Metabolic Syndrome and Its Components among Taxi Drivers in the City of Tshwane, South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Setting
2.2. Study Population, Sampling, and Sample Size
2.3. Data Collection and Tools
2.4. Data Analysis
2.5. Ethical Considerations
3. Results
3.1. The Prevalence of MetS among Taxi Drivers
3.2. Characteristics of Taxi Drivers
3.3. Association of MetS Components and Selected Variables by Age
3.4. Factors Associated with MetS
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arrive Alive: Minibus Taxi and Road Safety. 2021. Available online: https://www.arrivealive.mobi/minibus-taxis-and-road-safety (accessed on 4 November 2021).
- The ConversationInc: South Africa’s Minibus Taxi Industry Has Been Marginalised for Too Long. This Must Change. 2020. Available online: https://theconversation.com/south-africas-minibus-taxi-industry-has-been-marginalised-for-too-long-this-must-change-142060 (accessed on 4 November 2021).
- Burgel, B.J.; Gillen, M.; White, M.C. Health and Safety Strategies of Urban Taxi Drivers. J. Hered. 2012, 89, 717–722. [Google Scholar] [CrossRef] [PubMed]
- Izadi, N.; Malek, M.; Aminian, O.; Saraei, M. Medical risk factors of diabetes mellitus among professional drivers. J. Diabetes Metab. Disord. 2013, 12, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirpuri, S.; Gill, P.; Ocampo, A.; Roberts, N.; Narang, B.; Hwang, S.W.; Gany, F. Discrimination and Health Among Taxi Drivers in New York and Toronto. J. Community Health 2018, 43, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Ramukumba, T.S.; Mathikhi, M.S. Health assessment of taxi drivers in the city of Tshwane. Curationis 2016, 39, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathikhi, M.S.; Ramukumba, T.S. Taxi drivers’ perceptions of occupational health risks related to their work environment in the City of Tshwane, South Africa. Afr. J. Phys. Act. Health Sci. (AJPHES) 2020, 26, 393–409. [Google Scholar] [CrossRef]
- Apantaku-Onayemi, F.; Baldyga, W.; Amuwo, S.; Adefuye, A.; Mason, T.; Mitchell, R.; Blumenthal, D.S. Driving to better health: Cancer and cardiovascular risk assessment among taxi cab operators in Chicago. J. Health Care Poor Underserved 2012, 23, 768–780. [Google Scholar] [CrossRef]
- Poó, F.M.; Ledesma, R.D.; López, S.S. The taxi industry: Working conditions and health of drivers, a literature review. Transp. Rev. 2018, 38, 394–411. [Google Scholar] [CrossRef]
- Tobin, E.; Ofili, A.; Asogun, D.; Igbinosun, P.; Igba, K.; Idahosa, A. Prevalence of hypertension and associated factors among inter-city drivers in an urban city in south-south nigeria. Int. J. Res. Med. 2013, 2, 5–12. [Google Scholar]
- Sekgala, D. The Determinants of Metabolic Syndrome and Associated Risk Factors of CVDs Among Taxi Drivers Operating in Cape Town and Surrounding Areas: A focus on Street Food. 2020 (Paper Presented at a Midterm Meeting of Research Networks for Health Innovations in Sub-Saharan Africa, Accra, Ghana, 28–31 January). Available online: http://hdl.handle.net/20.500.11910/15373 (accessed on 22 June 2021).
