Genesis of the Baiyangping Cu–Co and Pb–Zn Mineralizations in Lanping Basin, SW China
Abstract
:1. Introduction
2. Geology of the Baiyangping Deposit
3. Analytical Methods
3.1. Samples
3.2. Fluid Inclusions
3.3. C–O Isotopes
3.4. S Isotopes
4. Results
4.1. Fluid Inclusion Data
4.2. C–O Isotopes
4.3. S Isotopes
5. Discussion
5.1. Ore-Forming Conditions
5.2. Sources of Metals and Ore-Forming Fluids
5.3. Ore Genetic Processes and Comparison
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leach, D.L.; Sangster, D.F.; Kelley, K.D.; Large, R.R.; Garven, G.; Allen, C.; Gatzmer, J.; Wallters, S. Sediment–hosted lead–zinc deposit: A global perspective. Econ. Geol. 2005, 100, 561–607. [Google Scholar] [CrossRef]
- Wang, C.M.; Deng, J.; Carranza, E.J.M.; Lai, X.R. Nature, diversity and temporal–spatial distributions of sediment–hosted Pb–Zn deposits in China. Ore Geol. Rev. 2014, 56, 327–351. [Google Scholar] [CrossRef]
- Wang, C.M.; Rao, S.C.; Shi, K.X.; Bagas, L.; Chen, Q.; Zhu, J.X.; Duan, H.Y.; Liu, L.J. Rutile in amphibolite facies metamorphic rocks: A rare example from the East Qinling Orogen, China. Appl. Sci. 2021, 11, 8756. [Google Scholar] [CrossRef]
- Wang, C.M.; Deng, J.; Bagas, L.; He, X.Y.; Zhang, J. Origin and classification of the Late Triassic Huaishuping gold deposit in the eastern part of the Qinling-Dabie Orogen, China: Implications for gold metallogeny. Miner. Depos. 2021, 56, 725–742. [Google Scholar] [CrossRef]
- Liu, Y.F.; Qi, H.W.; Bi, X.W.; Hu, R.Z.; Qi, L.K.; Yin, R.S.; Tang, Y.Y. Mercury and sulfur isotopic composition of sulfides from sediment-hosted lead-zinc deposits in Lanping basin, Southwestern China. Chem. Geol. 2021, 559, 119910. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, C.M.; Du, B.; Shi, K.X.; Yang, L.F.; Zhu, J.X.; Duan, H.Y. Petrogenesis of the Late Triassic Biluoxueshan granitic pluton, SW China: Implications for the tectonic evolution of the Paleo-Tethys Sanjiang Orogen. J. Asian Earth Sci. 2021, 211, 104700. [Google Scholar] [CrossRef]
- Du, B.; Wang, C.M.; Yang, L.F.; Shi, K.X.; Chen, Q.; Zhu, J.X. Petrogenesis of the Cenozoic Lianhuashan pluton: Constrained by zircon U-Pb geochronology, Lu-Hf isotope and geochemistry. Geol. J. 2020, 55, 3377–3400. [Google Scholar] [CrossRef]
- Wang, C.M.; Bagas, L.; Chen, J.Y.; Yang, L.F.; Zhang, D.; Du, B.; Shi, K.X. The genesis of the Liancheng Cu–Mo deposit in the Lanping Basin of SW China: Constraints from geology, fluid inclusions, and Cu–S–H–O isotopes. Ore Geol. Rev. 2018, 92, 113–128. [Google Scholar] [CrossRef]
- Wang, C.M.; Yang, L.F.; Bagas, L.; Noreen, E.; Chen, J.Y.; Du, B. Mineralization processes at the giant Jinding Zn–Pb deposit, Lanping Basin, Sanjiang Tethys Orogen: Evidence from in-situ trace element analysis of pyrite and marcasite. Geol. J. 2018, 53, 1279–1294. [Google Scholar] [CrossRef]
