Species Diversity, Growing Stock Variables and Carbon Mitigation Potential in the Phytocoenosis of Monotheca buxifolia Forests along Altitudinal Gradient across Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Field Inventory
2.3. Diversity Indices and Importance Value Index (IVI)
2.4. Growing Stock Characteristics and Biomass Carbon Analysis
2.5. Soil Carbon Stock
2.6. Statistical Analysis
3. Results
3.1. Forest Structure and Species Diversity
3.2. Structural Attributes and Growing Stock Volume
3.3. Biomass and Carbon Stock
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arasa-Gisbert, R.; Vayreda, J.; Román-Cuesta, R.M.; Villela, S.A.; Mayorga, R.; Retana, J. Forest diversity plays a key role in determining the stand carbon stocks of Mexican forests. For. Ecol. Manag. 2018, 415, 160–171. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, F.; Liu, S.; Liu, Y.; Li, C. Variations of carbon stock with forest types in subalpine region of southwestern China. For. Ecol. Manag. 2013, 300, 88–95. [Google Scholar] [CrossRef]
- Aryal, S.; Shrestha, S.; Maraseni, T.; Wagle, P.C.; Gaire, N.P. Carbon stock and its relationships with tree diversity and density in community forests in Nepal. Int. For. Rev. 2018, 20, 263–273. [Google Scholar] [CrossRef]
- Liu, N.; Nan, H. Carbon stocks of three secondary coniferous forests along an altitudinal gradient on Loess Plateau in inland China. PLoS ONE 2018, 13, e0196927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badshah, M.T.; Ahmad, A.; Muneer, M.A.; Rehman, A.U.; Wang, J.; Khan, M.; Muhammad, B.; Amir, M.; Meng, J. Evaluation of the forest structure, diversity and biomass carbon potential in the southwest region of Guangxi, China. Appl. Ecol. Environ. Res. 2017, 18, 447–467. [Google Scholar] [CrossRef]
- Rajput, B.S.; Bhardwaj, D.R.; Pala, N.A. Factors influencing biomass and carbon storage potential of different land use systems along an elevational gradient in temperate northwestern Himalaya. Agrofor. Syst. 2017, 91, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Sharma, C.M.; Gairola, S.; Baduni, N.P.; Ghildiyal, S.K.; Suyal, S. Variation in carbon stocks on different slope aspects in seven major forest types of temperate region of Garhwal Himalaya, India. J. Biosci. 2011, 36, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Simegn, T.Y.; Soromessa, T. Carbon stock variations along altitudinal and slope gradient in the forest belt of Simen Mountains National Park, Ethiopia. Am. J. Environ. Prot. 2015, 4, 199–201. [Google Scholar] [CrossRef] [Green Version]
- Curtis, J.T.; Mcintosh, R.P. The interrelations of certain analytic and synthetic phytosociological characters. Ecology 1950, 31, 434–455. [Google Scholar] [CrossRef]
- Khan, K.; Iqbal, J.; Ali, A.; Khan, S.N. Assessment of Sentinel-2-Derived Vegetation Indices for the Estimation of Above-Ground Biomass/Carbon Stock, Temporal Deforestation and Carbon Emissions Estimation in the Moist Temperate Forests of Pakistan. Appl. Ecol. Environ. Res. 2020, 18, 783–815. [Google Scholar] [CrossRef]