- Adedokun, A.O.; Ter Goon, D.; Owolabi, E.O.; Adeniyi, O.V.; Ajayi, A.I. Prevalence, awareness, and determinants of type 2 diabetes mellitus among commercial taxi drivers in buffalo city metropolitan municipality South Africa: A cross-sectional survey. Medicine 2019, 98, e14652. [Google Scholar] [CrossRef]
- Adedokun, A.O.; Goon, D.T.; Owolabi, E.M.; Adeniyi, O.V.; Ajayi, A.I. Driving to Better Health: Screening for Hypertension and Associated Factors Among Commercial Taxi Drivers in Buffalo City Metropolitan Municipality, South Africa. TOPHJ 2017, 10, 303–312. [Google Scholar] [CrossRef] [Green Version]
- Lalla-Edward, S.; Ncube, S.; Matthew, P.; Hankins, C.; Venter, F.; Gomez, G. Uptake of health services among truck drivers in South Africa: Analysis of routine data from nine roadside wellness centres. BMC Health Serv. Res. 2017, 17, 649. [Google Scholar] [CrossRef] [Green Version]
- Misra, A.; Khurana, L. Obesity and the Metabolic Syndrome in Developing Countries. J. Clin. Endocrinol. Metab. 2008, 93, s9–s30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okafor, C. The metabolic syndrome in Africa: Current trends. Indian J. Endocrinol. Metab. 2012, 16, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Owolabi, E.O.; Ter Goon, D.; Adeniyi, O.V.; Adedokun, A.O.; Seekoe, E. Prevalence and Correlates of Metabolic Syndrome Among Adults Attending Healthcare Facilities in Eastern Cape, South Africa. Open Public Heath. J. 2017, 10, 148–159. [Google Scholar] [CrossRef]
- Kruger, M.J.; Nell, T.A. The prevalence of the metabolic syndrome in a farm worker community in the Boland district, South Africa. BMC Public Health 2017, 17, 61. [Google Scholar] [CrossRef] [Green Version]
- Erasmus, R.T.; Soita, D.J.; Hassan, M.S.; Blanco-Blanco, E.; Vergotine, Z.; Kengne, A.P.; Matsha, T.E. High prevalence of diabetes mellitus and metabolic syndrome in a South African coloured population: Baseline data of a study in Bellville, Cape Town. South Afr. Med. J. 2012, 102, 841–844. [Google Scholar] [CrossRef] [Green Version]
- Motala, A.A.; Esterhuizen, T.; Pirie, F.J.; Omar, M.A.K. The Prevalence of Metabolic Syndrome and Determination of the Optimal Waist Circumference Cutoff Points in a Rural South African Community. Diabetes Care 2011, 34, 1032–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoebel, S.; Malan, L.; De Ridder, H. Differences in MetS marker prevalence between black African and Caucasian teachers from the North West Province: Sympathetic Activity and Ambulatory Blood Pressure in Africans (SABPA) Study. J. Endocrinol. Metab. Diabetes South Afr. 2011, 16, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Sekgala, M.D.; Monyeki, K.D.; Mogale, A.; McHiza, Z.J.; Parker, W.; Choma, S.R.; Makgopa, H.M. The risk of metabolic syndrome as a result of lifestyle among Ellisras rural young adults. J. Hum. Hypertens. 2018, 32, 572–584. [Google Scholar] [CrossRef] [Green Version]
- Sekokotla, M.A.; Goswami, N.; Sewani-Rusike, C.R.; Iputo, J.E.; Nkeh-Chungag, B.N. Prevalence of metabolic syndrome in adolescents living in Mthatha, South Africa. Clin. Risk Manag. 2017, 13, 131–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornier, M.A.; Dabelea, D.; Hernandez, T.L.; Lindstrom, R.C.; Steig, A.J.; Stob, N.R.; Van Pelt, R.E.; Wang, H.; Eckel, R.H. The metabolic syndrome. Endocr. Rev. 2008, 29, 777–822. [Google Scholar]
- McNeill, A.M.; Rosamond, W.D.; Girman, C.J.; Golden, S.H.; Schmidt, M.I.; East, H.E.; Ballantyne, C.M.; Heiss, G. The metabolic syndrome and 11-year risk of incident cardiovascular disease in the atherosclerosis risk in communities study. Diabetes Care 2005, 28, 385–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiwaku, K.; Nogi, A.; Kitajima, K.; Anuurad, E.; Enkhmaa, B.; Yamasaki, M.; Kim, J.M.; Kim, I.S.; Lee, S.K.; Oyunsuren, T. Prevalence of the metabolic syndrome using the modified ATP III definitions for workers in Japan, Korea and Mongolia. J. Occup. Health 2005, 47, 126–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isomaa, B. A major health hazard: The metabolic syndrome. Life Sci. 2003, 73, 2395–2411. [Google Scholar] [CrossRef]
- Nasri, H.; Moazenzadeh, M. Coronary artery disease risk factors in drivers versus people in other occupations. ARYA J. 2006, 2, 75–78. [Google Scholar]
- Masilela, C.; Pearce, B.; Ongole, J.J.; Adeniyi, O.V.; Benjeddou, M. Cross-sectional study of prevalence and determinants of uncontrolled hypertension among South African adult residents of Mkhondo municipality. BMC Public Health 2020, 20, 1069. [Google Scholar] [CrossRef]
- Bokaba, M.; Modjadji, P.; Mokwena, K.E. Undiagnosed Hypertension in a Workplace: The Case of a Logistics Company in Gauteng, South Africa. Healthcare 2021, 9, 964. [Google Scholar] [CrossRef]
- Sahadew, N.; Singaram, V.S. A diabetes profile of the eight districts in the public health sector, Eastern Cape Province, South Africa. South Afr. Med. J. 2019, 109, 957–962. [Google Scholar] [CrossRef] [Green Version]
- National Department of Health (NDoH); Statistics South Africa (Stats SA); South African Medical Research Council (SAMRC); ICF International. South Africa Demographic and Health Survey 2016; ICF International: Fairfax, VA, USA, 2019.
