Deterioration of Property of Aluminum Alloys (EN AW-1050A, EN AW-5754 and EN AW-6060) by Absorbed Hydrogen
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Tensile Strength Measurements
3.2. Impact Strength Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Śmiałowski, M. Wodór w Stali; Wydawnictwa Naukowo-Techniczne: Warsaw, Poland, 1961. [Google Scholar]
- Śmiałowski, M. Hydrogen in Steel; Pergamon Press: Oxford, UK, 1962. [Google Scholar]
- Timmins, P.F. Solutions to Hydrogen Attack in Steels; ASM International: Materials Park, OH, USA, 1997. [Google Scholar]
- Flis, J. (Ed.) Wodorowe i Korozyjne Niszczenie Metali; Państwowe Wydawnictwo Naukowe: Warsaw, Poland, 1979. [Google Scholar]
- Bala, H. Korozja Materiałów—Teoria i Praktyka; Wydawnictwo Wydziału Inżynierii Procesowej, Materiałowej i Fizyki Stosowanej Politechniki Częstochowskiej: Częstochowa, Poland, 2002. [Google Scholar]
- Bala, H. Wstęp do Chemii Materiałów; WNT Wydawnictwa Naukowo-Techniczne: Warsaw, Poland, 2003. [Google Scholar]
- Włodarczyk, P.P.; Włodarczyk, B. Effect of hydrogen and absence of passive layer on corrosive properties of aluminum alloys. Materials 2020, 13, 1580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laureys, A.; Van den Eeckhout, E.; Petrov, R.; Verbekena, K. Effect of deformation and charging conditions on crack and blister formation during electrochemical hydrogen charging. Acta Mater. 2017, 127, 192–202. [Google Scholar] [CrossRef]
- Oriani, R.A.; Hirth, J.P.; Śmiałowski, M. (Eds.) Hydrogen Degradation of Ferrous Alloys; William Andrew Publishing/Noyes: Norwich, NY, USA, 1989. [Google Scholar]
- Dmytrakh, I.M.; Leshchak, R.L.; Syrotyuk, A.M. Effect of hydrogen concentration on strain behaviour of pipeline steel. Int. J. Hydrog. Energy 2015, 40, 4011–4018. [Google Scholar] [CrossRef]
- Zhao, Y.; Seok, M.-Y.; Choi, I.-C.; Lee, Y.-H.; Park, S.-J.; Ramamurty, U.; Suh, J.-Y.; Jang, J. The role of hydrogen in hardening/softening steel: Influence of the charging process. Scr. Mater. 2015, 107, 46–49. [Google Scholar] [CrossRef]
- Hong, Y.; Zhou, C.; Zheng, Y.; Zhang, L.; Zheng, J.; Chen, X. Effect of hydrogen and strain rate on nanoindentation creep of austenitic stainless steel. Int. J. Hydrog. Energy 2019, 44, 1253–1262. [Google Scholar] [CrossRef]
- Atrens, A.; Liu, Q.; Tapia-Bastidas, C.; Gray, E.; Irwanto, B.; Venezuela, J.; Liu, Q. Influence of hydrogen on steel components for clean energy. Corros. Mater. Degrad. 2020, 1, 3–26. [Google Scholar] [CrossRef] [Green Version]
- Cather, B.; Doran, D. Construction Materials Reference Book; Butterworth-Heinemann: Oxford, UK, 2012. [Google Scholar]
- Horvath, A. Construction materials and the environment. Annu. Rev. Environ. Resour. 2004, 29, 181–204. [Google Scholar] [CrossRef]
- Allen, E.; Iano, J. Fundamentals of Building Construction: Materials and Methods; Wiley: Hoboken, NJ, USA, 2019. [Google Scholar]
- Domone, P.; Illston, J. Construction Materials: Their Nature and Behaviour; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Blicharski, M. Wstęp do Inżynierii Materiałowej; Wydawnictwa Naukowo-Techniczne: Warsaw, Poland, 2003. [Google Scholar]
- Jaśkiewicz, Z. (Ed.) Poradnik Inżyniera Samochodowego Elementy i Materiały; Wydawnictwa Komunikacji i Łączności: Warsaw, Poland, 1990. [Google Scholar]
- Blatnický, M.; Sága, M.; Dižo, J.; Bruna, M. Application of Light Metal Alloy EN AW 6063 to Vehicle Frame Construction with an Innovated Steering Mechanism. Materials 2020, 13, 817. [Google Scholar] [CrossRef] [Green Version]
