Elemental Profiles of Legumes and Seeds in View of Chemometric Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Samples Preparation
2.3. Determination of Elements’ Concentrations
2.4. Accuracy and Precision of the Analytical Method Used for Quantification
2.5. The Realisation of Dietary Recommendations and Health Risk Assessment
2.6. Data Analysis
3. Results and Discussion
3.1. Macrominerals
3.2. Microminerals
3.3. Toxic Metals
3.4. Recommended Dietary Intake and Health Risk Assessment
3.5. Correlations among Macro-, Microelements and Toxic Metals Content in Legumes and Oilseeds
3.6. Influence of the Product Type (Legumes, Seeds) and Its Botanical Family on Metal Concentrations
3.7. Discrimination of Legumes and Oleic Seeds Samples Based on Their Type and Botanical Origins
3.8. Cluster Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Product | Botanic Name | Botanic Family | Origin |
---|---|---|---|
Legumes | |||
Beans | Phaseolus vulgaris L. | Fabaceae | Poland |
Mung bean | Vigna radiata | Fabaceae | Italy Australia |
Peas husked | Pisum L. | Fabaceae | Poland |
Peas unhusked | Pisum L. | Fabaceae | Poland |
Peas green | Pisum L. | Fabaceae | Poland |
Corn | Zea mays L. | Poaceae | Hungary |
Lentils, red | Lens culinaris | Fabaceae | Canada |
Lentils | Lens culinaris | Fabaceae | Canada |
Lentils, green | Lens culinaris | Fabaceae | Canada |
Soybean | Glycine max | Fabaceae | Canada |
Seeds | |||
Poppy seeds | Papaver rhoeas | Papaveraceae | Czech Republic |
Linseed roasted | Linum usitatissimum | Linaceae | Poland |
Pumpkin seeds | Cucurbita L. | Cucurbitaceae | Hungary Belgium |
Wheat hulled | Triticum L. | Poaceae | Poland |
Linseed | Linum usitatissimum | Linaceae | Poland Czech Republic |
Sesame seeds | Sesamum L. | Pedaliaceae | India |
Sunflower seeds | Helianthus annuus | Asteraceae | China Hungary |
Element | Wavelength (nm) | Burner Width (cm) | Slit (nm) | Lamp Current (mA) | Deuterium-Background Correction |
---|---|---|---|---|---|
Mn | 279.5 | 10 | 0.5 | 4 | + |
Fe | 248.3 | 5 | 0.2 | 6 | + |
Cu | 324.8 | 5 | 0.5 | 3 | − |
Zn | 213.9 | 5 | 0.5 | 5 | + |
Cr | 357.9 | 10 | 0.5 | 5 | − |
Ni | 232.0 | 10 | 0.2 | 5 | + |
Co | 240.7 | 10 | 0.2 | 6 | + |
Mg | 285.2 | 5 | 0.5 | 4 | + |
Ca | 422.7 | 5 | 0.5 | 5 | − |
Na | 589.0 | 5 | 0.2 | 6 | − |
K | 766.5 | 10 | 0.5 | 5 | − |
Pb | 217 | 10 | 0.5 | 6 | + |
Cd | 228.8 | 10 | 0.5 | 4 | + |
References
- Calles, T. The International Year of Pulses: What Are They and Why Are They Important? Available online: https://www.fao.org/3/bl797e/bl797e.pdf (accessed on 16 December 2021).