- Ma, J.; Bu, R.; Liu, M.; Chang, Y.; Qin, Q.; Hu, Y. Ecosystem carbon storage distribution between plant and soil in different forest types in Northeastern China. Ecol. Eng. 2015, 81, 353–362. [Google Scholar] [CrossRef]
- Naudts, K.; Chen, Y.; McGrath, M.J.; Ryder, J.; Valade, A.; Otto, J.; Luyssaert, S. Europe’s forest management did not mitigate climate warming. Science 2016, 351, 597–600. [Google Scholar] [CrossRef] [PubMed]
- Wani, A.A.; Bhat, A.F.; Gatoo, A.A.; Zahoor, S.; Mehraj, B.; Mir, N.A.; Masoodi, T.H. Relationship of forest biomass carbon with biophysical parameters in north Kashmir region of Himalayas. Environ. Monit. Assess. 2019, 191, 1–13. [Google Scholar] [CrossRef]
- Anonymous. Global Forest Resource Assessments; Forestry Paper No: 163; FAO: Rome, Italy, 2010. [Google Scholar]
- Gairola, S.; Sharma, C.M.; Ghildiyal, S.K.; Suyal, S. Live tree biomass and carbon variation along an altitudinal gradient in moist temperate valley slopes of the Garhwal Himalaya (India). Curr. Sci. 2011, 100, 1862–1870. [Google Scholar]
- Khadanga, S.S.; Jayakumar, S. Tree biomass and carbon stock: Understanding the role of species richness, elevation, and disturbance. Trop. Ecol. 2020, 61, 128–141. [Google Scholar] [CrossRef]
- Ali, F.; Khan, N.; Ahmad, A.; Khan, A.A. Structure and biomass carbon of Olea ferruginea forests in the foot hills of Malakand division, Hindukush Range Mountains of Pakistan. Acta Ecol. Sin. 2019, 39, 261–266. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, W.; Lu, Y.; Zhang, W.; Wang, Y. Carbon storage dynamics of secondary forest succession in the central Loess Plateau of China. Forests 2019, 10, 342. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Chen, Q.; Li, Z.; Peng, B.; Zhang, J.; Xing, X.; Zhao, B.; Song, D. Distribution and altitudinal patterns of carbon and nitrogen storage in various forest ecosystems in the central Yunnan Plateau, China. Sci. Rep. 2021, 11, 6269. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Domke, G.M.; Russell, M.B.; Walters, B.F. Spatial modeling of litter and soil carbon stocks on forest land in the conterminous United States. Sci. Total Environ. 2019, 654, 94–106. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment 2015: How Are the World’s Forests Changing? 2nd ed.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016; pp. 1–44. [Google Scholar]
- Sharma, P.; Rai, S.C. Carbon sequestration with land-use cover change in a Himalayan watershed. Geoderma 2007, 139, 371–378. [Google Scholar] [CrossRef]
- Gebeyehu, G.; Soromessa, T.; Bekele, T.; Teketay, D. Carbon stocks and factors affecting their storage in dry Afromontane forests of Awi Zone, northwestern Ethiopia. J. Ecol. Environ. 2019, 43, 17. [Google Scholar] [CrossRef] [Green Version]
- Liang, C.; Schimel, J.P.; Jastrow, J.D. The importance of anabolism in microbial control over soil carbon storage. Nat. Microbiol. 2017, 2, 17105. [Google Scholar] [CrossRef] [PubMed]
- Thom, D.; Golivets, M.; Edling, L.; Meigs, G.W.; Gourevitch, J.D.; Sonter, L.J.; Galford, G.L.; Keeton, W.S. The climate sensitivity of carbon, timber, and species richness covaries with forest age in boreal–temperate North America. Glob. Chang. Biol. 2019, 25, 2446–2458. [Google Scholar] [CrossRef] [PubMed]