- Zou, Z.C.; Hu, R.Z.; Bi, X.W.; Wu, L.Y.; Feng, C.X.; Tang, Y.Y. Noble gas and stable isotopic constraints on the origin of the Ag–Cu polymetallic ore deposits in the Baiyangping area, Yunnan Province, SW China. Resour. Geol. 2016, 66, 183–198. [Google Scholar] [CrossRef]
- Pirajno, F.; Joubert, B.D. An overview of carbonate–hosted mineral deposits in the Otavi Mountain Land, Namibia: Implications for ore genesis. J. Afr. Earth Sci. 1993, 16, 265–272. [Google Scholar] [CrossRef]
- Shelton, K.L.; Burstein, I.B.; Hagni, R.D.; Vierrether, C.B.; Grant, S.K.; Hennigh, Q.T.; Bradley, M.F.; Brandom, R.T. Sulfur isotope evidence for penetration of MVT fluids into igneous basement rocks, southeast Missouri, USA. Miner. Depos. 1995, 30, 339–350. [Google Scholar] [CrossRef]
- Vikre, P.; Browne, Q.J.; Fleck, R.; Hofstra, A.; Wooden, J. Ages and sources of components of Zn–Pb, Cu, precious metal, and platinum group element deposits in the Goodsprings District, Clark County, Nevada. Econ. Geol. 2011, 106, 381–412. [Google Scholar] [CrossRef]
- Möller, V.; Klemda, R.; Joachimski, M.; Barton Jr, J.M. Hydrothermal controls on iron and lead mineralization on the farms Leeuwbosch and Cornwall, Thabazimbi district, South Africa. Ore Geol. Rev. 2014, 63, 40–63. [Google Scholar] [CrossRef]
- He, L.Q.; Song, Y.C.; Chen, K.X.; Hou, Z.Q.; Yu, F.M.; Yang, Z.S.; Wei, J.Q.; Li, Z.; Liu, Y.C. Thrust–controlled, sediment–hosted, Himalayan Zn–Pb–Cu–Ag deposits in the Lanping foreland fold belt, eastern margin of Tibetan Plateau. Ore Geol. Rev. 2009, 36, 106–132. [Google Scholar] [CrossRef]
- Deng, J.; Wang, Q.F.; Li, G.J.; Li, C.S.; Wang, C.M. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Res. 2014, 26, 419–437. [Google Scholar] [CrossRef]
- Wang, C.M.; Bagas, L.; Lu, Y.J.; Santosh, M.; Du, B.; McCuaig, T.C. Terrane boundary and spatio–temporal distribution of ore deposits in the Sanjiang Tethyan Orogen: Insights from zircon Hf–isotopic mapping. Earth-Sci. Rev. 2016, 156, 39–65. [Google Scholar] [CrossRef]
- Wang, C.M.; Deng, J.; Bagas, L.; Wang, Q.F. Zircon Hf–isotopic mapping for understanding crustal architecture and metallogenesis in the Eastern Qinling Orogen. Gondwana Res. 2017, 50, 293–310. [Google Scholar] [CrossRef]
- He, L.Q.; Chen, K.X.; Wei, J.Q.; Yu, F.M. Geological and geochemical characteristics and genesis of ore deposits in eastern ore belt of Baiyangping area, Yunnan Province. Min. Depos. 2005, 24, 61–70, (In Chinese with English Abstract). [Google Scholar]
- Hou, Z.Q.; Song, Y.C.; Li, Z.; Wang, Z.L.; Yang, Z.M.; Yang, Z.S.; Liu, Y.C.; Tian, S.H.; He, L.Q.; Chen, K.X.; et al. Thrust–controlled, sediments–hosted Pb–Zn–Ag–Cu deposits in eastern and northern margins of Tibetan orogenic belt: Geological features and tectonic model. Miner. Depos. 2008, 27, 123–144, (In Chinese with English Abstract). [Google Scholar]