- Asif, M.; Rooney, L.W.; Ali, R.; Riaz, M.N. Application and opportunities of pulses in food system: A review. Crit. Rev. Food Sci. Nutr. 2013, 53, 1168–1179. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Pandey, G. Biofortification of pulses and legumes to enhance nutrition. Heliyon 2020, 6, e03682. [Google Scholar] [CrossRef] [PubMed]
- Karolkowski, A.; Guichard, E.; Briand, L.; Salles, C. Volatile Compounds in Pulses: A Review. Foods 2021, 10, 3140. [Google Scholar] [CrossRef] [PubMed]
- Shevkani, K.; Singh, N.; Chen, Y.; Kaur, A.; Yu, L. Pulse Proteins: Secondary Structure, Functionality and Applications. J. Food Sci. Technol. 2019, 56, 2787–2798. [Google Scholar] [CrossRef]
- Pedrosa, M.M.; Guillamón, E.; Arribas, C. Autoclaved and Extruded Legumes as a Source of Bioactive Phytochemicals: A Review. Foods 2021, 10, 379. [Google Scholar] [CrossRef]
- Ramírez-Ojeda, A.M.; Moreno-Rojas, R.; Cámara-Martos, F. Mineral and trace element content in legumes (lentils, chickpeas and beans): Bioaccesibility and probabilistic assessment of the dietary intake. J. Food Compos. Anal. 2018, 73, 17–28. [Google Scholar] [CrossRef]
- Anjum, N.A.; Singh, H.P.; Khan, M.I.R.; Masood, A.; Per, T.S.; Negi, A.; Batish, D.R.; Khan, N.A.; Duarte, A.C.; Pereira, E.; et al. Too much is bad—An appraisal of phytotoxicity of elevated plant-beneficial heavy metal ions. Environ. Sci. Pollut. Res. 2015, 22, 3361–3382. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Cadmium in food—Scientific opinion of the Panel on Contaminants in the Food Chain. EFSA J. 2009, 7, 980. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Scientific Opinion on Lead in Food. EFSA J. 2010, 8, 1570. [Google Scholar] [CrossRef]
- World Health Organization. Evaluation of Certain Contaminants in Food; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Grembecka, M.; Szefer, P. Comparative assessment of essential and heavy metals in fruits from different geographical origins. Environ. Monit. Assess. 2013, 185, 9139–9160. [Google Scholar] [CrossRef] [Green Version]
- IUPAC Gold Book. Limit of Detection. Available online: https://goldbook.iupac.org/terms/view/L03540 (accessed on 10 December 2021).
- Jarosz, M.; Rychlik, E.; Stoś, K.; Charzewska, J. Normy Żywienia Dla Populacji Polski i Ich Zastosowanie; Narodowy Instytut Zdrowia Publicznego–Państwowy Zakład Higieny: Warszawa, Poland, 2020; ISBN 9788365870285. [Google Scholar]
- Commission of the European Communities. Commission Regulation (EC) No. 1181/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2006, 364, 5–24. [Google Scholar]
- Commission of the European Communities. Commission Regulation (EC) No. 629/2008 of 2 July 2008 amending Regulation (EC) No. 1881/2006 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union 2008, 173, 6–9. [Google Scholar]
