A PROMETHEE Multiple-Criteria Approach to Combined Seismic and Flood Risk Assessment at the Regional Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographical Context and Single Risk Description
2.2. The PROMETHEE Method
- PROMETHEE I Partial Ranking: This is a partial ranking of the alternatives, based on positive and negative flows, and includes preferences, indifference, and incomparability. This scheme allows, therefore, to compare, where possible, the alternatives and establish their partial order of preference through the indices and the related outranking flows.
- PROMETHEE II Complete Ranking: This is useful when the decision maker needs a complete hierarchy among the alternatives of the problem. In this case, the alternatives will be compared in relation to their net flow PROMETHEE II allows a complete classification of the alternatives; however, it is less realistic and poor in information as it eliminates any possible factor of incomparability between the different alternatives.
- PROMETHEE Table: This displays the , , and scores. The actions are ranked according to the PROMETHEE II complete ranking.
- PROMETHEE Rainbow: This is a diagram that allows one to highlight, for each alternative, the criteria that positively or negatively affect the final result.
- Profile of alternatives: This is a diagram that shows, for each alternative, the net flow of each criterion.
2.3. Data Collection and Processing
2.4. Normalization and Weight Assignment
2.5. Sensitivity Analysis
3. Results
3.1. Usual Preference Function
3.2. Linear Preference Function
3.3. Sensitivity Analysis on the Choice of Weights
3.4. Remarks on the Limitations of the Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN-ISDR. Sendai Framework for Disaster Risk Reduction 2015–2030. In Proceedings of the UN world Conference on Disaster Risk Reduction, Sendai, Japan, 14–18 March 2015; United Nations Office for Disaster Risk Reduction: Geneva, Switzerland. Available online: http://www.unisdr.org/files/43291_sendaiframeworkfordrren.pdf (accessed on 1 October 2021).
- Poljanšek, K.; Ferrer, M.M.; De Groeve, T.; Clark, I. Preface. In Science for Disaster Risk Management 2017: Knowing Better and Losing Less; Publications Office of the European Union: Luxembourg, 2017; ISBN 978-92-79-60678-6. [Google Scholar] [CrossRef]
- Topics Geo: Natural Catastrophes 2013: Analyses, Assessments, Positions, Münchener Rückversicherungs-Gesellschaft, Munich. 2014. Available online: https://www.munichre.com/content/dam/munichre/contentlounge/website-pieces/documents/302-08121_en.pdf/_jcr_content/renditions/original./302-08121_en.pdf (accessed on 26 January 2022).
- UN-ISDR. Terminology: Basic Terms of Disaster Risk Reduction. 2009. Available online: http://www.unisdr.org./we/inform/terminology (accessed on 1 October 2021).
- Urlainis, A.; Ornai, D.; Levy, R.; Vilnay, O.; Shohet, I.M. Loss and damage assessment in critical infrastructures due to extreme events. Saf. Sci. 2022, 147, 105587. [Google Scholar] [CrossRef]
- Kanamori, H.; Hauksson, E.; Heaton, T. Real-time seismology and earthquake hazard mitigation. Nature 1997, 390, 461–464. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Villalobos-Chacón, A. Flash flood impacts of Hurricane Otto and hydrometeorological risk mapping in Costa Rica. Geogr. Tidsskr.-Dan. J. Geogr. 2020, 120, 142–155. [Google Scholar] [CrossRef]
- Quesada-Román, A.; Ballesteros-Cánovas, J.A.; Granados-Bolaños, S.; Birkel, C.; Stoffel, M. Improving regional flood risk assessment using flood frequency and dendrogeomorphic analyses in mountain catchments impacted by tropical cyclones. Geomorphology 2022, 396, 108000. [Google Scholar] [CrossRef]
