Ambient Light Energy Harvesting and Numerical Modeling of Non-Linear Phenomena
Abstract
:1. Introduction
2. Material and Algorithm
2.1. Ambient Light Sensor (ALS)
2.2. DC-DC Converter and Algorithm
2.3. Maximum Power Point Tracking (MPPT) Algorithm
2.4. Embedded OS Support for Energy Harvesting
3. Proposed Design Scheme
4. Experimentation and Testing
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Poon, C.; Lo, B.; Yuce, M.; Alomainy, A.; Hao, Y. Body Sensor Networks: In the Era of Big Data and Beyond. IEEE Rev. Biomed. Eng. 2015, 8, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Selvan, K.V.; Ali, M.S.M. Micro-scale energy harvesting devices: Review of methodological performances in the last decade. Renew. Sustain. Energy Rev. 2016, 54, 1035–1047. [Google Scholar] [CrossRef]
- Shaikh, F.K.; Zeadally, S. Energy harvesting in wireless sensor networks: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 55, 1041–1054. [Google Scholar] [CrossRef]
- Brito-Rojas, J.A.; Aguilar-Calderon, J.A.; Garcia-Sanchez, O.; Tripp-Barba, C.; Zaldivar-Colado, A.; Misra, S. A low-cost solar cell charger prototype for smartphone’s battery charging. In Proceedings of the Adaptive Science & Technology (ICAST), 2014 IEEE 6th International Conference, Ota, Nigeria, 29–31 October 2014; pp. 1–5. [Google Scholar]
- Park, J.; Joshi, H.; Lee, H.G.; Kiaei, S.; Ogras, U.Y. Flexible PV-cell Modeling for Energy Harvesting in Wearable IoT Applications. ACM Trans. Embed. Comput. Syst. 2017, 16, 1–20. [Google Scholar] [CrossRef]
- Jokic, P.; Magno, M. Powering smart wearable systems with flexible solar energy harvesting. In Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Ferreira, D.; Schuss, C.; Luo, C.; Goncalves, J.; Kostakos, V.; Rahkonen, T. Indoor light scavenging on smartphones. In Proceedings of the 15th International Conference on Mobile and Ubiquitous Multimedia, Rovaniemi, Finland, 12–15 December 2016; pp. 369–371. [Google Scholar]
- Rong, G.; Zheng, Y.; Sawan, M. Energy Solutions for Wearable Sensors: A Review. Sensors 2021, 21, 3806. [Google Scholar] [CrossRef]
- Iyer, V.; Bayati, E.; Nandakumar, R.; Majumdar, A.; Gollakota, S. Charging a Smartphone Across a Room Using Lasers. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 1, 1–21. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, Z.; Zhao, C. Autocharge: Automatically Charge Smartphones Using a Light Beam. 2015. Available online: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/AutoCharge-TR.pdf (accessed on 14 February 2022).
- Kumar, N.; Agrawal, A.; Khan, R.A. Smartphone with Solar Charging Mechanism to Issue Alert during Rainfall Disaster. In International Conference on Recent Developments in Science, Engineering and Technology; Springer: Berlin/Heidelberg, Germany, 2017; pp. 442–449. [Google Scholar] [CrossRef]
- Jain, N.; Fan, X.; Leon-Salas, W.D.; Lucietto, A.M. Extending battery life of smartphones by overcoming idle power consumption using ambient light energy harvesting. In Proceedings of the 2018 IEEE International Conference on Industrial Technology (ICIT), Piscataway, NJ, USA, 20–22 February 2018; pp. 978–983. [Google Scholar] [CrossRef]
- Michaels, H.; Benesperi, I.; Freitag, M. Challenges and prospects of ambient hybrid solar cell applications. Chem. Sci. 2021, 12, 5002–5015. [Google Scholar] [CrossRef] [PubMed]
- Apostolou, G.; Reinders, A.H.M.E. Overview of Design Issues in Product-Integrated Photovoltaics. Energy Technol. 2014, 2, 229–242. [Google Scholar] [CrossRef]