- Souci, S.W.; Fachmann, W.; Kraut, H. Food Composition and Nutrition Tables; Scientific Publishers: Stuttgart, Germany, 2002. [Google Scholar]
- Cabrera, C.; Lloris, F.; Giménez, R.; Olalla, M.; López, M.C. Mineral content in legumes and nuts: Contribution to the Spanish dietary intake. Sci. Total Environ. 2003, 308, 1–14. [Google Scholar] [CrossRef]
- Eberl, E.; Li, A.S.; Zheng, Z.Y.J.; Cunningham, J.; Rangan, A. Temporal Change in Iron Content of Vegetables and Legumes in Australia: A Scoping Review. Foods 2022, 11, 56. [Google Scholar] [CrossRef] [PubMed]
- Özcan, M.M.; Dursunm, N.; Juhaimi, F.A. Macro- and microelement contents of some legume seeds. Environ. Monit. Assess. 2013, 185, 9295–9298. [Google Scholar] [CrossRef] [PubMed]
- Marschner, H. Mineral Nutrition in Higher Plants, 2nd ed.; Academic: London, UK, 1995. [Google Scholar]
- Zhao, H.; Wu, L.; Chai, T.; Zhang, Y.; Tan, J.; Ma, S. The effects of copper, manganese and zinc on plant growth and elemental accumulation in the manganese-hyperaccumulator Phytolacca americana. J. Plant Physiol. 2012, 169, 1243–1252. [Google Scholar] [CrossRef] [PubMed]
- Murtaza, G.; Javed, W.; Hussain, A.; Wahid, A.; Murtaza, B.; Owens, G. Metal uptake via phosphate fertilizer and city sewage in cereal and legume crops in Pakistan. Environ. Sci. Pollut. Res. 2015, 22, 9136–9147. [Google Scholar] [CrossRef]
- Grant, C.A. Influence of phosphate fertilizer on cadmium in agricultural soils and crops. Agric. Agri. Food Canada 2011, 54, 143–155. [Google Scholar]
- Sekara, A.; Poniedziałek, M.; Ciura, J.; Jedrszczyk, E. Cadmium and lead accumulation and distribution in the organs of nine crops: Implications for phytoremediation. Polish J. Environ. Stud. 2005, 14, 509–516. [Google Scholar]
- Roy, S. Cadmium Accumulation in Crops and the Increasing Risk of Dietary Cadmium Exposure. In Cadmium Tolerance in Plants: Agronomic, Molecular, Signaling, and Omic Approaches; Hasanuzzaman, M., Narasimha, M., Prasad, V., Nahar, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 247–254. [Google Scholar] [CrossRef]
- Sandberg, A.-S. Bioavailability of minerals in legumes. Br. J. Nutr. 2002, 88, S281–S285. [Google Scholar] [CrossRef] [Green Version]
- Mohan, V.R.; Tresina, P.S.; Daffodil, V.O. Antinutritional factors in legume seeds: Characteristics and determination. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 211–220. [Google Scholar]
- Thavarajah, P.; Gupta, D.S. Pulses biofortification in genomic era; multidisciplinary opportunities and challenges. In Legumes in the Omic Era; Springer: New York, NY, USA, 2014; pp. 207–220. [Google Scholar]
- Commission Regulation (EU) No. 488/2014 of 12 May 2014 Amending Regulation (EC) No. 1881/2006 as Regards Maximum Levels of Cadmium in Foodstuffs. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32014R0488 (accessed on 1 December 2021).