- Kron, W. Reasons for the increase in natural catastrophes: The development of exposed areas. In Topics 2000: Natural Catastrophes, the Current Position; Munich Reinsurance Company: Munich, Germany, 1999; pp. 82–94. [Google Scholar]
- Barredo, J.I. Major flood disasters in Europe: 1950–2005. Nat. Hazards 2007, 42, 125–148. [Google Scholar] [CrossRef]
- Zuccaro, G.; De Gregorio, D.; Leone, M. Theoretical model for cascading effects analyses. Int. J. Disaster Risk Reduct. 2018, 30, 199–215. [Google Scholar] [CrossRef]
- Zschau, J. Where are we with multihazards, multirisks assessment capacities? In Science for Disaster Risk Management 2017: Knowing Better and Losing Less; Poljansek, K., Marin Ferrer, M., De Groeve, T., Eds.; Publications Office of the European Union: Luxembourg, 2017; ISBN 978-92-79-60678-6. [Google Scholar] [CrossRef]
- Fuchs, S.; Keiler, M.; Zischg, A. A spatiotemporal multi-hazard exposure assessment based on property data. Nat. Hazard. Earth Syst. Sci. 2015, 15, 2127–2142. [Google Scholar] [CrossRef] [Green Version]
- Komentova, N.; Scolobig, A.; Garcia-Aristizabal, A.; Monfort, D.; Fleming, K. Multi-risk approach and urban resilience. Int. J. Disast. Res. Built Environ. 2016, 7, 114–132. [Google Scholar] [CrossRef]
- Marzocchi, W.; Garcia-Aristizabal, A.; Gasparini, P.; Mastellone, M.L.; Di Ruocco, A. Basic principles of multi-risk assessment: A case study in Italy. Nat. Hazards 2012, 62, 551–573. [Google Scholar] [CrossRef]
- Kappes, M.S.; Keiler, M.; von Elverfeldt, K.; Glade, T. Challenges of analyzing multi-hazard risk: A review. Nat. Hazards 2012, 64, 1925–1958. [Google Scholar] [CrossRef] [Green Version]
- Bell, R.; Glade, T. Multi-hazard analysis in natural risk assessments. WIT Trans. Ecol. Environ. 2004, 77, 1–10. [Google Scholar]
- Schmidt, J.; Matcham, I.; Reese, S.; King, A.; Bell, R.; Henderson, R.; Smart, G.; Cousins, J.; Smith, W.; Heron, D. Quantitative multi-risk analysis for natural hazards: A framework for multi-risk modelling. Nat. Hazards 2011, 58, 1169–1192. [Google Scholar] [CrossRef]
- Neri, A.; Aspinall, W.P.; Cioni, R.; Bertagnini, A.; Baxter, P.J.; Zuccaro, G.; Andronico, D.; Barsotti, S.; Cole, P.D.; Esposti Ongaro, T.; et al. Developing an Event Tree for probabilistic hazard and risk assessment at Vesuvius. J. Volcanol. Geotherm. Res. 2008, 178, 397–415. [Google Scholar] [CrossRef]
- Barthel, F.; Neumayer, E. A trend analysis of normalized insured damage from natural disasters. Clim. Chang. 2012, 113, 215–237. [Google Scholar] [CrossRef] [Green Version]
- Skilodimou, H.D.; Bathrellos, G.D.; Chousianitis, K.; Youssef, A.M.; Pradhan, B. Multi-hazard assessment modeling via multi-criteria analysis and GIS: A case study. Environ. Earth Sci. 2019, 78, 47. [Google Scholar] [CrossRef]
- Brans, J.P.; Mareschal, B. Promethee Methods. In Multiple Criteria Decision Analysis: State of the Art Surveys; Figueira, J., Greco, S., Ehrogott, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Gallina, V.; Torresan, S.; Critto, A.; Sperotto, A.; Glade, T.; Marcomini, A. A review of multi-risk methodologies for natural hazards: Consequences and challenges for a climate change impact assessment. J. Environ. Manag. 2016, 168, 123–132. [Google Scholar] [CrossRef]
- Gallina, V.; Torresan, S.; Zabeo, A.; Critto, A.; Glade, T.; Marcomini, A. A Multi-Risk Methodology for the Assessment of Climate Change Impacts in Coastal Zones. Sustainability 2020, 12, 3697. [Google Scholar] [CrossRef]
- Peduzzi, P.; Dao, H.; Herold, C.; Mouton, F. Assessing global exposure and vulnerability towards natural hazards: The Disaster Risk Index. Nat. Hazards Earth Syst. Sci. 2009, 9, 1149–1159. [Google Scholar] [CrossRef]