- Sharma, C.M.; Tiwari, O.P.; Rana, Y.S.; Krishan, R.; Mishra, A.K. Elevational behaviour on dominance–diversity, regeneration, biomass and carbon storage in ridge forests of Garhwal Himalaya, India. For. Ecol. Manag. 2018, 424, 105–120. [Google Scholar] [CrossRef]
- Cha, J.Y.; Cha, Y.; Oh, N.H. The effects of tree species on soil organic carbon content in South Korea. J. Geophys. Res. Biogeosci. 2019, 124, 708–716. [Google Scholar] [CrossRef]
- Padmakumar, B.; Sreekanth, N.P.; Shanthiprabha, V.; Paul, J.; Sreedharan, K.; Augustine, T.; Jayasooryan, K.K.; Rameshan, M.; Arunbabu, V.; Mohan, M.; et al. Unveiling tree diversity and carbon density of homegarden in the Thodupuzha urban region of Kerala, India: A contribution towards urban sustainability. Trop. Ecol. 2021, 62, 508–524. [Google Scholar] [CrossRef]
- Babweteera, F.; Plumptre, A.J.; Adamescu, G.S.; Shoo, L.P.; Beale, C.M.; Reynolds, V.; Nyeko, P.; Muhanguzi, G. The ecology of tree reproduction in an African medium altitude rain forest. Biotropica 2018, 50, 405–417. [Google Scholar] [CrossRef] [Green Version]
- Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.; Duque, A.; Eid, T.; Fearnside, P.M.; Goodman, R.C.; et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef]
- Chinasho, A.; Soromessa, T.; Bayable, E. Carbon stock in woody plants of Humbo forest and its variation along altitudinal gradients: The case of Humbo district, Wolaita zone, southern Ethiopia. Int. J. Environ. Prot. Policy 2015, 3, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Charan, G.; Bharti, V.K.; Jadhav, S.E.; Kumar, S.; Angchok, D.; Acharya, S.; Srivastava, R.B. Altitudinal variations in soil carbon storage and distribution patterns in cold desert high altitude microclimate of India. Afr. J. Agric. Res. 2012, 7, 6313–6319. [Google Scholar] [CrossRef]
- Chaturvedi, R.K.; Raghubanshi, A.S. Assessment of carbon density and accumulation in mono-and multi-specific stands in Teak and Sal forests of a tropical dry region in India. For. Ecol. Manag. 2015, 339, 11–21. [Google Scholar] [CrossRef]
- Chisanga, K.; Bhardwaj, D.R.; Pala, N.A.; Thakur, C.L. Biomass production and carbon stock inventory of high-altitude dry temperate land use systems in North Western Himalaya. Ecol. Processes 2018, 7, 22. [Google Scholar] [CrossRef]
- Van Do, T.; Sato, T.; Dai Hai, V.; Thang, N.T.; Binh, N.T.; Son, N.H.; Van Thuyet, D.; Van, T.; Hung, T.T.; Van, C.; et al. Aboveground biomass and tree species diversity along altitudinal gradient in Central Highland, Vietnam. Trop. Ecol. 2017, 58, 95–104. [Google Scholar]
- Khan, A.A.; Ali, F.; Ihsan, M.; Hayat, K.; Nabi, G. Ethnobotanical study of the medicinal plants of Tehsil Charbagh, district Swat, Khyber Pakhtunkhwa, Pakistan. Am. Eurasian J. Agric. Environ. Sci. 2015, 15, 1464–1474. [Google Scholar] [CrossRef]
- Ali, F.; Khan, N.; Ali, K.; Khan, I. Influence of environmental variables on the distribution of woody species in Muslim graveyards of Malakand Division, Hindukush Range Mountains of Pakistan. Pak. J. Bot. 2017, 49, 2357–2366. [Google Scholar]
