Influence of Plastic Waste on the Workability and Mechanical Behaviour of Asphalt Concrete
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bitumen and Aggregates
2.2. Plastic Waste
2.3. Methods
2.3.1. Experimental Plan
2.3.2. Manufacture of Asphalt Mixtures and Production of Specimens
2.3.3. Volumetric Properties and Marshall Stability and Flow
2.3.4. Workability
2.3.5. Mechanical Performance
3. Results
3.1. Evaluation of Volumetric Properties
3.2. Marshall Stability and Flow
3.3. Workability
3.4. Water Sensitivity
3.5. Stiffness and Phase Angle
3.6. Fatigue Resistance
3.7. Permanent Deformation Resistance
4. Discussion
4.1. Volumetric Properties, Marshall Results, and Workability
4.2. Stiffness and Phase Angle
4.3. Resistance to Fatigue
4.4. Resistance to Permanent Deformation
5. Conclusions
- The type of plastic revealed a much higher effect on the workability of the asphalt mixtures than the volumetric properties.
- The plastic types and contents used did not reveal substantial water sensitivity issues for the asphalt concrete.
- Unlike the reference asphalt mixtures (without plastic), the mixes with plastic waste revealed suitability in the long-term (up to 3 million ESALs), based on SUPERPAVE criteria.
- The asphalt mixtures with plastic waste offered values for stiffness suitable for pavement surface layers.
- The use of plastic waste increased the elastic behaviour of the asphalt mixtures.
- The contribution of ABS to the elasticity of the mixture was roughly the same for all the stiffness values.
- The inclusion of 6% of HDPE, ABS, or LDPE(uw) into the reference asphalt mixture did not put the asphalt concrete’s fatigue performance at risk.
- Globally, the asphalt concrete with plastic waste revealed better resistance to permanent deformation than the reference. Nevertheless, it must be emphasized that the performance varied with plastic type and content and also with the performance parameter considered.
- Except for LDPE(uw), 6% and 8% of plastic waste tended to be the most effective to increase resistance to permanent deformation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plastics Europe. ‘Plastics Europe’. Available online: https://plasticseurope.org/ (accessed on 30 December 2021).
- Pacto Português Para os Plásticos. ‘Relatório de Progresso do Pacto Português para os Plásticos’. Available online: www.pactoplasticos.pt (accessed on 30 December 2021).
- Wu, S.; Montalvo, L. Repurposing waste plastics into cleaner asphalt pavement materials: A critical literature review. J. Clean. Prod. 2021, 280, 124355. [Google Scholar] [CrossRef]
- Vargas, C.; El Hanandeh, A. Systematic literature review, meta-analysis and artificial neural network modelling of plastic waste addition to bitumen. J. Clean. Prod. 2021, 280, 124369. [Google Scholar] [CrossRef]
- Du, Z.; Jiang, C.; Yuan, J.; Xiao, F.; Wang, J. Low temperature performance characteristics of polyethylene modified asphalts—A review. Constr. Build. Mater. 2020, 264, 120704. [Google Scholar] [CrossRef]
- Nejad, F.M.; Azarhoosh, A.; Hamedi, G.H. Effect of high density polyethylene on the fatigue and rutting performance of hot mix asphalt—A laboratory study. Road Mater. Pavement Des. 2014, 15, 746–756. [Google Scholar] [CrossRef]
- Almeida, A.; Capitão, S.; Bandeira, R.; Fonseca, M.; Picado-Santos, L. Performance of AC mixtures containing flakes of LDPE plastic film collected from urban waste considering ageing. Constr. Build. Mater. 2020, 232, 117253. [Google Scholar] [CrossRef]
- Vasudevan, R.; Sekar, A.R.C.; Sundarakannan, B.; Velkennedy, R. A technique to dispose waste plastics in an ecofriendly way—Application in construction of flexible pavements. Constr. Build. Mater. 2012, 28, 311–320. [Google Scholar] [CrossRef]
- Gautam, P.K.; Kalla, P.; Jethoo, A.S.; Agrawal, R.; Singh, H. Sustainable use of waste in flexible pavement: A review. Constr. Build. Mater. 2018, 180, 239–253. [Google Scholar] [CrossRef]
- Rochman, C.M.; Brookson, C.; Bikker, J.; Djuric, N.; Earn, A.; Bucci, K.; Athey, S.; Huntington, A.; McIlwraith, H.; Munno, K.; et al. Rethinking microplastics as a diverse contaminant suite. Environ. Toxicol. Chem. 2019, 38, 703–711. [Google Scholar] [CrossRef] [Green Version]
- Yin, K.; Wang, Y.; Zhao, H.; Wang, D.; Guo, M.; Mu, M.; Liu, Y.; Nie, X.; Li, B.; Li, J.; et al. A comparative review of microplastics and nanoplastics: Toxicity hazards on digestive, reproductive and nervous system. Sci. Total Environ. 2021, 774, 145758. [Google Scholar] [CrossRef]
- Giustozzi, F.; Xuan, D.L.; Enfrin, M.; Masood, H.; Audy, R.; Boom, Y. Use of Road-grade Recycled Plastics for Sustainable Asphalt Pavements: Towards the Selection of Road-grade Plastics—An Evaluation Framework and Preliminary Experimental Results’, Austroads, Sydney, Austroads Publication No. AP-R663-21. 2021. Available online: https://austroads.com.au/publications/pavement/ap-r648-21/media/AP-R648-21_Use_of_road-grade_recycled_plastics_for_sustainable_asphalt_pavements.pdf (accessed on 30 December 2021).