- Erdem, H.; Tosun, Y.K.; Ozturk, M. Effect of cadmium-zinc interactions on growth and Cd-Zn concentration in durum and bread wheats. Fresenius Environ. Bull. 2012, 21, 1046–1051. [Google Scholar]
- Dar, S.; Thomas, T.; Dagar, J.; Mir, H.; Amin, A.; Shankar, V.; Singh, D.; Pundir, A.; Malik, R.; Grover, G.P. Yield potential, nutrient uptake, metal fractionation and effect on soil properties under integrative use of varied C:N ratio composts, fly ash and inorganic fertilizer nitrogen in rice grown on inceptisol. J. Agric. Sci. 2012, 4, 206–214. [Google Scholar] [CrossRef] [Green Version]
- Garten, C. Correlations between concentrations of elements in plants. Nature 1976, 261, 686–688. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Y.; Guo, K.; Wang, S.; Yang, Y. Concentrations and resorption patterns of 13 nutrients in different plant functional types in the karst region of south-western China. Ann. Bot. 2014, 113, 873–885. [Google Scholar] [CrossRef] [PubMed]
- Gundersen, V.; Bechmann, I.E.; Behrens, A.; Stürup, S. Comparative investigation of concentrations of major and trace elements in organic and conventional Danish agricultural crops. 1. Onions (Allium cepa Hysam) and peas (Pisum sativum Ping Pong). J. Agric. Food Chem. 2000, 48, 6094–6102. [Google Scholar] [CrossRef] [PubMed]
- Bibak, A.; Behrens, A.; Stürup, S.; Knudsen, L.; Gundersen, V. Concentrations of 55 major and trace elements in Danish agricultural crops measured by Inductively Coupled Plasma Mass Spectrometry. 2. Pea (Pisum sativum Ping Pong). J. Agric. Food Chem. 1998, 46, 3146–3149. [Google Scholar] [CrossRef]
- Santos, W.P.C.; Castro, J.T.; Bezerra, M.A.; Korn, M.G.A. Application of multivariate optimization in the development of an ultrasound-assisted extraction procedure for multielemental determination in bean seeds samples using ICP OES. Microchem. J. 2009, 91, 153–158. [Google Scholar] [CrossRef]
- Moyib, O.K.; Alashiri, G.O.; Adejoye, O.D. Chemometric dissimilarity in nutritive value of popularly consumed Nigerian brown and white common beans. Food Chem. 2015, 166, 576–584. [Google Scholar] [CrossRef]
- Laursen, K.H.; Schjoerring, J.K.; Olesen, J.E.; Askegaard, M.; Helekoh, U.; Husted, S. Multielemental fingerprinting as a tool for authentication of organic barley, faba bean, and potato. J. Agric. Food Chem. 2011, 59, 4385–4396. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, R.; Awasthi, S.; Singh, V.; Rai, A.K. Laser Induced Breakdown Spectroscopy: A rapid tool for the identification and quantification of minerals in cucurbit seeds. Food Chem. 2017, 221, 1778–1783. [Google Scholar] [CrossRef]