- Khan, N.; Ahmed, M.; Shaukat, S.S.; Wahab, M.; Siddiqui, M.F. Structure, diversity, and regeneration potential of Monotheca buxifolia (Falc.) A. DC. dominated forests of Lower Dir District, Pakistan. Front. Agric. China 2011, 5, 106–121. [Google Scholar] [CrossRef]
- Khan, N.; Ahmed, M.; Wahab, M.; Ajaib, M.; Hussain, S.S. Studies along an altitudinal gradient in Monotheca buxifolia (falc.) ad, forest, District Lower Dir, Pakistan. Pak. J. Bot. 2010, 42, 3029–3038. [Google Scholar]
- Ahmad, A.; Liu, Q.J.; Nizami, S.M.; Mannan, A.; Saeed, S. Carbon emission from deforestation, forest degradation and wood harvest in the temperate region of Hindukush Himalaya, Pakistan between 1994 and 2016. Land Use Policy 2018, 78, 781–790. [Google Scholar] [CrossRef]
- Abbas, M.; Nizami, S.M.; Saleem, A.; Gulzar, S.; Khan, I.A. Biomass expansion factors of Olea ferruginea (Royle) in subtropical forests of Pakistan. Afr. J. Biotechnol. 2011, 10, 1586–1592. [Google Scholar] [CrossRef]
- Ahmad, A.; Nizami, S.M. Carbon stocks of different land uses in the Kumrat valley, Hindu Kush Region of Pakistan. J. For. Res. 2015, 26, 57–64. [Google Scholar] [CrossRef]
- Ali, S.I.; Qaiser, M. A phytogeographical analysis of the phanerogams of Pakistan and Kashmir. Proc. R. Soc. Edinb. Sect. B Biol. Sci. 1986, 89, 89–101. [Google Scholar] [CrossRef]
- Huang, J.; Ji, M.; Xie, Y.; Wang, S.; He, Y.; Ran, J. Global semi-arid climate change over last 60 years. Clim. Dyn. 2016, 46, 1131–1150. [Google Scholar] [CrossRef] [Green Version]
- Hussain, F.; Nabi, G.; Wu, R.S. Spatiotemporal Rainfall Distribution of Soan River Basin, Pothwar Region, Pakistan. Adv. Meteorol. 2021, 12, 973. [Google Scholar] [CrossRef]
- Shinwari, Z.K.; Qaiser, M. Efforts on conservation and sustainable use of medicinal plants of Pakistan. Pak. J. Bot. 2011, 43, 5–10. [Google Scholar]
- Phillips, J.; Ramirez, S.; Wayson, C.; Duque, A. Differences in carbon stocks along an elevational gradient in tropical mountain forests of Colombia. Biotropica 2019, 51, 490–499. [Google Scholar] [CrossRef]
- Khan, N.; Ali, F.; Ali, K.; Shaukat, S. Composition, structure and regeneration dynamics of Olea ferruginea Royle forests from Hindukush range of Pakistan. J. Mt. Sci. 2015, 12, 647–658. [Google Scholar] [CrossRef]
- Pielou, E.C. An Introduction to Mathematical Ecology, 2nd ed.; Wiley-Interscience: Hoboken, NJ, USA, 1969; pp. 1–286. [Google Scholar]
- Purvis, A.; Hector, A. Getting the measure of biodiversity. Nature 2000, 405, 212–219. [Google Scholar] [CrossRef]
- Nizami, S.M. The inventory of the carbon stocks in subtropical forests of Pakistan for reporting under Kyoto Protocol. J. For. Res. 2012, 23, 377–384. [Google Scholar] [CrossRef]
- Andersson, K.; Evans, T.P.; Richards, K.R. National forest carbon inventories: Policy needs and assessment capacity. Clim. Change 2009, 93, 69–101. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Khan, N.; Ahmed, M.; Wahab, M.; Ajaib, M. Phytosociology, structure and physiochemical analysis of soil in Quercus baloot Griff, Forest District Chitral Pakistan. Pak. J. Bot. 2011, 42, 2429–2441. [Google Scholar]