- Li, X.M.; Song, Y.G. Cenozoic evolution of tectono–fluid and metallogenic process in the Lanping Basin, western Yunnan Province, Southwest China: Constraints from apatite fission track data. Chin. J. Geochem. 2006, 15, 405–408. [Google Scholar] [CrossRef]
- Xue, C.J.; Chen, Y.C.; Wang, D.H.; Yang, J.M.; Yang, W.G. Geology and isotopic composition of helium, neon, xenon and metallogenic age of the Jinding and Baiyangping ore deposits, northwest Yunnan. Sci. China Ser. D-Earth Sci. 2006, 46, 789–800. [Google Scholar] [CrossRef]
- Xue, C.J.; Zeng, R.; Liu, S.W.; Chi, G.X.; Qing, H.R.; Chen, Y.C.; Yang, J.M.; Wang, D.H. Geologic, fluid inclusion and isotopic characteristics of the Jinding Zn–Pb deposit, western Yunnan, South China: A review. Ore Geol. Rev. 2007, 31, 337–359. [Google Scholar] [CrossRef]
- Liu, Y.F.; Qi, H.W.; Bi, X.W.; Hu, R.Z.; Qi, L.K.; Yin, R.S.; Tang, Y.Y. Two types of sediment-hosted Pb-Zn deposits in the northern margin of Lanping basin, SW China: Evidence from sphalerite trace elements, carbonate C-O isotopes and molybdenite Re-Os age. Ore Geol. Rev. 2021, 131, 104016. [Google Scholar] [CrossRef]
- Bodnar, R.J. Revised equation and table for determining the freezing point depression of H2O–NaCl solutions. Geochim. Cosmochim. Acta 1993, 57, 683–684. [Google Scholar] [CrossRef]
- Zou, Z.C.; Hu, R.Z.; Bi, X.W.; Wu, L.Y.; Zhang, J.R.; Tang, Y.Y.; Li, N. Absolute and relative dating of Cu and Pb–Zn mineralization in the Baiyangping area, Yunnan Province, SW China: Sm–Nd geochronology of calcite. Geochemistry 2015, 49, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Feng, C.X.; Bi, X.W.; Liu, S.; Hu, R.Z. Fluid inclusion, rare earth element geochemistry, and isotopic characteristics of the eastern ore zone of the Baiyangping polymetallic ore district, northwestern Yunnan Province, China. J. Asian Earth Sci. 2014, 85, 140–153. [Google Scholar] [CrossRef]
- Yang, L.F.; Wang, C.M.; Bagas, L.; Du, B.; Zhang, D. Mesozoic–Cenozoic sedimentary rock records and applications for provenance of sediments and affiliation of the Simao Terrane, SW China. Int. Geol. Rev. 2019, 61, 2291–2312. [Google Scholar] [CrossRef]
- Lecumberri–Sanchez, P.; Steele–MacInnis, M.; Bodnar, R.J. A numerical model to estimate trapping conditions of fluid inclusions that homogenize by halite disappearance. Geochim. Cosmochim. Acta 2012, 92, 14–22. [Google Scholar] [CrossRef]
- Roedder, E. Fluid inclusions. Miner. Soc. Am. 1984, 12, 71–77. [Google Scholar] [CrossRef]
- Bauer, M.E.; Burisch, M.; Ostendorf, J.; Krause, J.; Frenzel, M.; Seifert, T.; Gutzmer, J. Trace element geochemistry of sphalerite in contrasting hydrothermal fluid systems of the Freiberg district, Germany: Insights from LA-ICP-MS analysis, nearinfrared light microthermometry of sphalerite-hosted fluid inclusions, and sulfur isotope geochemistry. Miner. Depos. 2019, 54, 237–262. [Google Scholar]