- Fernandes, S.R.M.; Silva, H.M.R.D.; Oliveira, J.R.M. Carbon dioxide emissions and heavy metal contamination analysis of stone mastic asphalt mixtures produced with high rates of different waste materials. J. Clean. Prod. 2019, 226, 463–470. [Google Scholar] [CrossRef] [Green Version]
- Othman, M.; Latif, M.T. Pollution characteristics, sources, and health risk assessments of urban road dust in Kuala Lumpur City. Environ. Sci. Pollut. Res. 2020, 27, 11227–11245. [Google Scholar] [CrossRef] [PubMed]
- Klein, M.; Fischer, E.K. Microplastic abundance in atmospheric deposition within the Metropolitan area of Hamburg, Germany. Sci. Total Environ. 2019, 685, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Mbachu, O.; Jenkins, G.; Pratt, C.; Kaparaju, P. A New Contaminant Superhighway? A Review of Sources, Measurement Techniques and Fate of Atmospheric Microplastics. Water Air Soil Pollut. 2020, 231, 85. [Google Scholar] [CrossRef]
- Santos, J.; Pham, A.; Stasinopoulos, P.; Giustozzi, F. Recycling waste plastics in roads: A life-cycle assessment study using primary data. Sci. Total Environ. 2021, 751, 141842. [Google Scholar] [CrossRef] [PubMed]
- Hınıslıoglu, S. Use of waste high density polyethylene as bitumen modifier in asphalt concrete mix. Mater. Lett. 2004, 58, 267–271. [Google Scholar] [CrossRef]
- Movilla-Quesada, D.; Raposeiras, A.C.; Silva-Klein, L.T.; Lastra-González, P.; Castro-Fresno, D. Use of plastic scrap in asphalt mixtures added by dry method as a partial substitute for bitumen. Waste Manag. 2019, 87, 751–760. [Google Scholar] [CrossRef]
- Choudhary, R.; Kumar, A.; Murkute, K. Properties of Waste Polyethylene Terephthalate (PET) Modified Asphalt Mixes: Dependence on PET Size, PET Content, and Mixing Process. Period. Polytech. Civ. Eng. 2018, 62(3), 685–693. [Google Scholar] [CrossRef]
- Haider, S.; Hafeez, I.; Jamal; Ullah, R. Sustainable use of waste plastic modifiers to strengthen the adhesion properties of asphalt mixtures. Constr. Build. Mater. 2020, 235, 117496. [Google Scholar] [CrossRef]
- Rodrigues, C.; Capitão, S.; Picado-Santos, L.; Almeida, A. Full Recycling of Asphalt Concrete with Waste Cooking Oil as Rejuvenator and LDPE from Urban Waste as Binder Modifier. Sustainability 2020, 12, 8222. [Google Scholar] [CrossRef]
- Fang, C.; Zhou, S.; Zhang, M.; Zhao, S.; Wang, X.; Zheng, C. Optimization of the modification technologies of asphalt by using waste EVA from packaging. J. Vinyl Addit. Technol. 2009, 15, 199–203. [Google Scholar] [CrossRef]
- Al-Abdul Wahhab, H.I.; Dalhat, M.A.; Habib, M.A. Storage stability and high-temperature performance of asphalt binder modified with recycled plastic. Road Mater. Pavement Des. 2017, 18, 1117–1134. [Google Scholar] [CrossRef]
- Ranieri, M.; Costa, L.; Oliveira, J.R.M.; Silva, H.M.R.D.; Celauro, C. Asphalt Surface Mixtures with Improved Performance Using Waste Polymers via Dry and Wet Processes. J. Mater. Civ. Eng. 2017, 29, 04017169. [Google Scholar] [CrossRef]
- Dalhat, M.A.; Al-Abdul Wahhab, H.I. Performance of recycled plastic waste modified asphalt binder in Saudi Arabia. Int. J. Pavement Eng. 2017, 18, 349–357. [Google Scholar] [CrossRef]
