csutak, O. Candida-produced biosurfactants-beneficial agents for environmental remediation biotechnologies. Rom. Biotechnol. Lett. 2019, 24, 381–387. [Google Scholar] [CrossRef]
- Gomaa, E.Z. Biosequestration of heavy metals by microbially induced calcite precipitation of ureolytic bacteria. Rom. Biotechnol. Lett. 2019, 24, 147–153. Available online: https://www.rombio.eu/docs/Biosequestration%20of%20heavy%20metals%20by%20microbially%20induced%20calcite%20precipitation%20of%20ureolytic%20bacteria.pdf (accessed on 18 January 2022). [CrossRef]
- Chirinda, N.; Olesen, J.E.; Porter, J.R.; Schjønning, P. Soil properties, crop production and greenhouse gas emissions from organic and inorganic fertilizer-based arable cropping systems. Agric. Ecosyst. Environ. 2010, 139, 584–594. [Google Scholar] [CrossRef]
- Miransari, M. Soil microbes and plant fertilization. Appl. Microbiol. Biotechnol. 2011, 92, 875–885. [Google Scholar] [CrossRef]
- Miskoska-Milevska, E.; Najdenovka, O.; Popovski, Z.; Imovska, D. The influence of the microbiological fertilizer–Slavol on cauliflower growth. Rom. Biotechnol. Lett. 2018, 23, 13511–13516. Available online: https://eprints.ugd.edu.mk/21862/1/Impakt%20trud.pdf (accessed on 18 January 2022).
- EL Boukhari, M.E.M.; Barakate, M.; Bouhia, Y.; Lyamlouli, K. Trends in Seaweed Extract Based Biostimulants: Manufacturing Process and Beneficial Effect on Soil-Plant Systems. Plants 2020, 9, 359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nanda, S.; Kumar, G.; Hussain, S. Utilization of seaweed-based biostimulants in improving plant and soil health: Current updates and future prospective. Int. J. Environ. Sci. Technol. 2021. [Google Scholar] [CrossRef]
- Li, W.; Zhang, F.; Cui, G.; Wang, Y.; Yang, J.; Cheng, H.; Liu, H.; Zhang, L. Effects of bio-organic fertilizer on soil fertility, microbial community composition, and potato growth. ScienceAsia 2021, 47, 347. [Google Scholar] [CrossRef]
- Abhilash, P.C.; Dubey, R.K.; Tripathi, V.; Gupta, V.K.; Singh, H.B. Plant Growth-Promoting Microorganisms for Environmental Sustainability. Trends Biotechnol. 2016, 34, 847–850. [Google Scholar] [CrossRef]
- EC. Digestate and Compost as Fertilisers: Risk Assessment and Risk Management Options; European Commission: Bruxelles, Belgium, 2019; Available online: https://ec.europa.eu/environment/chemicals/reach/pdf/40039%20Digestate%20and%20Compost%20RMOA%20-%20Final%20report%20i2_20190208.pdf (accessed on 18 January 2022).
- Katada, S.; Fukuda, A.; Nakajima, C.; Suzuki, Y.; Azuma, T.; Takei, A.; Takada, H.; Okamoto, E.; Kato, T.; Tamura, Y.; et al. Aerobic Composting and Anaerobic Digestion Decrease the Copy Numbers of Antibiotic-Resistant Genes and the Levels of Lactose-Degrading Enterobacteriaceae in Dairy Farms in Hokkaido, Japan. Front. Microbiol. 2021, 12, 737420. [Google Scholar] [CrossRef] [PubMed]
Type | Production Process and Materials | Pros and Cons | Refs. |
---|---|---|---|
Biochar and biochar-based fertilizers | Pyrolysis (thermal decomposition of organic matter with absence of or very limited access to oxygen), hydrothermal liquefaction and gasification of different type of biomass (agricultural residues, sewage sediment, forest waste, energy crops and residues from agro-food processing) | They improve physical, chemical and biological properties of soil, together with nutrient absorption and cation exchange capacity. They reduce the uptake of metals, pesticides, PAHs, engineered nanomaterials, and pharmaceuticals by plants. The type of biomass used influences the biochar properties. If used together with other fertilizers, they can reduce their beneficial effects. | [28,29,30] |
Biofertilizers or microbial fertilizers (bacteria, algae, fungi or biological compounds), including-plant-growth-promoting bacteria | Isolation of microbes, screening, scale-up | Increase soil fertility by various macro- and micronutrients; improve soil biodiversity and plant growth by increasing the accessibility to or uptake of nutrients from a limited soil nutrient pool. Power of biofertilizers depends on the type of microorganism used and their metabolic activity during and after field applications. | [9,10,11,31,32] |