- Manning, K.; Senekal, M.; Harbron, J. Non-communicable disease risk factors and treatment preference of obese patients in Cape Town. Afr. J. Prim. Health Care. Fam. Med. 2016, 8, e1–e12. [Google Scholar] [CrossRef]
- Thorogood, M.; Connor, M.; Tollman, S.; Lewando Hundt, G.; Fowkes, G.; Marsh, J. A cross-sectional study of vascular risk factors in a rural South African population: Data from the Southern African Stroke Prevention Initiative (SASPI). BMC Public Health 2007, 7, 326. [Google Scholar] [CrossRef] [Green Version]
- Stern, M.P.; Williams, K.; González-Villalpando, C.; Hunt, K.J.; Haffner, S.M. Does the metabolic syndrome improve identification of individuals at risk of type 2 diabetes and/or cardiovascular disease? Diabetes Care 2004, 27, 2676–2681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, D.; Xi, B.; Xue, J.; Huai, P.; Zhang, M.; Li, J. Association between leisure time physical activity and metabolic syndrome: A meta-analysis of prospective cohort studies. Endocrine 2014, 46, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Yazdi, Z.Z.; Sareshtehdary, M.; Tayefi, M. Prevalence of Metabolic Syndrome among Truck Drivers and Its Relation to Shift Work. Qom. Univ. Med. Sci. J. 2012, 5, 68–72. [Google Scholar]
- Saberi, H.R.; Moravveji, A.R.; Fakharian, E.; Kashani, M.M.; Dehdashti, A.R. Prevalence of metabolic syndrome in bus and truck drivers in Kashan, Iran. Diabetol. Metab. Syndr. 2011, 3, 8. [Google Scholar]
- Appiah, C.A.; Afriyie, E.O.; Hayford, F.E.A.; Frimpong, E. Prevalence and lifestyle-associated risk factors of metabolic syndrome among commercial motor vehicle drivers in a metropolitan city in Ghana. Pan. Afr. Med. J. 2020, 36, 136. [Google Scholar] [CrossRef]
- Kurosaka, K.; Daida, H.; Muto, T.; Watanabe, Y.; Kawai, S.; Yamaguchi, H. Characteristics of coronary heart disease in Japanese taxi drivers as determined by coronary angiographic analyses. Indian Health 2000, 38, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.D.; Lin, R.S. Coronary heart disease risk factors in urban bus drivers. Public Health 2001, 115, 261–264. [Google Scholar] [CrossRef]
- Singh Thakur, J.; Nangia, R.; Singh, S. Progress and challenges in achieving noncommunicable diseases targets for the sustainable development goals. FASEB Bioadv. 2021, 3, 563–568. [Google Scholar] [CrossRef]
- Baloyi, S.; Mokwena, K. Metabolic Syndrome in Reproductive Health: Urgent Call for Screening. In Lifestyle and Epidemiology-Poverty and Cardiovascular Diseases a Double Burden in African Populations; online first; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Grundy, S.M. Third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III) final report. Circulation 2002, 106, 3143–3421. [Google Scholar]
- Ärnlöv, J.; Ingelsson, E.; Sundström, J.; Lind, L. Impact of Body Mass Index and the Metabolic Syndrome on the Risk of Cardiovascular Disease and Death in Middle-Aged Men. Circulation 2010, 121, 230–236. [Google Scholar] [CrossRef]
- Shrestha, B.; Dunn, L. The Declaration of Helsinki on Medical Research involving Human Subjects: A Review of Seventh Revision. J. Nepal Health Res. Counc. 2020, 17, 548–552. [Google Scholar] [CrossRef]