- Nunes, L.J.; Raposo, M.A.; Meireles, C.I.; Pinto Gomes, C.J.; Almeida Ribeiro, N. Carbon Sequestration Potential of Forest Invasive Species: A Case Study with Acacia dealbata Link. Resources 2021, 10, 51. [Google Scholar] [CrossRef]
- Vellend, M.; Harmon, L.J.; Lockwood, J.L.; Mayfield, M.M.; Hughes, A.R.; Wares, J.P.; Sax, D.F. Effects of exotic species on evolutionary diversification. Trends Ecol. Evol. 2007, 22, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Gathorne-Hardy, F.; Syaukani; Eggleton, P. The effects of altitude and rainfall on the composition of the termites (Isoptera) of the Leuser Ecosystem (Sumatra, Indonesia). J. Trop. Ecol. 2001, 17, 379–393. [Google Scholar] [CrossRef]
- Devi, S.B.; Sherpa, S. Soil carbon and nitrogen stocks along the altitudinal gradient of the Darjeeling Himalayas, India. Environ. Monit. Assess. 2019, 191, 361. [Google Scholar] [CrossRef] [PubMed]
- Deresa, A. Carbon Stock Estimation Along Altitudinal Gradient in Woodland Vegetation in Ilu Gelan District, West Shewa Zone of Oromia Region, Central Ethiopia. Ph.D. Thesis, Addis Ababa University, Addis Ababa, Ethiopia, 2015. [Google Scholar]
- Mwakisunga, B.; Majule, A.E. The influence of altitude and management on carbon stock quantities in rungwe forest, southern highland of Tanzania. Open J. Ecol. 2012, 2, 214–221. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.; Husain, T.; Sheikh, A.H.; Hussain, S.S.; Siddiqui, M.F. Phytosociology and structure of Himalayan forests from different climatic zones of Pakistan. Pak. J. Bot. 2006, 38, 361. [Google Scholar]
- Alves, L.F.; Vieira, S.A.; Scaranello, M.A.; Camargo, P.B.; Santos, F.A.; Joly, C.A.; Martinelli, L.A. Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). For. Ecol. Manag. 2010, 260, 679–691. [Google Scholar] [CrossRef]
- Post, W.M.; Kwon, K.C. Soil carbon sequestration and land-use change: Processes and potential. Glob. Change Biol. 2000, 6, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.K.; Singh, K.; Behera, S.K.; Chaudhary, L.B.; Singh, B.; Mishra, R.M. Soil properties in response to different plant community structures in tropical moist deciduous forest from Northern India. Clim. Change Environ. Sustain. 2017, 5, 66–74. [Google Scholar] [CrossRef]
- Krishnan, P.; Bourgeon, G.; Seen, D.L.; Nair, K.M.; Prasanna, R.; Srinivas, S.; Muthusankar, G.; Dufy, L.; Ramesh, B.R. Organic carbon stock map for soils of southern India: A multifactorial approach. Curr. Sci. 2007, 93, 706–710. [Google Scholar]
- Sheikh, M.A.; Kumar, M.; Bussmann, R.W. Altitudinal variation in soil organic carbon stock in coniferous subtropical and broadleaf temperate forests in Garhwal Himalaya. Carbon Balance Manag. 2009, 4, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nizami, S.M.; Mirza, S.N.; Livesley, S.; Arndt, S.; Fox, J.C.; Khan, I.A.; Mahmood, T. Estimating carbon stocks in sub-tropical pine (Pinus roxburghii) forests of Pakistan. Pak. J. Agri. Sci. 2009, 46, 266–270. [Google Scholar]
- Ullah, S.; Khan, N.; Ali, F.; Badshah, L.; Ali, A.; Muhammad, M. An ecological assessment of Justicia adhatoda L. in Malakand Division, Hindukush range of Pakistan. Biosci. Res. 2020, 17, 1082–1094. [Google Scholar]