- De Almeida, I.; da Silva, L.; Hallak, S. Aluminum Alloy for Automotive Cable—A perspective on emerging cars applications. In SAE Technical Paper; 2010-36-0177; SAE International: Warrendale, PA, USA, 2010. [Google Scholar] [CrossRef]
- Kaufman, J.G.; Rooy, E.L. Aluminum Alloy Castings: Properties, Processes, and Applications; ASM International: Novelty, OH, USA, 2004. [Google Scholar]
- Barlat, F.; Maeda, Y.; Chung, K.; Yanagawa, M.; Brem, J.C.; Hayashida, Y.; Lege, D.J.; Matsui, K.; Murtha, S.J.; Hattori, S.; et al. Yield function development for aluminum alloy sheets. J. Mech. Phys. Solids 1997, 45, 1727–1763. [Google Scholar] [CrossRef]
- Nakai, M.; Eto, T. New aspect of development of high strength aluminum alloys for aerospace applications. Mater. Sci. Eng. A 2000, 285, 62–68. [Google Scholar] [CrossRef]
- Papenberg, N.P.; Gneiger, S.; Weißensteiner, I.; Uggowitzer, P.J.; Pogatscher, S. Mg-Alloys for Forging Applications—A Review. Materials 2020, 13, 985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Łunarska, E.; Chernyayeva, O. Strain induced up-hill diffusion of hydrogen in Al. Inżynieria Mater. 2004, 25, 1–4. [Google Scholar] [CrossRef]
- Łunarska, E.; Chernyayeva, O. Effects of hydrogen induced elastic and plastic straining on its transport in Al. Adv. Mater. Sci. 2007, 7, 153–159. [Google Scholar]
- Ambat, R.; Dwarakadasa, E.S. Effect of hydrogen in aluminium and aluminium alloys: A review. Bull. Mater. Sci. 1996, 19, 103–114. [Google Scholar] [CrossRef]
- Zieliński, A. Niszczenie Wodorowe Metali Nieżelaznych i Ich Stopów; Gdańskie Towarzystwo Naukowe: Gdańsk, Poland, 1999. [Google Scholar]
- Włodarczyk, P.P.; Włodarczyk, B. Influence of hydrogen on shortening the operational reliability time of aluminum alloy construction. Instal 2013, 12, 32–34. [Google Scholar]
- Moody, N.R.; Thompson, A.W.; Ricker, R.E.; Was, G.S.; Jones, R.H. (Eds.) Hydrogen effects on material behavior and corrosion deformation interactions. In Proceedings of the International Conference on Hydrogen Effects on Material Behavior and Corrosion Deformation Interactions, Moran, WY, USA, 22–26 September 2002. [Google Scholar]
- Bockris, J.O.M.; Reddy, A.K.N. Modern Electrochemistry; Kulwer Academic/Plenum Publishers: New York, NY, USA, 2000; Volume 2B. [Google Scholar]
- Tomaszow, N.D. Teoria Korozji i Ochrony Metali; Państwowe Wydawnictwo Naukowe: Warsaw, Poland, 1962. [Google Scholar]
- Yasniy, P.V.; Okipnyi, I.B.; Maruschak, P.O.; Panin, S.V.; Konovalen, I.V. Crack tip strain localisation on mechanics of fracture of heat resistant steel after hydrogenation. Theor. Appl. Fract. Mech. 2013, 63–64, 63–68. [Google Scholar] [CrossRef]
- Romaniv, O.N.; Nikiforchin, G.N. Mechanics of Corrosion Destruction of Structural Alloys; Metallurgy: Moscow, Russia, 1986. (In Russian) [Google Scholar]
- Hoyos, J.J.; Masoumi, M.; Pereira, V.F.; Tschiptschin, A.P.; Paes, M.T.P.; Avila, J.A. Influence of hydrogen on the microstructure and fracture toughness of friction stir welded plates of API 5L X80 pipeline steel. Int. J. Hydrog. Energy 2019, 44, 23458–23471. [Google Scholar] [CrossRef]
- Baszkiewicz, J.; Kamiński, M. Podstawy Korozji Materiałów; Oficyna Wydawnicza Politechniki Warszawskiej: Warsaw, Poland, 1997. [Google Scholar]
- PN-EN 573-3:2019; Aluminum and Aluminum Alloys—Chemical Composition and Types of Forged Products—Part 3: Chemical Composition and Types of Wares. Polish Committee for Standardization: Warsaw, Poland, 2019.
- PN-EN ISO 6892-1:2020-05; Metals—Tensile Test—Room Temperature Test Method. Polish Committee for Standardization: Warsaw, Poland, 2020.