- Brans, J.P.; Vincke, P.; Mareschal, B. How to select and how to rank projects: The PROMETHEE method. Eur. J. Oper. Res. 1986, 24, 228–238. [Google Scholar] [CrossRef]
- Mladineo, M.; Jajac, N.; Rogulj, K. A simplified approach to the PROMETHEE method for priority setting in management of mine action projects. Croat. Oper. Res. Rev. 2016, 7, 249–268. [Google Scholar] [CrossRef] [Green Version]
- Crnjac, M.; Aljinovic, A.; Gjeldum, N.; Mladineo, M. Two-stage product design selection by using PROMETHEE and Taguchi method: A case study. Adv. Prod. Eng. Manag. 2019, 14, 39–50. [Google Scholar] [CrossRef]
- Savic, M.; Nikolic, D.; Mihajlovic, I.; Zivkovic, Z.; Bojanov, B.; Djordjevic, P. Multi-Criteria Decision Support System for Optimal Blending Process in Zinc Production. Miner. Process. Extr. Metall. Rev. 2015, 36, 267–280. [Google Scholar] [CrossRef]
- Rocchi, A.; Chiozzi, A.; Nale, M.; Nikolic, Z.; Riguzzi, F.; Mantovan, L.; Gilli, A.; Benvenuti, E. A Machine Learning Framework for Multi-Hazard Risk Assessment at the Regional Scale in Earthquake and Flood-Prone Areas. Appl. Sci. 2022, 12, 583. [Google Scholar] [CrossRef]
- Carminati, E.; Martinelli, G. Subsidence rates in the Po Plain, northern Italy: The relative impact of natural and anthropogenic causation. Eng. Geol. 2002, 66, 241–255. [Google Scholar] [CrossRef]
- Salvati, L.; Mavrakis, A.; Colantoni, A.; Mancino, G.; Ferrara, A. Complex Adaptive Systems, soil degradation and land sensitivity to desertification: A multivariate assessment of Italian agro-forest landscape. Sci. Total Environ. 2015, 521–522, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Stucchi, M.; Meletti, C.; Montaldo, V.; Akinci, A.; Faccioli, E.; Gasperini, P.; Malagnini, L.; Valensise, G. Pericolosità Sismica di Riferimento Per il Territorio Nazionale MPS04 [Data Set]. Istituto Nazionale di Geofisica e Vulcanologia (INGV). 2004. Available online: https://data.ingv.it/en/dataset/70#additional-metadata (accessed on 1 October 2021). [CrossRef]
- Trigila, A.; Iadanza, C.; Bussettini, M.; Lastoria, B. Dissesto Idrogeologico in Italia: Pericolosità e Indicatori di Rischio—Edizione 2018; Rapporti 287/2018; ISPRA: Roma, Italy, 2018. [Google Scholar]
- Decreto Legislativo n. 49/2010. Available online: https://www.mite.gov.it/sites/default/files/archivio/allegati/vari/documento_definitivo_indirizzi_operativi_direttiva_alluvioni_gen_13.pdf (accessed on 3 January 2022).
- Dolce, M.; Prota, A.; Borzi, B.; da Porto, F.; Lagomarsino, S.; Magenes, G.; Moroni, C.; Penna, A.; Polese, M.; Speranza, E.; et al. Seismic risk assessment of residential buildings in Italy. Bull. Earthquake Eng. 2021, 19, 2999–3032. [Google Scholar] [CrossRef]
- Hoyos, M.C.; Hernández, A.F. Impact of vulnerability assumptions and input parameters in urban seismic risk assessment. Bull. Earthq. Eng. 2021, 19, 4407–4434. [Google Scholar] [CrossRef]
- Asadi, E.; Salman, A.M.; Li, Y.; Yu, X. Localized health monitoring for seismic resilience quantification and safety evaluation of smart structures. Struct. Saf. 2021, 93, 102127. [Google Scholar] [CrossRef]
- Joyner, M.D.; Gardner, C.; Puentes, B.; Sasani, M. Resilience-Based seismic design of buildings through multiobjective optimization. Eng. Struct. 2021, 246, 113024. [Google Scholar] [CrossRef]
- CTMS. Linee Guida per la Gestione del Territorio in Aree Interessate da Faglie Attive e Capaci (FAC). Commissione Tecnica Per la Microzonazione Sismica, Gruppo di Lavoro FAC. Dipartimento Della Protezione Civile e Conferenza Delle Regioni e Delle Province Autonome. 2015. Available online: http://www.protezionecivile.gov.it/resources/cms/documents/LineeGuidaFAC_v1_0.pdf (accessed on 3 January 2022).