- Bolaños, D.; Marchevsky, E.J.; Camiña, J.M. Elemental analysis of amaranth, chia, sesame, linen, and quinoa seeds by ICP-OES: Assessment of classification by chemometrics. Food Anal. Meth. 2016, 9, 477–484. [Google Scholar] [CrossRef]
- Kafaoğlu, B.; Fisher, A.; Hill, S.; Kara, D. Chemometric evaluation of trace metal concentrations in some nuts and seeds. Food Additiv. Contam. Part A 2014, 31, 1529–1538. [Google Scholar] [CrossRef] [PubMed]
Element | Declared Value (μg/g) | Obtained Value (μg/g) | Recovery (%) | RSD (%) |
---|---|---|---|---|
P 1 | 2840 | 2900 ± 121 | 102 | 4.26 |
P 2 | 5180 | 5340 ± 94.8 | 103 | 1.83 |
K 1 | 16,600 ± 1200 | 14,780 ± 750 | 89.0 | 4.51 |
K 2 | 32,500 | 27,940 ± 932 | 86.0 | 2.87 |
Na 1 | 44 ± 6 | 39.8 ± 0.16 | 90.5 | 0.36 |
Na 2i | 580 | 522 ± 23 | 90.0 | 3.97 |
Mg 1 | 1700 ± 200 | 1740 ± 81.9 | 102 | 4.82 |
Mg 2 | 2160 | 2110 ± 35.6 | 97.7 | 1.65 |
Ca 1 | 4300 ± 400 | 3820 ± 37 | 88.8 | 0.86 |
Ca 2i | 18,500 | 17,450 ± 78 | 94.3 | 0.42 |
Zn 1 | 26.3 ± 2.0 | 24.2 ± 0.4 | 92.0 | 1.52 |
Zn 2 | 38.6 | 35.3 ± 1.78 | 91.4 | 4.61 |
Fe 1 | 264 ± 15 | 239 ± 4.96 | 90.5 | 1.88 |
Fe 2 | 148 | 137 ± 7.9 | 92.6 | 5.34 |
Cu 1 | 17.3 ± 1.8 | 16.7 ± 0.82 | 95.5 | 4.74 |
Cu 2 | 5.67 | 5.45 ± 0.14 | 96.1 | 2.47 |
Mn 1 | 1240 ± 70 | 1150 ± 54.0 | 92.7 | 4.35 |
Mn 2 | 31.9 | 28.7 ± 0.28 | 90.0 | 0.88 |
Cr 1 | 0.80 ± 0.03 | 0.76 ± 0.04 | 95.0 | 5.00 |
Cr 2 | 1.3 | 1.17 ± 0.05 | 90.0 | 3.85 |
Co 3 | 0.39 | 0.38 ± 0.02 | 97.4 | 5.13 |
Ni 1 | 4.6 ± 0.5 | 4.12 ± 0.08 | 89.6 | 1.74 |
Ni 2 | 1.05 | 0.95 ± 0.05 | 90.5 | 4.76 |
Pb 1 | 4.4 + 0.3 | 3.92 ± 0.15 | 89.1 | 3.41 |
Cd 2 | 0.12 | 0.11 ± 0.004 | 91.7 | 3.33 |
Product | n | Ca | Mg | Na | K | P | Zn | Cu | Fe | Mn | Cr | Ni | Co | Pb * | Cd * |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Legumes | |||||||||||||||
Beans | 6 | 152 ± 6.36 | 166 ± 29.0 | 1.36 ± 0.98 | 891 ± 91.2 | 544 ± 32.5 | 2.48 ± 0.17 | 0.48 ± 0.17 | 3.73 ± 1.12 | 1.51 ± 0.08 | 0.02 ± 0.01 | 0.17 ± 0.02 | 0.02 ± 0.01 | ND | ND |
Phaseolus vulgaris L. | 141–168 | 134–202 | 0.62–2.16 | 760–1014 | 485–586 | 1.97–2.95 | 0.34–0.60 | 2.84–4.61 | 1.43–1.60 | 0.01–0.02 | 0.15–0.20 | 0.01–0.01 | |||
Mung bean | 6 | 131 ± 3.54 | 163 ± 4.95 | 1.08 ± 0.75 | 828 ± 1.41 | 480 ± 0.71 | 1.92 ± 0.06 | 0.75 ± 0.10 | 3.84 ± 0.15 | 1.28 ± 0.03 | 0.03 ± 0.01 | 0.1 ± 0.00 | 0.02 ± 0.01 | ND | ND |
Vigna radiata | 126–144 | 156–176 | 0.52–1.77 | 787–879 | 446–509 | 1.84–2.01 | 0.67–0.83 | 3.64–4.03 | 1.24–1.35 | 0.02–0.03 | 0.10–0.10 | 0.01–0.02 | |||
Peas husked | 6 | 60.5 ± 1.34 | 118 ± 17.0 | 3.06 ± 2.88 | 784 ± 126 | 734 ± 269 | 2.70 ± 0.44 | 0.61 ± 0.23 | 3.38 ± 0.11 | 0.91 ± 0.00 | 0.01 ± 0.00 | 0.11 ± 0.02 | 0.02 ± 0.01 | ND | ND |
Pisum L. | 55.3–67.5 | 98.2–130 | 1.00–5.23 | 659–935 | 538–1022 | 2.34–3.08 | 0.42–0.79 | 3.33–3.52 | 0.89–0.93 | 0.01–0.01 | 0.09–0.12 | 0.01–0.02 | |||