- Srinivas, K.; Sundarapandian, S. Biomass and carbon stocks of trees in tropical dry forest of East Godavari region, Andhra Pradesh, India. Geol. Ecol. Lands 2019, 3, 114–122. [Google Scholar] [CrossRef]
- Bangroo, S.A.; Najar, G.R.; Rasool, A. Effect of altitude and aspect on soil organic carbon and nitrogen stocks in the Himalayan Mawer Forest Range. Catena 2017, 158, 63–68. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, X.; Fang, J.; Piao, S.; Shen, H.; Zhao, S.; Peng, C. Altitudinal changes in carbon storage of temperate forests on Mt Changbai, Northeast China. J. Plant Res. 2010, 123, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wang, M.; Fan, X. Spatial pattern and driving factors of biomass carbon density for natural and planted coniferous forests in mountainous terrain, eastern Loess Plateau of China. For. Ecosyst. 2020, 7, 9. [Google Scholar] [CrossRef] [Green Version]
- Naveenkumar, J.; Arunkumar, K.S.; Sundarapandian, S.M. Biomass and carbon stocks of a tropical dry forest of the Javadi Hills, Eastern Ghats, India. Carbon Manag. 2017, 8, 351–361. [Google Scholar] [CrossRef]
- Moser, G.; Hertel, D.; Leuschner, C. Altitudinal change in LAI and stand leaf biomass in tropical montane forests: A transect study in Ecuador and a pan-tropical meta-analysis. Ecosystems 2007, 10, 924–935. [Google Scholar] [CrossRef]
- Leuschner, C.; Moser, G.; Bertsch, C.; Röderstein, M.; Hertel, D. Large altitudinal increase in tree root/shoot ratio in tropical mountain forests of Ecuador. Basic Appl. Ecol. 2007, 8, 219–230. [Google Scholar] [CrossRef]
- Kumar, A.; Sharma, M.P. Estimation of carbon stocks of Balganga reserved forest, Uttarakhand, India. Forest Sci. Technol. 2015, 11, 177–181. [Google Scholar] [CrossRef]
- Thokchom, A.; Yadava, P.S. Biomass and carbon stock along an altitudinal gradient in the forest of Manipur, Northeast India. Trop. Ecol. 2017, 58, 389–396. [Google Scholar]
- Kindermann, G.; McCallum, I.; Fritz, S.; Obersteiner, M. A global forest growing stock, biomass and carbon map based on FAO statistics. Silva Fenn. 2008, 42, 387–396. [Google Scholar] [CrossRef] [Green Version]
- Bazezew, M.N.; Soromessa, T.; Bayable, E. Above-and below-ground reserved carbon in Danaba community forest of Oromia region, Ethiopia: Implications for CO2 emission balance. Am. J. Environ. Prot. 2015, 4, 75–82. [Google Scholar] [CrossRef]
Elevation | 600–1000 m | 1000–1400 m | 1400–1800 m | ||||||
---|---|---|---|---|---|---|---|---|---|
Tree Species | IVI | D ha−1 | BA(m2 h1) | IVI | D ha−1 | BA (m2 h−1) | IVI | D ha−1 | BA (m2 h−1) |
Mobu | 75.88 ± 2.9 | 254.9 ± 8.9 | 52.26 ± 5.7 | 85.52 ± 3.1 | 239.9 ± 5.8 | 44.26 ± 7.3 | 81.63 ± 2.8 | 243.80 ± 13.1 | 50.01 ± 7.9 |
Eugl | 1.69 ± 0.81 | 4.12 ± 2.12 | 0.69 ± 0.4 | 1.62 ± 0.96 | 2.62 ± 1.7 | 1.73 ± 1.57 | 0.16 ± 0.16 | 0.44 ± 0.44 | 0.06 ± 0.06 |
Quba | 0.12 ± 0.12 | 0.49 ± 0.49 | 0.13 ± 0.13 | 1.88 ± 1.05 | 4.44 ± 2.48 | 0.93 ± 0.51 | × | × | × |
Ceau | 1.01 ± 0.48 | 3.29 ± 1.7 | 0.28 ± 0.15 | 0.60 ± 0.34 | 1.81 ± 1.21 | 0.20 ± 0.13 | 0.60 ± 0.41 | 1.56 ± 1.08 | 0.2 ± 0.14 |