- Gürü, M.; Çubuk, M.K.; Arslan, D.; Farzanian, S.A.; Bilici, İ. An approach to the usage of polyethylene terephthalate (PET) waste as roadway pavement material. J. Hazard. Mater. 2014, 279, 302–310. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.; Silva, H.; Oliveira, J.; Fernandes, S. Incorporation of Waste Plastic in Asphalt Binders to Improve their Performance in the Pavement. Int. J. Pavement Res. Technol. 2013, 6, 457–464. [Google Scholar] [CrossRef]
- Abdo, M.A.; Khater, M.E. Enhancing rutting resistance of asphalt binder by adding plastic waste. Cogent Eng. 2018, 5, 1452472. [Google Scholar] [CrossRef]
- CEN EN 1426; Bitumen and Bituminous Binders—Determination of Needle Penetration. European Committee for Standardization: Brussels, Belgium, 2015.
- CEN EN 1427; Bitumen and Bituminous Binders—Determination of the Softening Point—Ring and Ball Method. European Committee for Standardization: Brussels, Belgium, 2015.
- Infraestruturas de Portugal. Construction Specifications, 14.03 Paving—Materials’ Characteristics. Available online: https://servicos.infraestruturasdeportugal.pt/pdfs/infraestruturas/14_03_set_2014.pdf (accessed on 30 December 2021).
- CEN EN 13043; Aggregates for Bituminous Mixtures and Surface Treatments for Roads, Airfields and Other Trafficked Areas. European Committee for Standardization: Brussels, Belgium, 2002.
- CEN EN 933-3; Tests for Geometrical Properties of Aggregates—Part 3: Determination of Particle Shape—Flakiness Index. European Committee for Standardization: Brussels, Belgium, 2012.
- CEN EN 1097-2; Tests for Mechanical and Physical Properties of Aggregates—Part 2: Methods for the Determination of Resistance to Fragmentation. European Committee for Standardization: Brussels, Belgium, 2010.
- CEN EN 1097-1; Tests for Mechanical and Physical Properties of Aggregates—Part 1: Determination of the Resistance to Wear (Micro-Deval). European Committee for Standardization: Brussels, Belgium, 2011.
- CEN EN 1097-8; Tests for Mechanical and Physical Properties of Aggregates—Part 8: Determination of the Polished Stone Value. European Committee for Standardization: Brussels, Belgium, 2009.
- CEN EN 1097-6; Tests for Mechanical and Physical Properties of Aggregates—Part 6: Determination of Particle Density and Water Absorption. European Committee for Standardization: Brussels, Belgium, 2013.
- CEN EN 933-9; Tests for Geometrical Properties of Aggregates—Part 9: Assessment of Fines—Methylene Blue Test. European Committee for Standardization: Brussels, Belgium, 2013.
- CEN EN 1097-4; Tests for Mechanical and Physical Properties of Aggregates—Part 4: Determination of the Voids of Dry Compacted Filler. European Committee for Standardization: Brussels, Belgium, 2008.
- CEN EN 13179-1; Tests for filler Aggregate Used in Bituminous Mixtures—Part 1: Delta Ring and Ball Test. European Committee for Standardization: Brussels, Belgium, 2013.
- CEN EN 12697-35; Bituminous Mixtures—Test Methods—Part 35: Laboratory Mixing. European Committee for Standardization: Brussels, Belgium, 2016.
- CEN EN 12697-30; Bituminous Mixtures—Test Methods—Part 30: Specimen Preparation by Impact Compactor. European Committee for Standardization: Brussels, Belgium, 2019.