- Gurung, A.; Qiao, Q. Solar charging batteries: Advances, challenges, and opportunities. Joule 2018, 2, 1217–1230. [Google Scholar] [CrossRef] [Green Version]
- Schuss, C.; Eichberger, B.; Rahkonen, T. Design specifications and guidelines for efficient solar chargers of mobile phones. In Proceedings of the Multi-Conference on Systems, Signals & Devices (SSD), 2014 11th International, Castelldefels-Barcelona, Spain, 11–14 February 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Schuss, C.; Rahkonen, T. Photovoltaic (PV) energy as recharge source for portable devices such as mobile phones. In Proceedings of the 2012 12th Conference of Open Innovations Association (FRUCT), Oulu, Finland, 5–9 November 2012. [Google Scholar]
- Kline, M.; Izyumin, I.; Boser, B.; Sanders, S. Capacitive power transfer for contactless charging. In Proceedings of the 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Fort Worth, TX, USA, 6–11 March 2011; pp. 1398–1404. [Google Scholar]
- Nasiri, A.; Zabalawi, S.A.; Mandic, G. Indoor Power Harvesting Using Photovoltaic Cells for Low-Power Applications. IEEE Trans. Ind. Electron. 2009, 56, 4502–4509. [Google Scholar] [CrossRef]
- Wang, W.S.; O’Donnell, T.; Wang, N.; Hayes, M.; O’Flynn, B.; O’Mathuna, C. Design considerations of sub-mw indoor light energy harvesting for wireless sensor systems. ACM J. Emerg. Technol. Comput. Syst. (JETC) 2010, 6, 1–26. [Google Scholar] [CrossRef]
- Ma, X.; Bader, S.; Oelmann, B. Power Estimation for Indoor Light Energy Harvesting Systems. IEEE Trans. Instrum. Meas. 2020, 69, 7513–7521. [Google Scholar] [CrossRef]
- Ma, X.; Bader, S.; Oelmann, B. Estimating Harvestable Energy in Time-Varying Indoor Light Conditions. In Proceedings of the 8th International Workshop on Energy Harvesting and Energy-Neutral Sensing Systems, Virtual Event, Japan, 16–19 November 2020; pp. 71–76. [Google Scholar]
- Yang, C.; Xue, R.; Li, X.; Zhang, X.; Wu, Z. Power performance of solar energy harvesting system under typical indoor light sources. Renew. Energy 2020, 161, 836–845. [Google Scholar] [CrossRef]
- Brogan, Q.; O’Connor, T.; Ha, D.S. Solar and thermal energy harvesting with a wearable jacket. In Proceedings of the 2014 IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, Australia, 1–5 June 2014; pp. 1412–1415. [Google Scholar] [CrossRef]
- Scalia, A.; Bella, F.; Lamberti, A.; Bianco, S.; Gerbaldi, C.; Tresso, E.; Pirri, C.F. A flexible and portable powerpack by solid-state supercapacitor and dye-sensitized solar cell integration. J. Power Sources 2017, 359, 311–321. [Google Scholar] [CrossRef]
- Chen, H.-L.; Cattoni, A.; De Lépinau, R.; Walker, A.W.; Höhn, O.; Lackner, D.; Siefer, G.; Faustini, M.; Vandamme, N.; Goffard, J.; et al. A 19.9%-efficient ultrathin solar cell based on a 205-nm-thick GaAs absorber and a silver nanostructured back mirror. Nat. Energy 2019, 4, 761–767. [Google Scholar] [CrossRef]
- Biswas, S.; Kim, H. Solar Cells for Indoor Applications: Progress and Development. Polymers 2020, 12, 1338. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Hou, B.; Amaratunga, G.A. Indoor photovoltaics, The Next Big Trend in solution-processed solar cells. InfoMat 2021, 3, 445–459. [Google Scholar] [CrossRef]
- Liu, C.-Y.; Huang, C.-K.; Huang, Y.-Y.; Chang, K.-C.; Yu, K.-L.; Chiang, C.-H.; Wu, C.-G.; Lee, S.-C.; Yen, W.-Y.; Sheu, J.-K.; et al. Flexible multijunction solar cells embedded inside smart dust modules for outdoor applications to Smart Grids. Appl. Energy 2021, 306, 117970. [Google Scholar] [CrossRef]