Generalized Criterion | Definition | Parameters to Fix |
---|---|---|
Type 1: usual criterion | - | |
Type 2: U-shape criterion | q | |
Type 3: V-shape criterion | p | |
Type 4: Level criterion | p, q | |
Type 5: V-shape with indifference criterion | p, q | |
Type 6: Gaussian criterion | s |
Criteria | ||||||
---|---|---|---|---|---|---|
Flood Hazard | PGA | Land Use | Strategic Buildings | Age of Buildings | Population Density | |
Min/Max | max | Max | max | max | max | max |
Weight | 1 | 1 | 1 | 1 | 1 | 1 |
Preference function | Usual | Linear | Linear | Usual | Linear | Linear |
Thresholds | absolute | Absolute | absolute | absolute | absolute | absolute |
q: Indifference, zero-max | n/a | 0.000 | 0.0000 | n/a | 0.000 | 0.000 |
p: Preference (zero-max) | n/a | 0.098 | 0.1896 | n/a | 0.158 | 523.00 |
s: Gaussian (zero-max) | n/a | n/a | n/a | n/a | n/a | n/a |
q: Indifference (mean-std) | n/a | 0.093 | 0.0261 | n/a | 0.0676 | 16.10 |
p: Preference (mean-std) | n/a | 0.155 | 0.1081 | n/a | 0.766 | 238.60 |
s: Gaussian (mean-std) | n/a | n/a | n/a | n/a | n/a | n/a |
Sensitivity Analysis: Increase of Single Criteria Weights | |
---|---|
Scenario 0 | All criteria have the same weight. p = 17% |
Scenario 1 | Increase the weight of the i-th criterion by 50% compared to its initial value. ; |
Scenario 2 | Increase the weight of the i-th criterion by 50% compared to its previous value. ; |
Scenario 3 | Increase the weight of the i-th criterion by 50% compared to its previous value. ; |
Rank | Alternatives | |||
---|---|---|---|---|
1 | Ferrara | 0.6111 | 0.7302 | 0.119 |
2 | Cento | 0.5873 | 0.7222 | 0.1349 |
3 | Tresigallo | 0.4127 | 0.6111 | 0.1984 |
4 | Vigarano Mainarda | 0.2857 | 0.5873 | 0.3016 |
5 | Mirabello + Sant’Agostino | 0.2698 | 0.5794 | 0.3095 |
6 | Argenta + Portomaggiore | 0.2381 | 0.5238 | 0.2857 |
7 | Bondeno | 0.1825 | 0.4921 | 0.3095 |
8 | Copparo | 0.0238 | 0.4127 | 0.3889 |
9 | Poggio Renatico | 0.0238 | 0.4524 | 0.4286 |
10 | Comacchio | 0.0000 | 0.4048 | 0.4048 |
10 | Formignana | 0.0000 | 0.381 | 0.381 |
12 | Voghiera | −0.0238 | 0.3651 | 0.3889 |
13 | Lagosanto | −0.0317 | 0.3889 | 0.4206 |
14 | Berra | −0.1587 | 0.3016 | 0.4603 |
15 | Masi Torello | −0.1746 | 0.2937 | 0.4683 |
16 | Ro | −0.1905 | 0.2857 | 0.4762 |
17 | Fiscaglia | −0.2063 | 0.2778 | 0.4841 |
18 | Mesola | −0.2857 | 0.2381 | 0.5238 |
19 | Ostellato | −0.3571 | 0.1984 | 0.5556 |
20 | Goro | −0.3651 | 0.1984 | 0.5635 |
21 | Codigoro | −0.3651 | 0.2222 | 0.5873 |
22 | Jolanda di Savoia | −0.4762 | 0.1429 | 0.619 |
Rank | Alternatives | |||
