Dual-Conversion Microwave Down Converter for Nanosatellite Electronic Warfare Systems
Abstract
:Featured Application
Abstract
1. Introduction
2. Circuit Design and Performance
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sharma, P.; Sarma, K.K.; Mastorakis, N.E. Artificial intelligence aided electronic warfare systems- recent trends and evolving applications. IEEE Access 2020, 8, 224761–224780. [Google Scholar] [CrossRef]
- Chen, C.; Wang, S.; Li, L.; Ke, S.; Wang, C.; Bu, X. Intelligent covert satellite communication for military robot swarm. IEEE Access 2020, 8, 5363–5382. [Google Scholar] [CrossRef]
- El Hadri, D.; Zugari, A.; Zakriti, A.; El Ouahabi, M.; Taouzari, M. A compact triple band antenna for military satellite communication, radar and fifth generation applications. Adv. Electromagn. 2020, 9, 66–73. [Google Scholar] [CrossRef]
- Jeon, Y.; Bang, S. Front-end module of 18–40 GHz ultra-wideband receiver for Electronic Warfare system. J. Electromagn. Eng. Sci. 2018, 18, 188–198. [Google Scholar] [CrossRef] [Green Version]
- Salari, S.; Kim, I.; Chan, F.; Rajan, S. Blind compressive-sensing-based electronic warfare receiver IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 2014–2030. [Google Scholar] [CrossRef]
- Kumari, A.N.M.; Varughese, S.; Venkatesh Rao, P. Miniaturized ultra-wideband printed dipole array for electronic warfare applications in unmanned aerial vehicle systems. Microw. Opt. Technol. Lett. 2020, 62, 3601–3610. [Google Scholar] [CrossRef]
- Ghelfi, P.; Onori, D.; Laghezza, F.; Scotti, F.; Bogoni, A.; Albertoni, A.; Tafuto, A. An RF scanning receiver based on photonics for electronic warfare applications. In Proceedings of the 2015 12th European Radar Conference, Paris, France, 9–11 September 2015. [Google Scholar]
- Bhavsar, M.L.; Kumar, P.; Chaturvedi, I.; Srivastava, P.; Singh, D.K.; Bhattacharya, A. LTCC based multi chip modules at C-band and Ka-band for satellite payloads. In Proceedings of the IEEE MTT-S International Microwave and RF Conference, Ahmedabad, India, 11–13 December 2017. [Google Scholar]
- Rodio, L.; Schena, V.; Grande, M.; Calò, G.; D’Orazio, A. Microwave-photonic technologies for satellite telecommunication payloads: A focus on photonic RF frequency conversion. In Proceedings of the IEEE 8th International Workshop on Metrology for AeroSpace, Naples, Italy, 23–25 June 2021. [Google Scholar]
- Lee, K.-T.; Meng, C.; Wu, Y.-F.; Huang, G.-W. Ku-band single-voltage-supply downconverter using 0.15 µm pHEMT process. In Proceedings of the Asia-Pacific Microwave Conference, Delhi, India, 5–9 December 2016. [Google Scholar]
- Bannister, D.C.; Zelley, C.A.; Barnes, A.R. A 2–18 GHz wideband high dynamic range receiver MMIC. In Proceedings of the IEEE Radio Frequency Integrated Circuits Symposium, Seattle, WA, USA, 2–4 June 2002. [Google Scholar]
- Tang, Y.-F.; Yu, X.-H. The effectiveness evaluation of nano-satellites used in military operations. In Proceedings of the International Conference on Mechatronic Sciences, Electric Engineering and Computer, Shenyang, China, 20–22 December 2013. [Google Scholar]
- Granger, R.; Dalgleish, B. Developing nano/micro satellite technology for government and military applications. In Proceedings of the Milsatcoms Conference, London, UK, 3–5 November 2015. [Google Scholar]
- Persicom, A.R.; Clementemm, C.; Soraghanm, J. CubeSAT based bistatic passive radar for ballistic missile defence: Feasibility study. In Proceedings of the International Conference on Radar Systems, Belfast, UK, 23–26 October 2017. [Google Scholar]
- Raissouni, N.; El Adib, S.; Sobrino, J.A.; Ben Achhab, N.; Chahboun, A.; Azyat, A.; Lahraoua, M. Towards LST split-window algorithm FPGA implementation for CubeSats on-board computations purposes. Int. J. Remote Sens. 2019, 40, 1–16. [Google Scholar] [CrossRef]
- Marzioli, P.; Frezza, L.; Amadio, D.; Hossein, S.H.; Pancalli, M.G.; Picci, N.; Vestito, E.; Piergentili, F.; Celesti, P.; Curiano, F.; et al. Hands-on education through nano-satellites development: Past, current and future projects at Sapienza S5Lab. In Proceedings of the 7th International Workshop on Metrology for AeroSpace, Pisa, Italy, 22–24 June 2020. [Google Scholar]
- Simsek, A.; Kim, S.-K.; Ahmed, A.S.H.; Maurer, R.; Urteaga, M.; Rodwell, M.J. A dual-conversion front-end with a W-band first intermediate frequency for 1–30 GHz reconfigurable transceivers. In Proceedings of the IEEE Radio and Wireless Symposium, Orlando, FL, USA, 20–23 January 2019. [Google Scholar]