- Bauer, M.E.; Seifert, T.; Burisch, M.; Krause, J.; Richter, N.; Gutzmer, J. Indiumbearing sulfides from the Hämmerlein skarn deposit, Erzgebirge, Germany: Evidence for late-stage diffusion of indium into sphalerite. Miner. Depos. 2019, 54, 175–192. [Google Scholar] [CrossRef]
- González, L.A.; Lohmann, K.C. Carbon and oxygen isotopic composition of Holocene reefal carbonates. Geology 1985, 13, 811–814. [Google Scholar] [CrossRef]
- Feng, C.X.; Liu, S.; Bi, X.W.; Hu, R.Z.; Chi, G.X.; Chen, J.J.; Feng, Q.; Guo, X.L. An investigation of metallogenic chronology of eastern ore block of the Baiyangping Pb–Zn–Cu–Ag ore deposit, Lanping Basin, western Yunnan Province. Miner. Depos. 2017, 33, 691–704, (In Chinese with English Abstract). [Google Scholar]
- Anderson, G.M. The hydrothermal transport and deposition of galena and sphalerite near 100 °C. Econ. Geol. 1973, 68, 480–492. [Google Scholar] [CrossRef]
- Markl, G.; Lahaye, Y.; Schwinn, G. Copper isotopes as monitors of redox processes in hydrothermal mineralization. Geochim. Cosmochim. Acta 2006, 70, 4215–4228. [Google Scholar] [CrossRef]
- Tagirov, B.R.; Suleimenov, O.M.; Seward, T.M. Zinc complexation in aqueous sulfide solutions: Determination of the stoichiometry and stability of complexes via ZnS [Cr] solubility measurements at 100°C and 150 bars. Geochim. Cosmochim. Acta 2007, 71, 4942–4953. [Google Scholar] [CrossRef]
- Sverjensky, D.A. Genesis of Mississippi Valley–type lead–zinc deposits. Ann. Rev. Earth Planet. Sci. 1986, 14, 177–199. [Google Scholar] [CrossRef]
- Albarède, F. The stable isotope geochemistry of copper and zinc. Rev. Mineral. Geochem. 2004, 55, 409–427. [Google Scholar] [CrossRef]
- Gagnevin, D.; Boyce, A.J.; Barrie, C.D.; Menuge, J.F.; Blakeman, R.J. Zn, Fe and S isotope fractionation in a large hydrothermal system. Geochim. Cosmochim. Acta 2012, 88, 183–198. [Google Scholar] [CrossRef]
- Asael, D.; Matthews, A.; Bar–Matthews, M.; Halicz, L.; Ehrlich, S.; Teplyakov, N. Redox fractionation of copper isotopes in sedimentary conditions. Geochim. Cosmochim. Acta 2017, 69, A216. [Google Scholar] [CrossRef]
- Driesner, T.; Heinrich, C.A. The system H2O–NaCl. Part I: Correlation formulae for phase relations in temperature–pressure–composition space from 0 to 1000 °C, 0 to 5000 bar, and 0 to 1 XNaCl. Geochim. Cosmochim. Acta 2007, 71, 4880–4901. [Google Scholar] [CrossRef]
- Wang, C.M.; Zhang, D.; Wu, G.G.; Santosh, M.; Zhang, J.; Xu, Y.G.; Zhang, Y.Y. Geological and isotopic evidence for a magmatic–hydrothermal origin of the Ag–Pb–Zn deposits in the Lengshuikeng district, east–central China. Miner. Depos. 2014, 49, 733–749. [Google Scholar] [CrossRef]