Aial | 1.61 ± 0.60 | 4.94 ± 2.10 | 0.81 ± 034 | 1.06 ± 0.67 | 3.29 ± 2.17 | 0.24 ± 0.15 | 0.94 ± 0.55 | 2.22 ± 1.42 | 0.16 ± 0.11 |
Moal | 0.66 ± 0.6 | 0.99 ± 0.49 | 0.48 ± 0.29 | 1.17 ± 0.45 | 1.81 ± 0.76 | 0.78 ± 0.36 | 0.56 ± 0.40 | 1.56 ± 0.93 | 0.45 ± 0.34 |
Fipa | 0.46 ± 0.33 | 0.82 ± 0.67 | 0.18 ± 1.17 | 0.72 ± 0.32 | 1.48 ± 0.67 | 0.19 ± 0.08 | 0.62 ± 0.34 | 1.78 ± 1.18 | 0.13 ± 0.9 |
Olfe | 2.58 ± 0.89 | 5.76 ± 1.89 | 1.17 ± 0.46 | 2.35 ± 1.18 | 8.97 ± 2.85 | 1.29 ± 0.44 | 7.82 ± 2.20 | 20.64 ± 7.1 | 9.49 ± 6.3 |
Meaz | 0.67 ± 0.31 | 1.32 ± 0.57 | 0.37 ± 0.16 | 0.17 ± 0.17 | 0.16 ± 0.16 | 0.09 ± 0.09 | 0.55 ± 0.40 | 0.89 ± 0.61 | 0.25 ± 0.17 |
Brpa | 0.12 ± 0.12 | 0.66 ± 0.66 | 0.06 ± 0.06 | 0.07 ± 0.07 | 0.16 ± 0.16 | 0.01 ± 0.01 | × | × | × |
Piro | 0.65 ± 0.51 | 1.15 ± 0.65 | 0.5 ± 0.35 | × | × | × | 1.60 ± 1.34 | 3.78 ± 3.34 | 0.72 ± 0.5 |
Dasi | 1.00 ± 0.52 | 2.96 ± 0.87 | 0.69 ± 0.43 | × | × | × | × | × | × |
Zaar | 0.12 ± 0.12 | 0.82 ± 0.82 | 0.03 ± 0.03 | 0.07 ± 0.07 | 0.33 ± 0.33 | 0.02 ± 0.02 | × | × | × |
Pige | × | × | × | × | × | × | 0.15 ± 0.15 | 0.22 ± 0.22 | 0.24 ± 0.24 |
Acmo | 7.42 ± 2.23 | 21.89 ± 8.1 | 6.63 ± 2.92 | 2.40 ± 1.28 | 9.22 ± 3.03 | 2.70 ± 0.97 | 3.14 ± 1.09 | 7.78 ± 3.85 | 2.16 ± 0.88 |
Pugr | 0.64 ± 0.46 | 2.47 ± 2.01 | 0.07 ± 0.05 | 0.43 ± 0.29 | 0.89 ± 0.61 | 0.098 ± 0.06 | 0.92 ± 0.63 | 3.78 ± 2.98 | 0.60 ± 0.41 |
Prar | × | × | × | 0.35 ± 0.25 | 0.99 ± 0.72 | 0.20 ± 0.17 | 0.19 ± 0.19 | 0.89 ± 0.89 | 0.14 ± 0.14 |
Acni | 0.58 ± 0.34 | 1.32 ± 0.74 | 0.16 ± 0.10 | × | × | × | × | × | × |
Grop | × | × | × | 0.74 ± 0.52 | 2.14 ± 1.5 | 0.26 ± 0.19 | × | × | × |
Poni | 0.23 ± 0.23 | 0.49 ± 0.49 | 0.03 ± 0.03 | × | × | × | × | × | × |
Zimo | 2.11 ± 0.98 | 4.77 ± 1.91 | 2.09 ± 1.07 | × | × | × | 0.61 ± 0.43 | 1.29 ± 0.77 | 0.21 ± 0.15 |
Saol | 0.45 ± 0.45 | 0.99 ± 0.99 | 0.42 ± 0.42 | 0.20 ± 0.20 | 0.67 ± 0.67 | 0.32 ± 0.32 | × | × | × |
Alle | 0.44 ± 0.25 | 0.66 ± 0.66 | 0.20 ± 0.12 | × | × | × | × | × | × |
Cade | 0.93 ± 0.58 | 1.65 ± 1.03 | 0.09 ± 0.06 | × | × | × | × | × | × |
Taap | 0.54 ± 0.54 | 0.99 ± 0.99 | 0.17 ± 0.17 | 0.48 ± 0.48 | 0.67 ± 0.67 | 0.17 ± 0.17 | × | × | × |
Phda | 0.11 ± 0.11 | 0.16 ± 0.16 | 0.01 ± 0.01 | × | × | × | 0.33 ± 0.33 | 0.22 ± 0.22 | 0.13 ± 0.13 |
Jure | × | × | × | 0.37 ± 0.27 | 0.82 ± 0.58 | 0.12 ± 0.09 | × | × | × |
Total | - | 317.70 | 67.56 | - | 280.36 | 53.63 | - | 290.93 | 64.95 |
Elevation | 600–1000 m | 1000–1400 m | 1400–1800 m | F | p |
---|---|---|---|---|---|
Diversity Indices | |||||
Richness (S) | 23 a | 18 b | 15 b | 3.239 | 0.045 |
Average no of species | 4.15 ± 0.44 | 3.07 + 0.39 | 2.7 + 0.39 | - | - |
Total no of individuals (N) | 1959 | 1713 | 1314 | 1.813 | 0.170 |
Average no of individuals | 72.56 ± 3.0 | 63.44 + 2.75 | 65.7 + 2.75 | - | - |
Natural log of species (ln S) | 1.26 ± 0.12 a | 0.98 + 0.13 b | 0.82 + 0.13 b | 2.807 | 0.047 |
Natural log of individuals (ln N) | 4.26 ± 0.04 | 4.15 + 0.045 | 4.22 + 0.045 | 1.729 | 0.184 |
Margalef’s Index (M) | 0.73 ± 0.09 | 0.54 + 0.09 | 0.60 + 0.097 | 0.551 | 0.578 |
