Anisotropic Effective Elastic Properties for Multi-Dimensional Fractured Models
Abstract
:Featured Application
Abstract
1. Introduction
2. Methodology
2.1. Anisotropic Effective Elastic Properties for 2D Fractured Models
2.1.1. Simulation Equations
2.1.2. 2D Oscillatory Relaxation Tests
2.1.3. Calculation of 2D Equivalent Stiffness Matrix
2.2. Anisotropic Effective Elastic Properties for 3D Fractured Models
2.2.1. 3D Oscillatory Relaxation Tests
2.2.2. Calculation of 3D Equivalent Stiffness Matrix
3. Results
3.1. Stiffness Tensors for 2D Fractured Model
3.2. Stiffness Tensors for 3D Fractured Model
3.3. Validation of Numerical Method
3.3.1. Validation of 2D Numerical Method
3.3.2. Numerical Analysis of 3D Fractured Model
4. Discussion
4.1. Stress Distribution Induced on Crack Interaction
4.2. Anisotropy Properties for Real Fractures
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Least-Squares Procedure for 2D Equivalent Stiffness Tensors
Appendix B. Least-Squares Procedure for 3D Equivalent Stiffness Tensors
Appendix C. The Hudson’s Model and Eshelby–Cheng Model
References
- Schultz, R. Introduction to Geologic Structural Discontinuities. In Geologic Fracture Mechanics; Cambridge University Press: Cambridge, UK, 2019; Chapter 1; pp. 1–26. [Google Scholar]
- Brandes, C.; Tanner, D. Fault mechanics and earthquakes. In Understanding Faults: Detecting, Dating, and Modeling; Elsevier: Amsterdam, The Netherlands, 2020; Chapter 2; pp. 11–80. [Google Scholar] [CrossRef]
- Grechka, V.; Kachanov, M. Effective elasticity of fractured rocks: A snapshot of the work in progress. Geophysics 2006, 71, W45–W58. [Google Scholar] [CrossRef]
- Cheng, C.H. Crack models for a transversely isotropic medium. J. Geophys. Res. 1993, 98, 675–684. [Google Scholar] [CrossRef]
- Hudson, J.A. Overall properties of a cracked solid. Math. Proc. Camb. Phil. Soc. 1980, 88, 371–384. [Google Scholar] [CrossRef]
- Hudson, J.A. A higher order approximation to the wave propagation constants for a cracked solid. Geophys. J. R. Astr. Soc. 1986, 87, 265–274. [Google Scholar] [CrossRef] [Green Version]
- Hudson, J.A. Overall elastic properties of isotropic materials with arbitrary distribution of circular cracks. Geophys. J. Intern. 1990, 102, 465–469. [Google Scholar] [CrossRef] [Green Version]
- Eshelby, J.D. The determination of the elastic field of an ellipsoidal inclusion and related problems. Proc. R. Soc. A Math. Phys. Sci. 1957, 241, 376–396. [Google Scholar] [CrossRef]
- Hudson, J.A. Overall properties of a material with inclusions or cavities. Geophys. J. Intern. 1994, 117, 555–561. [Google Scholar] [CrossRef] [Green Version]
- Chapman, M. Frequency-dependent anisotropy due to mesoscale fractures in the presence of equant porosity. Geophys. Prospect. 2003, 51, 369–379. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.X.; Rubino, J.G.; Glubokovskikh, S.; Gurevich, B. Effects of fracture intersections on seismic dispersion: Theoretical predictions versus numerical simulations. Geophys. Prospect. 2016, 65, 1264–1276. [Google Scholar] [CrossRef]
- Berryman, J.G. Single-scattering approximations for coefficients in Biot’s equations of poroelasticity. J. Acoust. Soc. Am. 1992, 91, 551–571. [Google Scholar] [CrossRef]