- Wang, C.M.; Deng, J.; Santosh, M.; Lu, Y.J.; McCuaig, T.C.; Carranza, E.J.M.; Wang, Q.F. Age and origin of the Bulangshan and Mengsong granitoids and their significance for post–collisional tectonics in the Changning–Menglian Paleo–Tethys Orogen. J. Asian Earth Sci. 2015, 113, 656–676. [Google Scholar] [CrossRef]
- Ohmoto, H.; Rye, R. Isotopes of sulfur and carbon. In Geochemistry of Hydrothermal Ore Deposits, 1st ed.; Barnes, H.L., Ed.; John Wiley: New York, NY, USA, 1979; pp. 509–576. [Google Scholar]
- Zhang, J.R.; Wen, H.J.; Qiu, Y.Z.; Zhou, Z.C.; Du, S.J.; Wu, S.Y. Spatial–temporal evolution of ore–forming fluids and related mineralization in the western Lanping basin, Yunnan Province, China. Ore Geol. Rev. 2015, 60, 90–108. [Google Scholar] [CrossRef]
- Ohmoto, H. Stable isotope geochemistry of ore deposits. In Stable Isotopes in High Temperature Geological Processes: Reviews in Mineralogy and Geochemistry 16; Valley, J.W., Taylor, H.P., O’Neill, J.R., Eds.; Mineralogical Society of America: Washington, DC, USA, 1986; pp. 491–599. [Google Scholar]
- Zhang, J.R.; Wen, H.J.; Qiu, Y.Z.; Zhang, Y.X.; Li, C. Ages of sediment–hosted Himalayan Pb–Zn–Cu–Ag polymetallic deposits in the Lanping basin, China: Re–Os geochronology of molybdenite and Sm–Nd dating of calcite. J. Asian Earth Sci. 2013, 73, 284–295. [Google Scholar] [CrossRef]
- Xue, W.; Xue, C.J.; Li, H.J.; Chi, G.X.; Zeng, R. Sources of the ore–forming Material of the Baiyangping poly–metallic deposit in Lanping Basin, northwestern Yunnan: Constraints from C, H, O, S and Pb isotope geochemistry. Geoscience 2012, 26, 663–672, (In Chinese with English Abstract). [Google Scholar]
- Machel, H.G. Bacterial and thermochemical sulfate reduction in diagenetic settings: Old and new insights. Sediment. Geol. 2001, 140, 143–175. [Google Scholar] [CrossRef]
- Kashefi, K.; Lovley, D.R. Extending the upper temperature limit for life. Science 2003, 301, 934. [Google Scholar] [CrossRef]
- Peevler, J.; Fayek, M.; Misra, K.C.; Riciputi, L.R. Sulfur isotope microanalysis of sphalerite by SIMS: Constraints on the genesis of Mississippi valley–type mineralization, from the Mascot–Jefferson City district, East Tennessee. J. Geochem. Explor. 2003, 80, 277–296. [Google Scholar] [CrossRef]
- Gao, Y.B.; Xue, C.J.; Zeng, R. Forming mechanisms of H2S in the Jinding Pb–Zn deposit, Lanping Basin, Northwest Yunnan Province. J. Earth Sci. Environ. 2008, 30, 367–372, (In Chinese with English Abstract). [Google Scholar]
- Chen, Q.; Wang, C.M.; Leon, B.; Zhang, Z.C.; Du, B. Time scales of multistage magmatic-hydrothermal mineralization at the giant Yulong porphyry Cu-Mo deposit in eastern Tibet: Insights from titanium diffusion in quartz. Ore Geol. Rev. 2021, 139, 104459. [Google Scholar] [CrossRef]
- Dupont–Nivet, G.; Lippert, P.C.; van Hinsbergen, D.J.; Meijers, M.J.; Kapp, P. Palaeolatitude and age of the Indo–Asia collision: Palaeomagnetic constraints. Geophys. J. Int. 2010, 182, 1189–1198. [Google Scholar] [CrossRef] [Green Version]