- PN-EN ISO 7539-6:2018-12; Corrosion of Metals and Alloys—Stress Corrosion Test. Preparation and Use of Specimens with Pre-Fracture for Testing under Constant Load or Constant Strain. Polish Committee for Standardization: Warsaw, Poland, 2018.
- PN-EN ISO 7539-1:2013-06; Corrosion of Metals and Alloys—Stress Corrosion Test—General Guidelines for Test Methods. Polish Committee for Standardization: Warsaw, Poland, 2013.
- PN-EN ISO 148-2:2017-02; Metals—Charpy Impact Test—Testing of Pendulum Hammers. Polish Committee for Standardization: Warsaw, Poland, 2017.
- Jastrzębski, P.; Mutermilch., J.; Orłoś, W. Wytrzymałość Materiałów; Arkady: Warsaw, Poland, 1985. [Google Scholar]
- Banasik, M. Ćwiczenia Laboratoryjne z Wytrzymałości Materiałów; Wydawnictwo Naukowe PWN: Warsaw, Poland, 1977. [Google Scholar]
- Łączkowski, R. Wytrzymałość Materiałów; Wydawnictwo Politechniki Gdańskiej: Gdańsk, Poland, 1988. [Google Scholar]
- Walczyk, Z. Wytrzymałość Materiałów; Wydawnictwo Politechniki Gdańskiej: Gdańsk, Poland, 1998. [Google Scholar]
- Petrov, L.; Soproniuk, N. Corrosion-Mechanical Destruction of Metals and Alloys; Naukova Dumka: Kiev, Ukraine, 1991. (In Russian) [Google Scholar]
- Petrov, L.; Olik, A.; Kalinkov, A. Electrochemical aspects of corrosion fatigue of an aluminum alloy of the Al-Zn-Mg system. Phys.-Chem. Mech. Mater. 1986, 5, 35–39. [Google Scholar] [CrossRef]
Alloy Designation | Si | Fe | Cu | Mn | Mg | Cr | Zn | Ti | Others | Initial State |
---|---|---|---|---|---|---|---|---|---|---|
EN AW-1050A | 0.25 | 0.40 | 0.05 | 0.05 | 0.05 | - | 0.07 | 0.05 | - | “O” |
EN AW-5754 | 0.40 | 0.40 | 0.10 | 0.50 | 2.60–3.60 | 0.30 | 0.20 | 0.15 | 0.15 | “O” |
EN AW-6060 | 0.30–0.60 | 0.10–0.30 | 0.10 | 0.10 | 0.30–0.60 | 0.05 | 0.15 | 0.10 | 0.15 | “O” |
Aluminum Alloy Designation | Impact Strength [J⋅cm−2] | Impact Strength after Hydrogenation (H2—10 min) [J⋅cm−2] | Impact Strength after Hydrogenation (H2—25 min) [J⋅cm−2] | |
---|---|---|---|---|
by Number | by Chemical Symbols | |||
EN AW-1050A | EN AW-Al. 99.5 | 104 ± 4 | 93 ± 5 | 65 ± 2 |
EN AW-5754 | EN AW-Al. Mg3 | 42 ± 2 | 40 ± 3 | 31 ± 3 |
EN AW-6060 | EN AW-Al MgSi | 53 ± 3 | 49 ± 3 | 37± 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Włodarczyk, P.P.; Włodarczyk, B. Deterioration of Property of Aluminum Alloys (EN AW-1050A, EN AW-5754 and EN AW-6060) by Absorbed Hydrogen. Appl. Sci. 2022, 12, 1392. https://doi.org/10.3390/app12031392
Włodarczyk PP, Włodarczyk B. Deterioration of Property of Aluminum Alloys (EN AW-1050A, EN AW-5754 and EN AW-6060) by Absorbed Hydrogen. Applied Sciences. 2022; 12(3):1392. https://doi.org/10.3390/app12031392
Chicago/Turabian StyleWłodarczyk, Paweł P., and Barbara Włodarczyk. 2022. "Deterioration of Property of Aluminum Alloys (EN AW-1050A, EN AW-5754 and EN AW-6060) by Absorbed Hydrogen" Applied Sciences 12, no. 3: 1392. https://doi.org/10.3390/app12031392
APA StyleWłodarczyk, P. P., & Włodarczyk, B. (2022). Deterioration of Property of Aluminum Alloys (EN AW-1050A, EN AW-5754 and EN AW-6060) by Absorbed Hydrogen. Applied Sciences, 12(3), 1392. https://doi.org/10.3390/app12031392