---|---|---|---|---|
1 | Cento | 0.459 | 0.5086 | 0.0496 |
2 | Ferrara | 0.3545 | 0.393 | 0.0385 |
3 | Tresigallo | 0.1821 | 0.2642 | 0.0821 |
4 | Mirabello + Sant’Agostino | 0.1444 | 0.2622 | 0.1179 |
5 | Argenta + Portomaggiore | 0.1352 | 0.2182 | 0.0829 |
6 | Bondeno | 0.1257 | 0.2069 | 0.0812 |
7 | Vigarano Mainarda | 0.112 | 0.255 | 0.143 |
8 | Copparo | 0.0505 | 0.1684 | 0.1179 |
9 | Poggio Renatico | 0.031 | 0.2216 | 0.1906 |
10 | Comacchio | 0.0224 | 0.1631 | 0.1406 |
10 | Voghiera | −0.0422 | 0.0984 | 0.1406 |
12 | Formignana | −0.0721 | 0.0937 | 0.1657 |
13 | Fiscaglia | −0.0761 | 0.0868 | 0.1628 |
14 | Lagosanto | −0.0898 | 0.1385 | 0.2283 |
15 | Codigoro | −0.101 | 0.1155 | 0.2164 |
16 | Ostellato | −0.1092 | 0.0736 | 0.1828 |
17 | Ro | −0.1362 | 0.0589 | 0.195 |
18 | Masi Torello | −0.1371 | 0.0557 | 0.1928 |
19 | Berra | −0.1551 | 0.0688 | 0.2239 |
20 | Jolanda di Savoia | −0.1947 | 0.0408 | 0.2355 |
21 | Mesola | −0.2203 | 0.0353 | 0.2556 |
22 | Goro | −0.283 | 0.0137 | 0.2968 |
Rank | Alternatives | |||
---|---|---|---|---|
1 | Cento | 0.4532 | 0.4849 | 0.0317 |
2 | Ferrara | 0.3769 | 0.4123 | 0.0354 |
3 | Tresigallo | 0.2051 | 0.2613 | 0.0562 |
4 | Vigarano Mainarda | 0.1219 | 0.2185 | 0.0966 |
5 | Mirabello+ Sant’Agostino | 0.078 | 0.1835 | 0.1056 |
6 | Lagosanto | 0.0597 | 0.1319 | 0.0722 |
7 | Poggio Renatico | 0.0523 | 0.167 | 0.1147 |
8 | Argenta + Portomaggiore | 0.0307 | 0.1133 | 0.0826 |
9 | Copparo | 0.0261 | 0.1107 | 0.0846 |
10 | Bondeno | 0.0222 | 0.1075 | 0.0853 |
11 | Comacchio | 0.0217 | 0.1075 | 0.0857 |
12 | Codigoro | 0.0125 | 0.1053 | 0.0928 |
13 | Formignana | −0.1232 | 0.0146 | 0.1378 |
14 | Masi Torello | −0.1275 | 0.0086 | 0.1361 |
15 | Goro | −0.1278 | 0.0106 | 0.1384 |
16 | Mesola | −0.1317 | 0.0069 | 0.1386 |
17 | Berra | −0.1383 | 0.0046 | 0.1429 |
18 | Voghiera | −0.1383 | 0.0041 | 0.1424 |
19 | Ro | −0.1385 | 0.004 | 0.1425 |
20 | Fiscaglia | −0.1497 | 0.002 | 0.1517 |
21 | Ostellato | −0.1839 | 0 | 0.1839 |
22 | Jolanda di Savoia | −0.2014 | 0 | 0.2014 |
Scenario 1: WEIGHT = 0.22; OTHERS = 011 | Scenario 2: WEIGHT = 0.32; OTHERS = 0.01 | |||||||
---|---|---|---|---|---|---|---|---|
Rank | Alternativa | Alternativa | ||||||
1 | Ferrara | 0.7153 | 0.8064 | 0.0911 | Cento | 0.9452 | 0.9683 | 0.0231 |
2 | Cento | 0.7093 | 0.8061 | 0.0968 | Ferrara | 0.9168 | 0.9538 | 0.037 |
3 | Tresigallo | 0.5092 | 0.6746 | 0.1654 | Tresigallo | 0.696 | 0.7975 | 0.1015 |
4 | Vigarano Mainarda | 0.2908 | 0.5771 | 0.2863 | Lagosanto | 0.4603 | 0.6797 | 0.2193 |
5 | Argenta + Portomaggiore | 0.2279 | 0.534 | 0.306 | Vigarano Mainarda | 0.3006 | 0.5575 | 0.2569 |