- Di Milia, L.; Smolensky, M.H.; Costa, G.; Howarth, H.D.; Ohayon, M.M.; Philip, P. Demographic factors, fatigue, and driving accidents: An examination of the published literature. Accid. Anal. Prev. 2011, 43, 516–532. [Google Scholar] [CrossRef]
- Bawa, M.S.; Srivastav, M. Study the epidemiological profile of taxi drivers in the background of occupational environment, stress and personality characteristics. Indian J. Occup. Environ. Med. 2013, 17, 108–113. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.M.; Chia, S.E. The prevalence of fatigue and associated health and safety risk factors among taxi drivers in Singapore. Singapore Med. J. 2015, 56, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Brown, I.D. Driver fatigue. Hum. Factors 1994, 36, 298–314. [Google Scholar] [CrossRef]
- Khuluvhe, M. Fact Sheet; Adult Illiteracy in South Africa. Department of Higher Education and Training, Pretoria, South Africa. 2021. Available online: www.dhet.gov.za (accessed on 20 November 2021).
- Passeri, C.; Freitas, A.; Yamashita, J.; Peres, A.; Caracik, J.; Sales Peres, S. Association of diabetes mellitus, hypertention, sleep apnea and tooth loss in class iii obese patients. In Obesity Surgery; Springer: New York, NY, USA, 2014; p. 1204. [Google Scholar]
- Peer, N.; Steyn, K.; Levitt, N. Differential obesity indices identify the metabolic syndrome in Black men and women in Cape Town: The CRIBSA study. J. Public Health 2015, 38, 175–182. [Google Scholar] [CrossRef]
- Baloyi, S.M.; Mokwena, K. Metabolic syndrome among pregnant women attending an antenatal care clinic at a tertiary hospital in the Free State province, South Africa. Obstet. Gynaecol. Forum 2020, 30, 14–18. [Google Scholar]
- Hajian-Tilaki, K. Metabolic syndrome and its associated risk factors in Iranian adults: A systematic review. Casp. J Intern. Med. 2015, 6, 51–61. [Google Scholar]
- Montazerifar, F.; Karajibani, M.; Pirmoradi, B.; Torki, Z.; Moradpour, M.; Dashipour, A. Prevalence of Metabolic Syndrome in Professional Drivers. Zahedan J. Res. Med. Sci. 2019, 21, e79768. [Google Scholar] [CrossRef]
- Ali, N.S.; Khuwaja, A.K.; Adnan Ur, R.; Nanji, K. Retrospective analysis of metabolic syndrome: Prevalence and distribution in executive population in urban pakistan. Int. J. Fam. Med. 2012, 2012, 649383. [Google Scholar] [CrossRef]
- Morimoto, A.; Nishimura, R.; Suzuki, N.; Matsudaira, T.; Taki, K.; Tsujino, D.; Miyashita, Y.; Ebara, F.; Ishikawa, S.; Tajima, N. Low prevalence of metabolic syndrome and its components in rural Japan. Tohoku J. Exp. Med. 2008, 216, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Todowede, O.O.; Mianda, S.Z.; Sartorius, B. Prevalence of metabolic syndrome among HIV-positive and HIV-negative populations in sub-Saharan Africa—a systematic review and meta-analysis. Syst. Rev. 2019, 8, 4. [Google Scholar] [CrossRef]
- Jaspers Faijer-Westerink, H.; Kengne, A.P.; Meeks, K.A.C.; Agyemang, C. Prevalence of metabolic syndrome in sub-Saharan Africa. A systematic review and meta-analysis. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 547–565. [Google Scholar] [CrossRef]
- Kassi, E.; Pervanidou, P.; Kaltsas, G.; Chrousos, G. Metabolic syndrome: Definitions and controversies. BMC Med. 2011, 9, 48. [Google Scholar] [CrossRef] [Green Version]