- Devadiga, D.; Selvakumar, M.; Shetty, P.; Santosh, M.S. Dye-Sensitized Solar Cell for Indoor Applications: A Mini-Review. J. Electron. Mater. 2021, 50, 3187–3206. [Google Scholar] [CrossRef]
- Saeed, M.A.; Yoo, K.; Kang, H.C.; Shim, J.W.; Lee, J.-J. Recent developments in dye-sensitized photovoltaic cells under ambient illumination. Dye Pigments 2021, 194, 109626. [Google Scholar] [CrossRef]
- Hashemi, S.A.; Ramakrishna, S.; Aberle, A.G. Recent progress in flexible–wearable solar cells for self-powered electronic devices. Energy Environ. Sci. 2020, 13, 685–743. [Google Scholar] [CrossRef]
- Dauzon, E.; Sallenave, X.; Plesse, C.; Goubard, F.; Amassian, A.; Anthopoulos, T.D. Pushing the Limits of Flexibility and Stretchability of Solar Cells: A Review. Adv. Mater. 2021, 33, 2101469. [Google Scholar] [CrossRef]
- Jeong, T. Time-series Data Classification and Analysis associated with Machine Learning Algorithms for Cognitive Perception and Phenomenon. IEEE Access 2020, 8, 222417–222428. [Google Scholar] [CrossRef]
- Jagadamma, L.K.; Wang, S. Wide-Bandgap Halide Perovskites for Indoor Photovoltaics. Front. Chem. 2021, 9, 632021. [Google Scholar] [CrossRef]
- You, Y.-J.; Saeed, M.A.; Shafian, S.; Kim, J.; Kim, S.H.; Kim, S.H.; Kim, K.; Shim, J.W. Energy recycling under ambient illumination for internet-of-things using metal/oxide/metal-based colorful organic photovoltaics. Nanotechnology 2021, 32, 465401. [Google Scholar] [CrossRef]
- Saeed, M.A.; Kim, S.H.; Baek, K.; Hyun, J.K.; Lee, S.Y.; Shim, J.W. PEDOT: PSS: CuNW-based transparent composite electrodes for high-performance and flexible organic photovoltaics under indoor lighting. Appl. Surf. Sci. 2021, 567, 150852. [Google Scholar] [CrossRef]
- Wang, K.-L.; Zhou, Y.-H.; Lou, Y.-H.; Wang, Z.-K. Perovskite indoor photovoltaics: Opportunity and challenges. Chem. Sci. 2021, 12, 11936–11954. [Google Scholar] [CrossRef]
- Schuss, C.; Leikanger, T.; Eichberger, B.; Rahkonen, T. Efficient use of solar chargers with the help of ambient light sensors on smartphones. In Proceedings of the Open Innovations Association (FRUCT16), 2014 16th Conference, Oulu, Finland, 27–31 October 2014; pp. 79–85. [Google Scholar] [CrossRef]
- Sarik, J.; Kim, K.; Gorlatova, M.; Kymissis, I.; Zussman, G. More than meets the eye—A portable measurement unit for characterizing light energy availability. In Proceedings of the Global Conference on Signal and Information Processing (GlobalSIP), Austin, TX, USA, 3–5 December 2013; pp. 387–390. [Google Scholar] [CrossRef]
- Sharma, R.; Balaji, S. A Tour into Ambient Energy Resources and Battery Optimization. In Proceedings of the Signal and Image Processing (ICSIP), 2014 Fifth International Conference, Bangalore, India, 8–10 January 2014; pp. 343–347. [Google Scholar]
- Rezzi, F.; Collamati, L.; Costagliola, M.; Cutrupi, M. Battery management in mobile devices. In Frequency References, Power Management for SoC, and Smart Wireless Interfaces; Springer: Berlin/Heidelberg, Germany, 2014; pp. 147–168. [Google Scholar]
- Ta, T.; Baras, J.S.; Zhu, C. Improving smartphone battery life utilizing device-to-device cooperative relays underlaying LTE networks. In Proceedings of the Communications (ICC), 2014 IEEE International Conference, Sydney, Australia, 10–14 June 2014; pp. 5263–5268. [Google Scholar] [CrossRef] [Green Version]
- Leonov, V. Energy Harvesting for Self-Powered Wearable Devices. In Wearable Monitoring Systems; Springer: Berlin/Heidelberg, Germany, 2011; pp. 27–49. [Google Scholar] [CrossRef]