6 | Mirabello + Sant’Agostino | 0.219 | 0.5413 | 0.3222 | Argenta + Portomaggiore | 0.2083 | 0.5536 | 0.3454 |
7 | Bondeno | 0.1597 | 0.4971 | 0.3375 | Mirabello + Sant’Agostino | 0.1207 | 0.4675 | 0.3468 |
8 | Lagosanto | 0.1359 | 0.488 | 0.352 | Bondeno | 0.1154 | 0.507 | 0.3915 |
9 | Copparo | 0.0416 | 0.4381 | 0.3965 | Comacchio | 0.1044 | 0.5017 | 0.3973 |
10 | Comacchio | 0.0356 | 0.4378 | 0.4022 | Copparo | 0.076 | 0.4873 | 0.4113 |
11 | Poggio Renatico | −0.0499 | 0.4041 | 0.454 | Mesola | −0.0919 | 0.3574 | 0.4493 |
12 | Formignana | −0.0661 | 0.3555 | 0.4216 | Masi Torello | −0.1448 | 0.3309 | 0.4757 |
13 | Voghiera | −0.1127 | 0.3295 | 0.4422 | Goro | −0.1563 | 0.3252 | 0.4815 |
14 | Masi Torello | −0.1644 | 0.3064 | 0.4708 | Codigoro | −0.1861 | 0.3564 | 0.5426 |
15 | Berra | −0.2045 | 0.2863 | 0.4908 | Poggio Renatico | −0.1924 | 0.3107 | 0.5031 |
16 | Mesola | −0.2197 | 0.2787 | 0.4984 | Formignana | −0.1938 | 0.3064 | 0.5002 |
17 | Ro | −0.226 | 0.2756 | 0.5016 | Voghiera | −0.2848 | 0.2607 | 0.5455 |
18 | Goro | −0.2939 | 0.2416 | 0.5355 | Berra | −0.2929 | 0.2569 | 0.5498 |
19 | Codigoro | −0.3041 | 0.268 | 0.5721 | Ro | −0.2949 | 0.2559 | 0.5507 |
20 | Fiscaglia | −0.3385 | 0.2193 | 0.5578 | Fiscaglia | −0.594 | 0.1063 | 0.7003 |
21 | Ostellato | −0.4816 | 0.1451 | 0.6267 | Ostellato | −0.7225 | 0.0418 | 0.7643 |
22 | Jolanda di Savoia | −0.5829 | 0.0971 | 0.68 | Jolanda di Savoia | −0.7893 | 0.0087 | 0.798 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soldati, A.; Chiozzi, A.; Nikolić, Ž.; Vaccaro, C.; Benvenuti, E. A PROMETHEE Multiple-Criteria Approach to Combined Seismic and Flood Risk Assessment at the Regional Scale. Appl. Sci. 2022, 12, 1527. https://doi.org/10.3390/app12031527
Soldati A, Chiozzi A, Nikolić Ž, Vaccaro C, Benvenuti E. A PROMETHEE Multiple-Criteria Approach to Combined Seismic and Flood Risk Assessment at the Regional Scale. Applied Sciences. 2022; 12(3):1527. https://doi.org/10.3390/app12031527
Chicago/Turabian StyleSoldati, Arianna, Andrea Chiozzi, Željana Nikolić, Carmela Vaccaro, and Elena Benvenuti. 2022. "A PROMETHEE Multiple-Criteria Approach to Combined Seismic and Flood Risk Assessment at the Regional Scale" Applied Sciences 12, no. 3: 1527. https://doi.org/10.3390/app12031527
APA StyleSoldati, A., Chiozzi, A., Nikolić, Ž., Vaccaro, C., & Benvenuti, E. (2022). A PROMETHEE Multiple-Criteria Approach to Combined Seismic and Flood Risk Assessment at the Regional Scale. Applied Sciences, 12(3), 1527. https://doi.org/10.3390/app12031527