- Kengne, A.P.; Limen, S.N.; Sobngwi, E.; Djouogo, C.F.; Nouedoui, C. Metabolic syndrome in type 2 diabetes: Comparative prevalence according to two sets of diagnostic criteria in sub-Saharan Africans. Diabetol. Metab. Syndr. 2012, 4, 22. [Google Scholar] [CrossRef] [Green Version]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar]
- Kruger, H.S.; Puoane, T.; Senekal, M.; van der Merwe, M.T. Obesity in South Africa: Challenges for government and health professionals. Public Health Nutr. 2005, 8, 491–500. [Google Scholar] [CrossRef] [Green Version]
- Puoane, T.; Steyn, K.; Bradshaw, D.; Laubscher, R.; Fourie, J.; Lambert, V.; Mbananga, N. Obesity in South Africa: The South African demographic and health survey. Obes. Res. 2002, 10, 1038–1048. [Google Scholar] [CrossRef] [Green Version]
- Modjadji, P. Socio-demographic Determinants of Overweight and Obesity Among Mothers of Primary School Children Living in a Rural Health and Demographic Surveillance System Site, South Africa. Open Public Health J. 2020, 13, 518–528. [Google Scholar] [CrossRef]
- Motlhale, M.; Ncayiyana, J.R. Migration status and prevalence of diabetes and hypertension in Gauteng province, South Africa: Effect modification by demographic and socioeconomic characteristics-a cross-sectional population-based study. BMJ Open 2019, 9, e027427. [Google Scholar] [CrossRef] [Green Version]
- Peltzer, K.; Phaswana-Mafuya, N. Hypertension and associated factors in older adults in South Africa. Cardiovasc. J. Afr. 2013, 24, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Gaziano, T.A.; Abrahams-Gessel, S.; Gomez-Olive, F.X.; Wade, A.; Crowther, N.J.; Alam, S.; Manne-Goehler, J.; Kabudula, C.W.; Wagner, R.; Rohr, J.; et al. Cardiometabolic risk in a population of older adults with multiple co-morbidities in rural south africa: The HAALSI (Health and Aging in Africa: Longitudinal studies of INDEPTH communities) study. BMC Public Health 2017, 17, 206. [Google Scholar] [CrossRef] [Green Version]
- Mohebbi, I.; Saadat, S.; Aghassi, M.; Shekari, M.; Matinkhah, M.; Sehat, S. Prevalence of metabolic syndrome in Iranian professional drivers: Results from a population based study of 12,138 men. PLoS ONE 2012, 7, e31790. [Google Scholar] [CrossRef] [Green Version]
- Miranda, P.J.; DeFronzo, R.A.; Califf, R.M.; Guyton, J.R. Metabolic syndrome: Definition, pathophysiology, and mechanisms. Am. Heart J. 2005, 149, 33–45. [Google Scholar] [CrossRef]
- Vardavas, C.I.; Linardakis, M.K.; Hatzis, C.M.; Saris, W.H.; Kafatos, A.G. Cardiovascular disease risk factors and dietary habits of farmers from Crete 45 years after the first description of the Mediterranean diet. Eur. J. Prev. Cardiol. 2010, 17, 440–446. [Google Scholar] [CrossRef]
- Åberg, F.; Helenius-Hietala, J.; Puukka, P.; Färkkilä, M.; Jula, A. Interaction between alcohol consumption and metabolic syndrome in predicting severe liver disease in the general population. Hepatology 2018, 67, 2141–2149. [Google Scholar] [CrossRef] [Green Version]
- Abban, H. Cardiovascular Diseases Risk Factors Among Commercial Long Distance Bus Drivers in Cape Coast; University of Ghana: Accra, Ghana, 2013. [Google Scholar]