- Tan, Y.K.; Koh, W.S. Wearable Energy Harvesting System for Powering Wireless Devices; Intech Open Limited: London, UK, 2011. [Google Scholar]
- Toh, W.Y.; Tan, Y.K.; Koh, W.S.; Siek, L. Autonomous Wearable Sensor Nodes with Flexible Energy Harvesting. IEEE Sens. J. 2014, 14, 2299–2306. [Google Scholar] [CrossRef]
- Leonov, V.; Van Hoof, C.; Vullers, R.J. Thermoelectric and Hybrid Generators in Wearable Devices and Clothes. In Proceedings of the Wearable and Implantable Body Sensor Networks, Sixth International Workshop, Washington, DC, USA, 3–5 June 2009; pp. 195–200. [Google Scholar] [CrossRef]
- MacKenzie, J.D.; Ho, C. Perspectives on Energy Storage for Flexible Electronic Systems. Proc. IEEE 2015, 103, 535–553. [Google Scholar] [CrossRef]
- Wagner, D.T.; Rice, A.; Beresford, A.R. Device Analyzer: Understanding Smartphone Usage. Mobile and Ubiquitous Systems: Computing, Networking, and Services; Springer: Berlin/Heidelberg, Germany, 2014; pp. 195–208. [Google Scholar] [CrossRef] [Green Version]
- Upton, J.F.; Stein, S.L. Responder Technology Alert Monthly (Oct–Nov 2014); Pacific Northwest National Laboratory (PNNL): Richland, WA, USA, 2015. [Google Scholar] [CrossRef]
- Roblek, V.; Meško, M.; Krapež, A. A Complex View of Industry 4.0. SAGE Open 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Kadirvel, K.; Carpenter, J. Self-Powered, Ambient Light Sensor Using bq25504. Texas Instruments. January 2012. Available online: https://www.ti.com/lit/an/slua629a/slua629a.pdf?ts=1644926348033&ref_url=https%253A%252F%252Fwww.google.com%252F (accessed on 14 February 2022).
- López, M.T.P.; Penella, M.T.; Gasulla, M. A New MPPT Method for Low-Power Solar Energy Harvesting. IEEE Trans. Ind. Electron. 2009, 57, 3129–3138. [Google Scholar] [CrossRef] [Green Version]
- Jabbar, H.; Song, Y.S.; Jeong, T. RF energy harvesting system and circuits for charging of mobile devices. IEEE Trans. Cons. Electron. 2010, 56, 247–253. [Google Scholar] [CrossRef]
- Gupta, M.; Koc, A.T.; Vannithamby, R. Analyzing mobile applications and power consumption on smartphone over LTE network. In Proceedings of the Energy Aware Computing (ICEAC), 2011 International Conference, Istanbul, Turkey, 30 November–2 December 2011; pp. 1–4. [Google Scholar] [CrossRef]
- Nelson, A.; Schmandt, J.; Wilkins, W.; Parkerson, J.P.; Banerjee, N. System support for micro-harvester powered mobile sensing. In Proceedings of the Real-Time Systems Symposium (RTSS), 2013 IEEE 34th, Vancouver, BC, Canada, 30 January 2013; pp. 258–267. [Google Scholar] [CrossRef]
- Lu, C.; Raghunathan, V.; Roy, K. Maximum power point considerations in micro-scale solar energy harvesting systems. Proceedings of 2010 IEEE International Symposium on Circuits and Systems, Paris, France, 30 May–2 June 2010; pp. 273–276. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jabbar, H.; Jeong, T. Ambient Light Energy Harvesting and Numerical Modeling of Non-Linear Phenomena. Appl. Sci. 2022, 12, 2068. https://doi.org/10.3390/app12042068
Jabbar H, Jeong T. Ambient Light Energy Harvesting and Numerical Modeling of Non-Linear Phenomena. Applied Sciences. 2022; 12(4):2068. https://doi.org/10.3390/app12042068
Chicago/Turabian StyleJabbar, Hamid, and Taikyeong Jeong. 2022. "Ambient Light Energy Harvesting and Numerical Modeling of Non-Linear Phenomena" Applied Sciences 12, no. 4: 2068. https://doi.org/10.3390/app12042068
APA StyleJabbar, H., & Jeong, T. (2022). Ambient Light Energy Harvesting and Numerical Modeling of Non-Linear Phenomena. Applied Sciences, 12(4), 2068. https://doi.org/10.3390/app12042068