- Tao, X.F.; Zhu, L.D.; Liu, D.Z.; Wang, G.Z.; Li, Y.G. The Formation and evolution of the Lanping basin in Western Yunnan. J. Chengdu Univ. Technol. 2002, 29, 521–525, (In Chinese with English Abstract). [Google Scholar]
- Wang, C.M.; Deng, J.; Zhang, S.T.; Xue, C.J.; Yang, L.Q.; Wang, Q.F.; Sun, X. Sediment-hosted Pb–Zn deposits in Southwest Sanjiang Tethys and Kangdian area on the western margin of Yangtze Craton. Acta Geol. Sin-Engl. 2010, 84, 1428–1438. [Google Scholar] [CrossRef]
- Tang, Y.Y.; Yin, R.S.; Hu, R.Z.; Sun, G.Y.; Zou, Z.C.; Zhou, T.; Bi, X. Mercury isotope constraints on the sources of metals in the Baiyangping Ag-Cu-Pb-Zn polymetallic deposits, SW China. Miner. Depos. 2021, 468. [Google Scholar] [CrossRef]
Sample No. | Stage | Mineral | δ13CPDB | δ18OPDB | δ18OSMOW |
---|---|---|---|---|---|
BYP15D02B11-2 | Cu–Co stage | Calcite | −1.7 | −11.3 | +19.2 |
BYP15D02B2 | Cu–Co stage | Calcite | −3.0 | −11.2 | +19.3 |
BYP15D03B1 | Cu–Co stage | Calcite | −3.6 | −13.3 | +17.2 |
BYP15D03B12-1 | Cu–Co stage | Calcite | −3.2 | −12.6 | +17.9 |
BYP15D03B12-2 | Cu–Co stage | Calcite | −3.1 | −12.5 | +18.0 |
BYP15D03B7 | Cu–Co stage | Calcite | −4.2 | −15.3 | +15.1 |
BYP15D03B11 | Cu–Co stage | Calcite | −4.6 | −12.7 | +17.8 |
BYP15D02B14 | Cu–Co stage | Ankerite | −3.0 | −12.2 | +18.3 |
BYP15D02B17 | Cu–Co stage | Calcite | −5.5 | −11.1 | +19.4 |
BYP15D02B14-1 | Cu–Co stage | Ankerite | −3.7 | −13.4 | +17.1 |
BYP15D03B11 | Cu–Co stage | Calcite | −4.7 | −12.7 | +17.8 |
BYP15D02B3 | Cu–Co stage | Ankerite | −5.2 | −10.3 | +20.2 |
BYP15D03B2 | Cu–Co stage | Calcite | −4.4 | −12.4 | +18.1 |
FLC15D01B1-1 | Cu–Co stage | Calcite | −3.8 | −16.7 | +13.6 |
FLC15D01B1-2 | Cu–Co stage | Calcite | −4.0 | −16.7 | 13.6 |
FLC15D01B2-1 | Cu–Co stage | Calcite | −3.3 | −14.9 | +15.5 |
FLC15D01B3-3 | Cu–Co stage | Calcite | −3.9 | −15.0 | +15.4 |
FLC15D01B4 | Cu–Co stage | Calcite | −4.1 | −16.9 | +13.4 |
FLC15D02B10 | Cu–Co stage | Calcite | −2.2 | −16.4 | +13.9 |
FLC15D02B11-1 | Cu–Co stage | Calcite | −2.4 | −16.8 | +13.5 |
FLC15D02B11-2 | Cu–Co stage | Calcite | −2.3 | −16.8 | +13.5 |
FLC15D02B7-3 | Cu–Co stage | Calcite | −3.1 | −14.5 | +15.9 |
FLC15D02B5 | Cu–Co stage | Calcite | −3.1 | −15.0 | +15.4 |
FLC17D02B5 | Cu–Co stage | Calcite | −2.0 | −17.4 | +13.0 |
FLC15D02B9 | Cu–Co stage | Calcite | −2.5 | −15.9 | +14.4 |
FLC15D01B6-1 | Cu–Co stage | Calcite | −3.9 | −17.3 | +13.0 |
FLC15D01B7 | Cu–Co stage | Calcite | −3.8 | −18.1 | +12.2 |
FLC15D01B8-1 | Cu–Co stage | Calcite | −2.8 | −16.0 | +14.4 |
LZP15D03B6-1 | Pb–Zn stage | Calcite | −3.0 | −14.5 | +15.9 |
LZP15D03B6 | Pb–Zn stage | Calcite | −3.1 | −14.4 | +16.0 |
LZP15D03B6-2 | Pb–Zn stage | Calcite | −3.0 | −14.4 | +16.0 |