Peas unhusked | 3 | 124 ± 10.5 | 130 ± 10.1 | 2.04 ± 0.03 | 583 ± 32.4 | 628 ± 74.1 | 2.92 ± 0.07 | 0.50 ± 0.00 | 4.67 ± 0.14 | 0.84 ± 0.05 | 0.02 ± 0.001 | 0.11 ± 0.002 | 0.01 ± 0.00 | ND | ND |
Pisum L. | 117–136 | 123–142 | 2.02–2.07 | 561–606 | 567–711 | 2.86–2.99 | 0.50–0.50 | 4.54–4.82 | 0.79–0.90 | 0.02–0.02 | 0.11–0.11 | 0.01–0.01 | |||
Peas green | 3 | 51.9 ± 0.94 | 107 ± 10.8 | 1.16 ± 0.09 | 794 ± 26.4 | 766 ± 52.5 | 3.66 ± 0.18 | 0.41 ± 0.01 | 3.66 ± 0.12 | 1.33 ± 0.03 | 0.01 ± 0.002 | 0.08 ± 0.004 | 0.01 ± 0.00 | ND | ND |
Pisum L. | 51.2–52.5 | 100–120 | 1.07–1.25 | 774–824 | 724–825 | 3.52–3.86 | 0.40–0.42 | 3.56–3.80 | 1.29–1.36 | 0.01–0.01 | 0.07–0.08 | 0.01–0.01 | |||
Corn | 3 | 6.20 ± 0.17 | 113 ± 1.47 | 1.17 ± 0.10 | 172 ± 9.45 | 367 ± 30.5 | 2.32 ± 0.05 | 0.15 ± 0.01 | 1.99 ± 0.13 | 1.00 ± 0.01 | 0.01 ± 0.001 | 0.02 ± 0.000 | 0.01 ± 0.00 | ND | ND |
Zea mays L. | 6.06–6.29 | 112–114 | 1.07–1.28 | 165–178 | 345–388 | 2.27–2.38 | 0.14–0.16 | 1.88–2.13 | 0.99–1.01 | 0.01–0.01 | 0.02–0.02 | 0.01–0.01 | |||
Lentils, red | 3 | 39.0 ± 1.66 | 66.1 ± 2.60 | 1.55 ± 0.02 | 513 ± 27.1 | 411 ± 19.8 | 3.32 ± 0.08 | 0.87 ± 0.01 | 6.94 ± 0.25 | 1.41 ± 0.02 | 0.01 ± 0.001 | 0.13 ± 0.002 | 0.02 ± 0.00 | ND | ND |
Lens culinaris | 37.9–40.2 | 64.3–68.0 | 1.54–1.56 | 494–533 | 397–425 | 3.27–3.41 | 0.85–0.88 | 6.73–7.21 | 1.40–1.43 | 0.01–0.01 | 0.13–0.13 | 0.02–0.02 | |||
Lentils | 6 | 93.8 ± 1.32 | 98.5 ± 3.23 | 0.95 ± 0.06 | 652 ± 23.1 | 546 ± 4.86 | 2.78 ± 0.01 | 0.65 ± 0.01 | 10.5 ± 0.51 | 1.32 ± 0.01 | 0.02 ± 0.001 | 0.19 ± 0.000 | 0.02 ± 0.00 | ND | ND |
Lens culinaris | 92.8–95.3 | 95.3–102 | 0.91–0.99 | 631–677 | 540–549 | 2.77–2.79 | 0.64–0.66 | 10.1–11.1 | 1.31–1.33 | 0.02–0.02 | 0.19–0.19 | 0.02–0.02 | |||
Lentils, green | 3 | 72.9 ± 4.02 | 97.1 ± 0.88 | 0.91 ± 0.01 | 689 ± 10.8 | 478 ± 7.23 | 2.70 ± 0.06 | 0.70 ± 0.01 | 10.1 ± 0.18 | 1.18 ± 0.01 | 0.05 ± 0.003 | 0.11 ± 0.002 | 0.02 ± 0.00 | ND | ND |
Lens culinaris | 69.8–77.5 | 96.5–97.8 | 0.90–0.92 | 679–701 | 473–486 | 2.65–2.76 | 0.69–0.71 | 9.86–10.2 | 1.17–1.19 | 0.05–0.05 | 0.11–0.12 | 0.02–0.02 | |||
Soybean | 6 | 244 ± 24.7 | 221 ± 5.66 | 0.88 ± 0.44 | 975 ± 4.95 | 955 ± 69.3 | 4.61 ± 0.35 | 1.28 ± 0.03 | 8.34 ± 0.15 | 2.21 ± 0.17 | 0.04 ± 0.02 | 0.51 ± 0.23 | 0.02 ± 0.00 | ND | 8.93 ± 5.33 |
Glycine max | 223–283 | 209–240 | 0.55–1.20 | 902–1041 | 861–1094 | 4.35–5.11 | 1.25–1.34 | 7.85–8.99 | 2.07–2.38 | 0.02–0.06 | 0.34–0.67 | 0.02–0.02 | 4.50–12.7 | ||
Seeds | |||||||||||||||
Poppy seeds | 6 | 2003 ± 56.7 | 315 ± 13.4 | 2.09 ± 0.21 | 566 ± 12.7 | 1251 ± 36.8 | 7.02 ± 2.15 | 1.39 ± 0.13 | 12.2 ± 1.34 | 7.19 ± 1.83 | 0.06 ± 0.01 | 0.06 ± 0.07 | 0.02 ± 0.01 | ND | 39.2 ± 31.8 |
Papaver rhoeas | 1937–2046 | 300–338 | 1.89–2.35 | 549–587 | 1096–1338 | 5.43–8.60 | 1.28–1.60 | 10.6–13.2 | 5.72–8.49 | 0.04–0.06 | 0.01–0.11 | 0.01–0.02 | 16.4–62 | ||