Simpson’s Index (1/D) | 1.52 ± 0.09 a | 1.27 + 0.08 b | 1.32 + 0.08 c | 2.802 | 0.043 |
Shannon-Wiener Index (H’) | 0.60 ± 0.07 | 0.43 + 0.07 | 0.38 + 0.07 | 2.388 | 0.099 |
Pielou’s Index (J) | 0.42 ± 0.04 | 0.36 + 0.05 | 0.35 + 0.05 | 0.519 | 0.597 |
Diameter Classes | Average Height (m) | Average BA m2 ha−1 | Average Density ha−1 | Volume (m3 ha−1) |
---|---|---|---|---|
6–24 | 3.125 | 1.23 | 46.77 | 35.54 |
25–44 | 8.032 | 8.94 | 94.71 | 54.12 |
45–64 | 6.127 | 12.71 | 55.92 | 41.25 |
65–84 | 3.78 | 12.56 | 29.12 | 31.87 |
≥85 | 1.438 | 11.25 | 20.24 | 26.30 |
S. no. | Categories | 600–1000 m | 1000–1400 m | 1400–1800 m | Total |
---|---|---|---|---|---|
1 | Volume (m3 ha−1) | 78.09 | 48.01 | 61.98 | 188.08 |
2 | Stem Biomass (T ha−1) | 66.85 | 41.23 | 53.44 | 161.52 |
3 | Total Biomass (T ha−1) | 103.6 | 63.90 | 82.84 | 250.34 |
4 | Carbon Stock (T ha−1) | 51.81 | 31.95 | 41.421 | 125.19 |
5 | Soil Carbon (T ha−1) | 16.69 | 24.53 | 36.21 | 77.43 |
6 | Understory Carbon Stock (T ha−1) | 0.148 | 0.107 | 0.087 | 0.34 |
Parameters | R. Type | Equation | y0 | a | b | c | R2 |
---|---|---|---|---|---|---|---|
Diameter vs. D EI | P. Cubic | 2.67 | 0.62 | −0.01 | 4.4670 × 10−5 | 0.55 | |
Diameter vs. D EII | P. Cubic | 3.44 | 0.29 | −0.006 | 2.7630 × 10−5 | 0.59 | |
Diameter vs. D EIII | P. Cubic | 0.11 | 0.49 | −0.009 | 4.0638 × 10−5 | 0.51 | |
Diameter vs. M Den | P. Cubic | 0.29 | 0.47 | −0.008 | 3.7646 × 10−5 | 0.57 | |
BA vs. V EI | P. Linear | −0.49 | 1.89 | - | - | 0.92 | |
BA vs. BMC EI | P. Linear | −0.32 | 1.26 | - | - | 0.92 | |
BA vs. V EII | P. Linear | −0.35 | 1.53 | - | - | 0.76 | |
BA vs. BMC EII | P. Linear | −0.23 | 1.02 | - | - | 0.76 | |
BA vs. V EIII | P. Linear | −0.12 | 1.16 | - | - | 0.49 | |
BA vs. BMC EIII | P. Linear | −0.08 | 0.77 | - | - | 0.49 | |
MBA vs. MV | P. Linear | −0.42 | 1.69 | - | - | 0.79 | |
MBA vs. MBMC | P. Linear | −0.28 | 1.13 | - | - | 0.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, F.; Khan, N.; Abd_Allah, E.F.; Ahmad, A. Species Diversity, Growing Stock Variables and Carbon Mitigation Potential in the Phytocoenosis of Monotheca buxifolia Forests along Altitudinal Gradient across Pakistan. Appl. Sci. 2022, 12, 1292. https://doi.org/10.3390/app12031292
Ali F, Khan N, Abd_Allah EF, Ahmad A. Species Diversity, Growing Stock Variables and Carbon Mitigation Potential in the Phytocoenosis of Monotheca buxifolia Forests along Altitudinal Gradient across Pakistan. Applied Sciences. 2022; 12(3):1292. https://doi.org/10.3390/app12031292
Chicago/Turabian StyleAli, Fayaz, Nasrullah Khan, Elsayed Fathi Abd_Allah, and Adnan Ahmad. 2022. "Species Diversity, Growing Stock Variables and Carbon Mitigation Potential in the Phytocoenosis of Monotheca buxifolia Forests along Altitudinal Gradient across Pakistan" Applied Sciences 12, no. 3: 1292. https://doi.org/10.3390/app12031292
APA StyleAli, F., Khan, N., Abd_Allah, E. F., & Ahmad, A. (2022). Species Diversity, Growing Stock Variables and Carbon Mitigation Potential in the Phytocoenosis of Monotheca buxifolia Forests along Altitudinal Gradient across Pakistan. Applied Sciences, 12(3), 1292. https://doi.org/10.3390/app12031292