- Hu, X.; Yu, W.; Yang, L.; Pan, W.; Si Qya Chen, X.; Li, Q.; Gu, X. The Association Between First-Degree Family History of Diabetes and Metabolic Syndrome. Endocr. Pract. 2019, 25, 678–683. [Google Scholar] [CrossRef]
- Ranasinghe, P.; Cooray, D.N.; Jayawardena, R.; Katulanda, P. The influence of family history of Hypertension on disease prevalence and associated metabolic risk factors among Sri Lankan adults. BMC Public Health 2015, 15, 576. [Google Scholar] [CrossRef] [Green Version]
- Khanna, N.; Sharma, R.S.; Sidhu, R.S. A study of the basic and derived anthropometric indices among the healthy adults (20–30 years of age) of amritsar city (punjab) having family history of hypertension. Int. J. Biol. Med. Res. 2011, 2, 743–746. [Google Scholar]
Variables | Category | No. of Participants (n) | Percentage (%) |
---|---|---|---|
Age (years) | <50 | 271 | 75 |
≥50 | 91 | 25 | |
Duration in taxi industry (years) | <10 | 174 | 48 |
≥10 | 188 | 52 | |
Sleeping hours at most/day | <5 | 45 | 12 |
≥5 | 317 | 88 | |
Family provider | Yes | 300 | 83 |
No | 62 | 17 | |
Marital status | Single | 144 | 40 |
Cohabiting | 30 | 8 | |
Ever married | 188 | 52 | |
Education | Post high school | 38 | 11 |
High school | 287 | 79 | |
No formal schooling | 6 | 2 | |
Primary school | 31 | 9 | |
Alcohol use | Yes | 212 | 59 |
No | 150 | 41 | |
Smoking | Yes | 110 | 30 |
No | 252 | 70 | |
At least one fruit a day | Yes | 257 | 71 |
No | 105 | 29 | |
At least one vegetable a day | Yes | 257 | 71 |
No | 105 | 29 | |
Exercise regularly | Yes | 105 | 29 |
No | 257 | 71 | |
Common food during lunch | Pap | 305 | 84 |
Bread, rice, others | 57 | 16 | |
BMI (kg/m2) | Normal | 104 | 29 |
Obese | 129 | 36 | |
Overweight | 121 | 34 | |
Underweight | 8 | 2 | |
Previous hypertension screen | Yes | 247 | 68 |
No | 115 | 32 | |
Previous diabetes testing | Yes | 157 | 43 |
No | 205 | 57 | |
Diabetes | Yes | 167 | 46 |
No | 195 | 54 | |
Hypertension | Yes | 231 | 36 |
No | 131 | 64 | |
SBP (mmHg) | Normal | 247 | 68 |
Abnormal | 115 | 32 | |
DBP (mmHg) | Normal | 229 | 63 |
Abnormal | 133 | 37 | |
Family history of hypertension | Yes | 110 | 30 |
No | 252 | 70 | |
Family history of diabetes | Yes | 88 | 24 |
No | 274 | 76 |
Variables | Age Categories | ||
---|---|---|---|
<50 Years | ≥50 Years | p-Value | |
Hypertension | |||
No | 185 (68) | 46 (51) | 0.002 * |
Yes | 86 (32) | 45 (49) | |
Diabetes | |||
No | 163 (60) | 42 (46) | 0.020 * |
Yes | 108 (40) | 49 (54) | |
BMI (kg/m2) | |||
Normal | 82 (30) | 22 (24) | 0.178 |
Overweight | 101 (37) | 28 (31) | |
Obesity | 82 (30) | 39 (43) | |
Underweight | 6 (2) | 2 (2) | |
Exercise regularly | |||
No | 196 (72) | 61 (67) | 0.336 |
Yes | 75 (28) | 30 (33) | |
Marital status | |||
Cohabiting | 29 (11) | 1 (1) | 0.001 * |
Single | 133 (49) | 11 (12) | |
Ever married | 109 (40) | 79 (87) | |
Education status | |||
No formal schooling | 2 (1) | 4 (4) | 0.001 * |
Primary school | 10 (4) | 21 (23) | |
High school | 226 (83) | 61 (67) | |
Post high school | 33 (12) | 5 (6) | |
Duration in taxi industry | |||
<10 years | 153 (56) | 21 (23) | 0.001 * |
≥10 years | 118 (44) | 70 (71) | |
Sleeping hours at most/day | |||
<5 h | 37 (14) | 83 (91) | 0.224 |
≥5 h | 234 (86) | 8 (9) | |
Alcohol use | |||