Linseed roasted | 3 | 250 ± 30.6 | 303 ± 12.1 | 15.0 ± 0.65 | 641 ± 54.8 | 863 ± 73.6 | 5.79 ± 0.04 | 0.95 ± 0.02 | 5.15 ± 0.11 | 3.50 ± 0.01 | 0.03 ± 0.000 | 0.09 ± 0.002 | 0.02 ± 0.00 | ND | 64.8 ± 0.98 |
Linum usitatissimum | 228–272 | 295–312 | 14.5–15.4 | 578–676 | 779–919 | 5.75–5.82 | 0.93–0.97 | 5.05–5.26 | 3.49–3.52 | 0.03–0.03 | 0.08–0.09 | 0.02–0.02 | 63.8–65.7 | ||
Pumpkin seeds | 9 | 60.3 ± 2.38 | 376 ± 26.3 | 5.11 ± 4.09 | 571 ± 37.7 | 1489 ± 210 | 6.99 ± 1.48 | 0.89 ± 0.19 | 7.33 ± 1.41 | 3.68 ± 0.35 | 0.03 ± 0.01 | 0.11 ± 0.03 | 0.01 ± 0.00 | ND | ND |
Cucurbita L. | 54.3–64.9 | 340–405 | 0.35–7.54 | 505–635 | 1208–1709 | 5.28–8.33 | 0.67–1.11 | 5.59–8.65 | 3.32–4.10 | 0.02–0.04 | 0.07–0.14 | 0.01–0.01 | |||
Wheat hulled | 3 | 38.4 ± 3.28 | 88.9 ± 7.29 | 0.75 ± 0.04 | 270 ± 18.8 | 479 ± 29.7 | 3.04 ± 0.08 | 0.29 ± 0.02 | 2.05 ± 0.04 | 4.43 ± 0.12 | 0.01 ± 0.001 | 0.07 ± 0.002 | 0.01 ± 0.00 | ND | 11.6 ± 0.51 |
Triticum L. | 35.7–42.1 | 81.5–96.1 | 0.72–0.77 | 252–289 | 445–502 | 2.96–3.12 | 0.26–0.30 | 2.01–2.08 | 4.31–4.56 | 0.01–0.01 | 0.07–0.08 | 0.01–0.01 | 11.0–12.0 | ||
Linseed | 6 | 250 ± 13.4 | 312 ± 9.90 | 39.0 ± 3.54 | 592 ± 52.3 | 837 ± 63.6 | 4.18 ± 0.39 | 1.07 ± 0.13 | 5.40 ± 0.43 | 2.15 ± 0.16 | 0.07 ± 0.01 | 0.11 ± 0.01 | 0.02 ± 0.00 | ND | 28.9 ± 2.33 |
Linum usitatissimum | 232–274 | 293–324 | 35.1–45.5 | 517–640 | 758–897 | 3.79–4.49 | 0.96–1.19 | 5.03–5.82 | 2.01–2.28 | 0.06–0.09 | 0.09–0.13 | 0.02–0.02 | 26.5–31.0 | ||
Sesame seeds | 9 | 115 ± 21.5 | 334 ± 11.3 | 33.4 ± 15.4 | 378 ± 96.9 | 1136 ± 123 | 5.25 ± 0.28 | 1.32 ± 0.08 | 5.58 ± 0.34 | 1.55 ± 0.04 | 0.03 ± 0.01 | 0.06 ± 0.01 | 0.02 ± 0.01 | ND | ND |
Sesamum L. | 99.4–141 | 301–361 | 20.6–48.3 | 285–476 | 983–1406 | 4.95–5.56 | 1.21–1.50 | 5.23–5.93 | 1.51–1.62 | 0.02–0.03 | 0.05–0.07 | 0.01–0.04 | |||
Sunflower seeds | 9 | 113 ± 28.2 | 294 ± 30.0 | 1.28 ± 1.07 | 481 ± 63.8 | 1016 ± 206 | 5.89 ± 1.28 | 1.51 ± 0.04 | 4.53 ± 0.88 | 2.57 ± 0.64 | 0.02 ± 0.01 | 0.47 ± 0.33 | 0.01 ± 0.00 | ND | 19.7 ± 13.4 |
Helianthus annuus | 92.7–148 | 256–344 | 0.57–2.62 | 409–617 | 804–1325 | 5.00–7.38 | 1.45–1.56 | 3.48–5.32 | 2.18–3.36 | 0.01–0.03 | 0.28–0.86 | 0.01–0.01 | 6.74–34.4 |
Product | Ca | Mg | Na | K | P | Zn | Cu | Fe | Mn |
---|---|---|---|---|---|---|---|---|---|
1000 mg/day | 420 mg/day | 1500 mg/day | 3500 mg/day | 700 mg/day | 11 mg/day | 0.9 mg/day | 10 mg/day | 2.3 mg/day | |
Legumes | |||||||||
Beans | 15.2 | 39.4 | 0.1 | 25.4 | 77.7 | 22.5 | 53.3 | 37.3 | 65.4 |
Mung bean | 13.1 | 38.7 | 0.1 | 23.7 | 68.5 | 17.4 | 83.3 | 38.4 | 55.7 |
Peas husked | 6.0 | 28.1 | 0.2 | 22.4 | 104.8 | 24.6 | 67.8 | 33.8 | 39.6 |
Peas unhusked | 12.4 | 31.0 | 0.1 | 16.7 | 89.7 | 26.5 | 55.6 | 46.7 | 36.5 |