LZP15D03B7 | Pb–Zn stage | Calcite | −3.3 | −15.1 | +15.3 |
LZP17D03B7 | Pb–Zn stage | Calcite | −2.9 | −14.6 | +15.8 |
LZP15D01B6 | Pb–Zn stage | Calcite | +1.7 | −11.0 | +19.5 |
LZP15D01B9 | Pb–Zn stage | Calcite | −1.1 | −9.7 | +20.9 |
LZP17D01B9 | Pb–Zn stage | Calcite | −1.6 | −9.0 | +21.6 |
LZP15D02B4-2 | Pb–Zn stage | Calcite | +1.8 | −8.6 | +22.0 |
LZP15D03B1 | Pb–Zn stage | Calcite | −2.3 | −14.2 | +16.2 |
LZP17D03B1 | Pb–Zn stage | Calcite | −2.5 | −16.0 | +14.4 |
LZP15D02B4-1 | Pb–Zn stage | Calcite | +1.7 | −8.7 | +21.9 |
LZP15D01B3 | Pb–Zn stage | Calcite | −1.8 | −11.1 | +19.4 |
LZP15D02B6 | Pb–Zn stage | Calcite | −0.2 | −11.4 | +19.1 |
LZP15D01B11 | Pb-Zn stage | Calcite | −2.1 | −9.8 | +20.8 |
LZP17D01B11 | Pb-Zn stage | Calcite | −2.2 | −9.2 | +21.4 |
Samples | Stage | Mineral | δ34S (V-CDT)‰ |
---|---|---|---|
BYP15D02B6 | Cu–Co stage | tetrahedrite | +9.2 |
BYP15D02B11-1 | Cu–Co stage | tetrahedrite | +9.5 |
BYP15D02B13 | Cu–Co stage | tetrahedrite | +8.1 |
BYP15D02B15 | Cu–Co stage | tetrahedrite | +9.5 |
BYP15D02B17 | Cu–Co stage | tetrahedrite | +9.3 |
BYP15D03B1 | Cu–Co stage | tetrahedrite | +6.6 |
BYP15D03B10 | Cu–Co stage | tetrahedrite | +7.9 |
BYP15D03B11 | Cu–Co stage | tetrahedrite | +6.6 |
BYP15D03B12 | Cu–Co stage | tetrahedrite | +7.0 |
BYP15D03B2 | Cu–Co stage | tetrahedrite | +8.2 |
LZP15D02B13 | Cu–Co stage | tetrahedrite | +5.2 |
LZP15D03B1 | Cu–Co stage | tetrahedrite | +9.0 |
LZP15D03B6 | Cu–Co stage | tetrahedrite | +6.9 |
FLC15D01B1-2 | Pb–Zn stage | sphalerite | +7.2 |
FLC15D01B11 | Pb–Zn stage | sphalerite | +9.0 |
FLC15D01B7 | Pb–Zn stage | sphalerite | +8.2 |
FLC15D01B1-1 | Pb–Zn stage | sphalerite | +7.5 |
FLC15D01B4 | Pb–Zn stage | sphalerite | +7.8 |
FLC15D01B14 | Pb–Zn stage | sphalerite | +8.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Duan, H.; Yang, L.; Chen, Q.; Liu, L.; Shi, K.; Qian, J.; Li, Q.; Hu, R. Genesis of the Baiyangping Cu–Co and Pb–Zn Mineralizations in Lanping Basin, SW China. Appl. Sci. 2022, 12, 2129. https://doi.org/10.3390/app12042129
Zhu J, Duan H, Yang L, Chen Q, Liu L, Shi K, Qian J, Li Q, Hu R. Genesis of the Baiyangping Cu–Co and Pb–Zn Mineralizations in Lanping Basin, SW China. Applied Sciences. 2022; 12(4):2129. https://doi.org/10.3390/app12042129
Chicago/Turabian StyleZhu, Jiaxuan, Hongyu Duan, Lifei Yang, Qi Chen, Lijun Liu, Kangxing Shi, Jinlong Qian, Qiaoxin Li, and Rong Hu. 2022. "Genesis of the Baiyangping Cu–Co and Pb–Zn Mineralizations in Lanping Basin, SW China" Applied Sciences 12, no. 4: 2129. https://doi.org/10.3390/app12042129
APA StyleZhu, J., Duan, H., Yang, L., Chen, Q., Liu, L., Shi, K., Qian, J., Li, Q., & Hu, R. (2022). Genesis of the Baiyangping Cu–Co and Pb–Zn Mineralizations in Lanping Basin, SW China. Applied Sciences, 12(4), 2129. https://doi.org/10.3390/app12042129