Biosolids | Stabilization of organic solids from sewage treatment processes (mainly from biological treatment of wastewater). The stabilization reduces the pathogen presence | They contain macro and micronutrients in variable quantities; K concentrations are commonly low, so that an additional K fertilization may be necessary. They can contain pathogens, traces of metals, pharmaceuticals, personal care products and other organic contaminants (e.g., phthalates, pesticides, phenols, PCBs, dioxins). | [33,34] |
Bio-surfactants | Surface-active biomolecules produced by microorganisms (bacteria, yeasts and fungi); they have both hydrophilic and hydrophobic regions | They increase the surface area of hydrophobic substrates (e.g., hydrocarbon pollutants, heavy metals or nutrients) increasing their bioavailability (solubilisation/desorption). They also regulate the attachment and removal of microorganisms from surfaces. Used for hydrocarbon biodegradation in contaminated soil, for plant pathogen elimination thanks to their antifungal, antiviral, insecticidal and antimycoplasma activities and for increasing the nutrient bioavailability for beneficial plant-associated microbes. | [35,36,37] |
Compost | Composting (biological decomposition under controlled moisture, self-heating and aerobic conditions) of animal manure, sewage sludge, municipal solid waste and green wastes | Simplicity of technologies and possibility of implementation on every farm; quality protocols are provided in several countries for reducing pathogen, heavy metal and organic pollutant presence. | [38,39] |
Green waste or biowaste | Different origins: crop residues, food and kitchen waste. It does not include forestry or agricultural residues, manure, sewage sludge or other biodegradable waste such as natural textiles, paper or processed wood. | Improve soil structure; low nutrient content; could contain plant pathogens. | [40] |
Digestate | Anaerobic fermentation of different organic wastes (food waste, manure and energy crops). Microorganisms, under anaerobic conditions, convert organic matter into biogas and digestate | Production of biogas; digestate could contains residual concentrations of contaminants (e.g., plastics, pharmaceuticals, including antibiotics, etc.) depending on the type of biowaste used; a duff layer could be formed on soil surface that hinders seed germination. | [38,41,42,43] |
Manure | Mainly from beef, pig or poultry livestock | Improve soil structure (depending on its origin). Increase in potentially mineralizable N. Potentially pathogenic; could contain heavy metals used for animal feed, manily Zn and Cu; could contain pharmaceutical residues and antibiotic resistance genes; water pollution by nitrates or by P in intensive livestock productions by spreading manure rich in N and P out of the soil capacity. | [44,45,46,47] |
Vermicompost | Vermicomposting, a bio-oxidative process involving several organic materials (e.g., sewage sludge, crop residues, manure, digestate) using mainly epigeic earthworm species and different microorganisms. | It is rich in microorganisms, nutrients, vitamins, and growth hormones; used also as biocontrol agents against diseases and pests. The nutrient-rich compost could also be used for biogas production. | [48,49,50,51] |
Subject | Articles Distribution by Countries (Continents) | |||
---|---|---|---|---|
General | Europe | China | North America | Others |
Effects of chemical fertilizers on biomass, activity and diversity of soil microorganisms | 1 | 7 | 2 | 2 |
Types of fertilizers used and their influence on soil microbial community | 8 | 3 | 1 | 4 |
Bacterial and fungal species affected by chemical or organic fertilizers | 3 | 6 | 1 | 3 |
Negative effects of chemical fertilizers on soil ecosystem | 5 | 1 | 2 | 5 |
Total | 18 | 17 | 4 | 13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dincă, L.C.; Grenni, P.; Onet, C.; Onet, A. Fertilization and Soil Microbial Community: A Review. Appl. Sci. 2022, 12, 1198. https://doi.org/10.3390/app12031198
Dincă LC, Grenni P, Onet C, Onet A. Fertilization and Soil Microbial Community: A Review. Applied Sciences. 2022; 12(3):1198. https://doi.org/10.3390/app12031198
Chicago/Turabian StyleDincă, Lucian Constantin, Paola Grenni, Cristian Onet, and Aurelia Onet. 2022. "Fertilization and Soil Microbial Community: A Review" Applied Sciences 12, no. 3: 1198. https://doi.org/10.3390/app12031198
APA StyleDincă, L. C., Grenni, P., Onet, C., & Onet, A. (2022). Fertilization and Soil Microbial Community: A Review. Applied Sciences, 12(3), 1198. https://doi.org/10.3390/app12031198