- Mavko, G.; Mukerji, T.; Dvorkin, J. The Rock Physics Handbook, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Ghosh, R.; Sen, M.K. Predicting subsurface CO2 movement: From laboratory to field scale. Geophysics 2012, 77, M27–M37. [Google Scholar] [CrossRef]
- Jakobsen, M.; Hudson, J.A.; Johansen, T.A. T-matrix approach to shale acoustics. Geophys. J. Intern. 2003, 154, 533–558. [Google Scholar] [CrossRef] [Green Version]
- Jing, L.; Hudson, J.A. Numerical methods in rock mechanics. Intern. J. Rock Mech. Min. Sci. 2002, 39, 409–427. [Google Scholar] [CrossRef]
- Vlastos, S.; Liu, E.; Main, I.G.; Li, X.Y. Numerical simulation of wave propagation in media with discrete distributions of fractures: Effects of fracture sizes and spatial distributions. Geophys. J. Intern. 2003, 152, 649–668. [Google Scholar] [CrossRef] [Green Version]
- Grechka, V.; Kachanov, M. Effective elasticity of rocks with closely spaced and intersecting cracks. Geophysics 2006, 71, D85–D91. [Google Scholar] [CrossRef]
- Quintal, B.; Steeb, H.; Frehner, M.; Schmalholz, S.M. Quasi-static finite element modeling of seismic attenuation and dispersion due to wave-induced fluid flow in poroelastic media. J. Geophys. Res. 2011, 116, B01201. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.X.; Yao, Q.L.; Han, D.H.; Yan, F.Y.; Nasser, M. Characterizing the effect of elastic interactions on the effective elastic properties of porous, cracked rocks. Geophys. Prospect. 2015, 64, 157–169. [Google Scholar] [CrossRef]
- Zhang, W.H.; Fu, L.Y.; Zhang, Y.; Jin, W.J. Computation of elastic properties of 3D digital cores from the Longmaxi shale. Appl. Geophys. 2016, 13, 364–374. [Google Scholar] [CrossRef]
- Lissa, S.; Barbosa, N.D.; Rubino, J.; Quintal, B. Seismic attenuation and dispersion in poroelastic media with fractures of variable aperture distributions. Solid Earth 2019, 10, 1321–1336. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.J.; Hu, H.S.; Han, B. Effective properties of a porous medium with aligned cracks containing compressible fluid. Geophys. J. Intern. 2020, 221, 60–76. [Google Scholar] [CrossRef]
- Masson, Y.J.; Pride, S.R. On the correlation between material structure and seismic attenuation anisotropy in porous media. J. Geophys. Res. Solid Earth 2014, 119, 60–76. [Google Scholar] [CrossRef] [Green Version]
- Rubino, J.G.; Ravazzoli, C.L.; Santos, J.E. Equivalent viscoelastic solids for heterogeneous fluid-saturated porous rocks. Geophysics 2009, 74, N1–N13. [Google Scholar] [CrossRef]
- Rubino, J.G.; Caspari, E.; Müller, T.M.; Milani, M.; Barbosa, N.D.; Holliger, K. Numerical upscaling in 2-D heterogeneous poroelastic rocks: Anisotropic attenuation and dispersion of seismic waves. J. Geophys. Res. Solid Earth 2016, 121, 6698–6721. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.X.; Rubino, J.G.; Barbosa, N.D.; Glubokovskikh, S.; Gurevich, B. Seismic dispersion and attenuation in saturated porous rocks with aligned fractures of finite thickness: Theory and numerical simulations—Part I: P-wave perpendicular to the fracture plane. Geophysics 2018, 83, WA49–WA62. [Google Scholar] [CrossRef]
- Favino, M.; Hunziker, J.; Caspari, E.; Quintal, B.; Krause, R. Fully-automated adaptive mesh refinement for media embedding complex heterogeneities: Application to poroelastic fluid pressure diffusion. Computa. Geosci. 2020, 24, 1101–1120. [Google Scholar] [CrossRef]