Peas green | 5.2 | 25.5 | 0.1 | 22.7 | 109.4 | 33.3 | 45.6 | 36.6 | 57.8 |
Corn | 0.6 | 26.9 | 0.1 | 4.9 | 52.4 | 21.1 | 16.7 | 19.9 | 43.5 |
Lentils, red | 3.9 | 15.7 | 0.1 | 14.7 | 58.7 | 30.2 | 96.7 | 69.4 | 61.3 |
Lentils | 9.4 | 23.5 | 0.1 | 18.6 | 78.0 | 25.3 | 72.2 | 105.0 | 57.4 |
Lentils, green | 7.3 | 23.1 | 0.1 | 19.7 | 68.3 | 24.5 | 77.8 | 101.0 | 51.3 |
Soybean | 24.4 | 52.6 | 0.1 | 27.8 | 136.4 | 41.9 | 142.2 | 83.4 | 96.1 |
Seeds | |||||||||
Poppy seeds | 200.3 | 74.9 | 0.1 | 16.2 | 178.7 | 63.8 | 154.4 | 121.5 | 312.4 |
Linseed | 25.0 | 74.3 | 2.6 | 16.9 | 119.6 | 38.0 | 118.3 | 54.0 | 93.3 |
Pumpkin seeds | 6.0 | 89.6 | 0.3 | 16.3 | 212.8 | 63.6 | 99.3 | 73.3 | 160.0 |
Wheat hulled | 3.8 | 21.2 | 0.1 | 7.7 | 68.4 | 27.6 | 32.2 | 20.5 | 192.6 |
Sesame seeds | 11.5 | 79.5 | 2.2 | 10.8 | 162.3 | 47.7 | 146.7 | 55.8 | 67.4 |
Linseed roasted | 25.0 | 72.1 | 1.0 | 18.3 | 123.3 | 52.6 | 105.6 | 51.5 | 152.2 |
Sunflower seeds | 11.3 | 69.9 | 0.1 | 13.7 | 145.1 | 53.6 | 167.4 | 45.3 | 111.7 |
Element | Legumes | Oilseeds |
---|---|---|
Mg | (+)Ca c, (+)K c | (+)P c, (+)Fe a, (−)Cd a |
Ca | (+)Mg c, (+)K b, (+)Mn a, (+)Cr b, (+)Ni b | (+)Cr b, (+)Cd a |
Na | - | (−)Mn a |
K | (+)Mg c, (+)Ca b, (+)P b | - |
P | (+)K b, (+)Zn a, (+)Cd b | (+)Mg c, (+)Zn c, (+)Fe b |
Zn | (+)P a, (+)Cd b | (+)P c |
Cu | (+)Fe a, (+)Co b, (+)Cr a, (+)Ni a | - |
Fe | (+)Cu a, (+)Cr a, (+)Ni a, (+)Co a | (+)Mg a, (+)P b |
Mn | (+)Ca a, (+)Ni b | (−)Na a |
Cr | (+)Ca b, (+)Cu a, (+)Fe a | (+)Ca b |
Co | (+)Cu b, (+)Ni b, (+)Fe a | - |
Ni | (+)Ca b, (+)Cu a, (+)Fe a, (+)Mn b, (+)Co b | - |
Cd | (+)P b, (+)Zn b | (+)Ca a, (−)Mg a |
Mg | Ca | Na | K | P | Zn | Cu | Fe | Mn | Cr | Co | Ni | Cd | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Type | 18.8 c | 1.22 | 5.44 a | 13.8 c | 13.4 c | 17.5 c | 11.6 c | 1.99 | 14.6 c | 6.44 a | 0.01 | 0.90 | 13.8 c |
Botanical family | 21.2 c | 13.0 a | 13.2 a | 17.0 b | 17.8 b | 19.2 b | 16.6 b | 8.50 | 18.5 b | 11.1 | 5.49 | 12.0 a | 17.9 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grembecka, M.; Szefer, P. Elemental Profiles of Legumes and Seeds in View of Chemometric Approach. Appl. Sci. 2022, 12, 1577. https://doi.org/10.3390/app12031577
Grembecka M, Szefer P. Elemental Profiles of Legumes and Seeds in View of Chemometric Approach. Applied Sciences. 2022; 12(3):1577. https://doi.org/10.3390/app12031577
Chicago/Turabian StyleGrembecka, Małgorzata, and Piotr Szefer. 2022. "Elemental Profiles of Legumes and Seeds in View of Chemometric Approach" Applied Sciences 12, no. 3: 1577. https://doi.org/10.3390/app12031577
APA StyleGrembecka, M., & Szefer, P. (2022). Elemental Profiles of Legumes and Seeds in View of Chemometric Approach. Applied Sciences, 12(3), 1577. https://doi.org/10.3390/app12031577