No | 93 (34) | 57 (63) | 0.001 * |
Yes | 178 (66) | 34 (37) | |
Smoking | |||
No | 185 (68) | 67 (74) | 0.336 |
Yes | 86 (32) | 24 (26) |
Variables | Duration in the Taxi Industry | ||
---|---|---|---|
<10 Years | ≥10 Years | p-Value | |
Age (years) | 0.001 * | ||
<50 | 153 (88) | 118 (63) | |
≥50 | 21(12) | 70 (37) | |
Hypertension | |||
No | 129 (74) | 102 (54) | 0.001 * |
Yes | 45 (26) | 86 (46) | |
Diabetes | |||
No | 163 (94) | 169 (90) | 0.192 |
Yes | 11 (6) | 19 (10) | |
BMI (kg/m2) | |||
Normal | 56 (32) | 48 (26) | 0.216 |
Overweight | 65 (37) | 64 (34) | |
Obesity | 49 (28) | 72 (38) | |
Underweight | 4 (3) | 4 (2) | |
Exercise regularly | |||
No | 122 (70) | 135 (72) | 0.723 |
Yes | 52 (30) | 53 (28) | |
Marital status | |||
Cohabiting | 19 (11) | 11 (6) | 0.001 * |
Single | 91(52) | 53 (28) | |
Ever married | 64 (37) | 124 (66) | |
Education status | |||
No formal schooling | 2 (1) | 4 (3) | 0.001 * |
Primary school | 6 (4) | 25 (13) | |
High school | 141 (81) | 146 (78) | |
Post high school | 25 (14) | 13 (7) | |
Sleeping hours at most/days | |||
<5 h | 22 (13) | 23 (12) | 0.906 |
≥5 h | 152 (87) | 165 (88) | |
Alcohol use | |||
No | 66 (38) | 84 (45) | 0.193 |
Yes | 108 (62) | 104 (55) | |
Smoking | |||
No | 124 (71) | 128 (68) | 0.511 |
Yes | 50 (29) | 60 (32) |
Model 1: Lifestyle Factors | Model 1: Lifestyle Family Health History | |||
---|---|---|---|---|
Variables | AOR (95% CI) | p-Value | AOR (95% CI) | p-Value |
Lifestyle | ||||
Smoking | 0.846 (0.440; 1.628) | 0.617 | 0.902 (0.466; 1.743) | 0.758 |
Alcohol use | 1.147 (0.609; 2.161) | 0.670 | 1.139 (0.601; 2.157) | 0.689 |
Sleeping hours (≥5 h)/day | 1.310 (0.516; 3.327) | 0.570 | 1.366 (0.529; 3.523) | 0.519 |
Consumption of fruits | 1.222 (1.222; 2.606) | 0.610 | 1.224 (0.570; 2.628) | 0.604 |
Consumption of vegetables | 1.163 (0.527; 2.570) | 0.708 | 1.157 (0.519; 2.577) | 0.721 |
Exercise | 0.955 (0.510; 1.788) | 0.886 | 0.998 (0.528; 1.889) | 0.995 |
Duration in the driving industry (≥10 years) | 2.276 (1.222; 4.237) | 0.010 * | 2.305 (0.261; 1.161) | 0.010 * |
Family health history | ||||
Hypertension | 0.550 (.261; 1.161) | 0.117 | ||
Diabetes | 2.075 (1.035; 4.160) | 0.040 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mabetwa, E.M.; Mokwena, K.E.; Mphekgwana, P.M.; Modjadji, P. Metabolic Syndrome and Its Components among Taxi Drivers in the City of Tshwane, South Africa. Appl. Sci. 2022, 12, 1767. https://doi.org/10.3390/app12031767
Mabetwa EM, Mokwena KE, Mphekgwana PM, Modjadji P. Metabolic Syndrome and Its Components among Taxi Drivers in the City of Tshwane, South Africa. Applied Sciences. 2022; 12(3):1767. https://doi.org/10.3390/app12031767
Chicago/Turabian StyleMabetwa, Eaglet Moditsa, Kebogile Elizabeth Mokwena, Peter Modupi Mphekgwana, and Perpetua Modjadji. 2022. "Metabolic Syndrome and Its Components among Taxi Drivers in the City of Tshwane, South Africa" Applied Sciences 12, no. 3: 1767. https://doi.org/10.3390/app12031767
APA StyleMabetwa, E. M., Mokwena, K. E., Mphekgwana, P. M., & Modjadji, P. (2022). Metabolic Syndrome and Its Components among Taxi Drivers in the City of Tshwane, South Africa. Applied Sciences, 12(3), 1767. https://doi.org/10.3390/app12031767