- Cao, C.H.; Fu, L.Y.; Ba, J.; Zhang, Y. Frequency- and incident-angle-dependent P-wave properties influenced by dynamic stress interactions in fractured porous media. Geophysics 2019, 84, MR173–MR184. [Google Scholar] [CrossRef]
- Cao, C.H.; Chen, F.Y.; Fu, L.Y.; Ba, J.; Han, T.C. Effect of stress interactions on anisotropic P-SV-wave dispersion and attenuation for closely spaced cracks in saturated porous media. Geophys. Prospect. 2020, 68, 2536–2556. [Google Scholar] [CrossRef]
- Jian, S.K.; Fu, L.Y.; Cao, C.H.; Han, T.C.; Du, Q.Z. 3D finite-element modeling of effective elastic properties for fracture density and multiscale natural fractures. J. Geophys. Eng. 2021, 18, 567–582. [Google Scholar] [CrossRef]
- Biot, M.A. Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 1962, 33, 1482–1498. [Google Scholar] [CrossRef]
- Deng, S.; Li, H.; Zhang, Z.P.; Zhang, J.B.; Yang, X. Structural characterization of intracratonic strike-slip faults in the central Tarim Basin. AAPG Bull. 2019, 103, 109–137. [Google Scholar] [CrossRef]
- Qi, L. Structural characteristics and storage control function of the shun I fault zone in the Shunbei region, Tarim Basin. J. Petrol. Sci. Eng. 2021, 203, 108653. [Google Scholar] [CrossRef]
- Healy, D.; Rizzo, R.E.; Cornwell, D.G.; Farrell, N.; Smith, M. FracPaQ: A MATLAB toolbox for the quantification of fracture patterns. J. Struct. Geol. 2017, 95, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Mauldon, M.; Dunne, W.M.; Rohrbaugh, M.B. Circular scanlines and circular windows: New tools for characterizing the geometry of fracture traces. J. Struct. Geol. 2001, 23, 247–258. [Google Scholar] [CrossRef]
- Nemec, W. The shape of the rose. Sedimen. Geol. 1988, 59, 149–152. [Google Scholar] [CrossRef]
- Milani, M.; Rubino, J.G.; Müller, T.M.; Quintal, B.; Caspari, E.; Holliger, K. Representative elementary volumes for evaluating effective seismic properties of heterogeneous poroelastic media. Geophysics 2016, 81, D169–D181. [Google Scholar] [CrossRef]
- Ghosh, R. Effective medium modeling of gas hydrate-filled fractures using the sonic log in the Krishna-Godavari basin, offshore eastern India. J. Geophys. Res. Solid Earth 2010, 115, B06101. [Google Scholar] [CrossRef]
Parameters | Phase |
---|---|
Matrix | |
Grain Bulk moduli, ks (GPa) | 37.0 |
(g/cm3) | 2.65 |
ϕ | 0.1 |
Bulk modulus, km (GPa) | 26 |
or (GPa) | 31.0 |
κ (m2) | 1 × 10−15 |
Fractures | |
Grain Bulk moduli, ks (GPa) | 37.0 |
(g/cm3) | 2.65 |
ϕ | 0.8 |
Bulk modulus, km (GPa) | 0.04 |
or (GPa) | 0.02 |
κ (m2) | 1 × 10−10 |
Brine | |
Bulk modulus, kf (GPa) | 2.25 |
(g/cm3) | 1.09 |
(Pa.s) | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jian, S.; Fu, L.; Cheng, Y. Anisotropic Effective Elastic Properties for Multi-Dimensional Fractured Models. Appl. Sci. 2022, 12, 1873. https://doi.org/10.3390/app12041873
Jian S, Fu L, Cheng Y. Anisotropic Effective Elastic Properties for Multi-Dimensional Fractured Models. Applied Sciences. 2022; 12(4):1873. https://doi.org/10.3390/app12041873
Chicago/Turabian StyleJian, Shikai, Liyun Fu, and Yifan Cheng. 2022. "Anisotropic Effective Elastic Properties for Multi-Dimensional Fractured Models" Applied Sciences 12, no. 4: 1873. https://doi.org/10.3390/app12041873
APA StyleJian, S., Fu, L., & Cheng, Y. (2022). Anisotropic Effective Elastic Properties for Multi-Dimensional Fractured Models. Applied Sciences, 12(4), 1873. https://doi.org/10.3390/app12041873