- Morishita, Y.; Hanssen, R.F. Temporal decorrelation in L-, C-, and X-band satellite radar interferometry for pasture on drained peat soils. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1096–1104. [Google Scholar] [CrossRef]
- Tings, B.; Pleskachevsky, A.; Velotto, D.; Jacobsen, S. Extension of ship wake detectability model for non-linear influences of parameters using satellite based X-band synthetic aperture radar. Remote Sens. 2019, 11, 563. [Google Scholar] [CrossRef] [Green Version]
- Cardillo, E.; Caddemi, A. A novel approach for crosstalk minimization in FMCW radars. Electron. Lett. 2017, 53, 1379–1381. [Google Scholar] [CrossRef]
- Manfredi, G.; Hinostroza, I.D.S.; Menelle, M.; Saillant, S.; Ovarlez, J.-P.; Thirion-Lefevre, L. Measurements and analysis of the Doppler signature of a human moving within the forest in UHF-band. Remote Sens. 2021, 13, 423. [Google Scholar] [CrossRef]
- Cardillo, E.; Li, C.; Caddemi, A. Embedded heating, ventilation, and air-conditioning control systems: From traditional technologies toward radar advanced sensing. Rev. Sci. Instrum. 2021, 92, 061501. [Google Scholar] [CrossRef] [PubMed]
- Cardillo, E.; Li, C.; Caddemi, A. Millimeter-wave radar cane: A blind people aid with moving human recognition capabilities. IEEE J. Electromagn. RF Microw. Med. Biol. 2022, 1–8. [Google Scholar] [CrossRef]
- Pozar, D.M. Microwave Engineering; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar]
- A1 Microwave, PB1182WB K-Band Satcom Upconverter Filter, Rev. 26 August 2017. Available online: https://www.a1microwave.com/pdfs/DS_Ku_band_TX_upconverter_PB1198WB_Iss_03_Aug_2017.pdf (accessed on 21 July 2021).
- Caddemi, A.; Cardillo, E.; Crupi, G. Equivalent-circuit based modeling of the scattering and noise parameters for multi-finger GaAs pHEMTs. Int. J. Numer. Model. 2020, 33, 1–7. [Google Scholar] [CrossRef]
- Caddemi, A.; Boglione, L.; Cardillo, E.; Crupi, G.; Roussos, J. Cross-laboratory experimental validation of a tuner-less technique for the microwave noise parameters extraction. IEEE Trans. Microw. Theory Techn. 2021, 69, 1733–1739. [Google Scholar] [CrossRef]
- Caddemi, A.; Cardillo, E.; Patanè, S.; Triolo, C. An accurate experimental investigation of an optical sensing microwave amplifier. IEEE Sens. J. 2018, 18, 9214–9221. [Google Scholar] [CrossRef]
- Caddemi, A.; Cardillo, E.; Crupi, G. Comparative analysis of microwave low-noise amplifiers under laser illumination. Microw. Opt. Technol. Lett. 2021, 58, 2437–2443. [Google Scholar] [CrossRef]
- Zhang, D.; Li, L.; Guan, F.; Wu, Z.; Wang, H.; Chen, K. Design of a 2–18 GHz downconverter with amplitude and phase consistency. In Proceedings of the IEEE MTT-S International Wireless Symposium, Guangzhou, China, 19–22 May 2019. [Google Scholar]
- Gabrielli, G.; Gualano, R.A.; Aureliano Imparato, E.B.; Mitrano, C.; Pietrobono, M.; Cirella, V. Spurious-free ultra-wideband downconveter in 3U size for EW system. In Proceedings of the Photonics & Electromagnetics Research Symposium—Spring, Rome, Italy, 17–20 June 2019. [Google Scholar]
- Van de Beek, R.; Bergervoet, J.; Kundur, H.; Leenaerts, D.; Van der Weide, G. A 0. 6-to-10GHz receiver front-end in 45 nm CMOS. In Proceedings of the IEEE International Solid-State Circuits Conference—Digest of Technical Papers, San Francisco, CA, USA, 5–9 February 2008. [Google Scholar]
Element Type | Element ID | Value |
---|---|---|
Resistor | R1, R2 | 2 Ω |
Inductor | L1, L6 | 9.19 nH |
Inductor | L2, L7 | 8.07 pH |
Inductor | L3, L8 | 15.3 nH |
Inductor | L4, L9 | 7.33 pH |
Inductor | L5 | 15.74 nH |
Capacitor | C1, C6 | 3.24 fF |
Capacitor | C2, C7 | 3.70 pF |
Capacitor | C3, C8 | 1.95 fF |
Capacitor | C4, C9 | 4.07 pF |
Capacitor | C5 | 1.90 fF |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardillo, E.; Cananzi, R.; Vita, P.; Caddemi, A. Dual-Conversion Microwave Down Converter for Nanosatellite Electronic Warfare Systems. Appl. Sci. 2022, 12, 1524. https://doi.org/10.3390/app12031524
Cardillo E, Cananzi R, Vita P, Caddemi A. Dual-Conversion Microwave Down Converter for Nanosatellite Electronic Warfare Systems. Applied Sciences. 2022; 12(3):1524. https://doi.org/10.3390/app12031524
Chicago/Turabian StyleCardillo, Emanuele, Renato Cananzi, Paolo Vita, and Alina Caddemi. 2022. "Dual-Conversion Microwave Down Converter for Nanosatellite Electronic Warfare Systems" Applied Sciences 12, no. 3: 1524. https://doi.org/10.3390/app12031524
APA StyleCardillo, E., Cananzi, R., Vita, P., & Caddemi, A. (2022). Dual-Conversion Microwave Down Converter for Nanosatellite Electronic Warfare Systems. Applied Sciences, 12(3), 1524. https://doi.org/10.3390/app12031524