- CEN EN 12697-31; Bituminous Mixtures—Test Methods—Part 31: Specimen Preparation by Gyratory Compactor. European Committee for Standardization: Brussels, Belgium, 2020.
- CEN EN 12697-32; Bituminous Mixtures—Test Methods—Part 32: Specimen Preparation by Vibratory Compactor. European Committee for Standardization: Brussels, Belgium, 2019.
- CEN EN 12697-8; Bituminous mixtures—Test methods for hot mix asphalt—Part 8: Determination of void characteristics of bituminous specimens. European Committee for Standardization: Brussels, Belgium, 2012.
- CEN EN 12697-9; Bituminous Mixtures—Test Methods for Hot Mix Asphalt—Part 9: Determination of the Reference Density. European Committee for Standardization: Brussels, Belgium, 2003.
- CEN EN 12697-5; Bituminous Mixtures—Test Methods—Part 5: Determination of the Maximum Density. European Committee for Standardization: Brussels, Belgium, 2019.
- CEN EN 12697-34; Bituminous Mixtures—Test Methods for Hot Mix Asphalt—Part 34: Marshall Test. European Committee for Standardization: Brussels, Belgium, 2007.
- CEN EN 12697-10; Bituminous Mixtures—Test Methods—Part 10: Compactability. European Committee for Standardization: Brussels, Belgium, 2018.
- Çelik, O.N.; Atiş, C.D. Compactibility of hot bituminous mixtures made with crumb rubber-modified binders. Constr. Build. Mater. 2008, 22, 1143–1147. [Google Scholar] [CrossRef]
- CEN EN 12697-23; Bituminous Mixtures—Test Methods for Hot Mix Asphalt—Part 23: Determination of the Indirect Tensile Strength of Bituminous Specimens. European Committee for Standardization: Brussels, Belgium, 2017.
- CEN EN 12697-12; Bituminous Mixtures—Test Methods—Part 12: Determination of the Water Sensitivity of Bituminous Specimens. European Committee for Standardization: Brussels, Belgium, 2018.
- CEN EN 12697-26; Bituminous Mixtures—Test Methods for Hot Mix Asphalt—Part 26: Stiffness. European Committee for Standardization: Brussels, Belgium, 2004.
- CEN EN 12697-24; Bituminous Mixtures—Test Methods for Hot Mix Asphalt—Part 24: Resistance to Fatigue. European Committee for Standardization: Brussels, Belgium, 2007.
- CEN EN 12697-25; Bituminous Mixtures—Test Methods for Hot Mix Asphalt—Part 25: Cyclic Compression Test. European Committee for Standardization: Brussels, Belgium, 2005.
- de Picado-Santos, L. Design Temperature on Flexible Pavements. Road Mater. Pavement Des. 2000, 1, 355–371. [Google Scholar] [CrossRef]
- Gardete, D.; Picado-Santos, L.; Capitão, S. Avaliação da trabalhabilidade de misturas betuminosas com base nas curvas de compactação (Evaluation of the workability of asphalt mixtures using compaction curves). In Proceedings of the 8th Congresso Rodoviário Português. Lisbon, Portugal, 12–14 April 2016. [Google Scholar]
- Christensen, D.; Bonaquist, R. Volumetric Requirements for Superpave Mix Design; NCHRP Report 567; National Cooperative Highway Research Program: Washington, DC, USA, 2006. [Google Scholar]
- Modarres, A.; Hamedi, H. Effect of waste plastic bottles on the stiffness and fatigue properties of modified asphalt mixes. Mater. Des. 2014, 61, 8–15. [Google Scholar] [CrossRef]
- Dehghan, Z.; Modarres, A. Evaluating the fatigue properties of hot mix asphalt reinforced by recycled PET fibers using 4-point bending test. Constr. Build. Mater. 2017, 139, 384–393. [Google Scholar] [CrossRef]
- Panda, M.; Mazumdar, M. Utilization of Reclaimed Polyethylene in Bituminous Paving Mixes. J. Mater. Civ. Eng. 2002, 14, 527–530. [Google Scholar] [CrossRef]
- Lastra-González, P.; Calzada-Pérez, M.A.; Castro-Fresno, D.; Vega-Zamanillo, Á.; Indacoechea-Vega, I. Comparative analysis of the performance of asphalt concretes modified by dry way with polymeric waste. Constr. Build. Mater. 2016, 112, 1133–1140. [Google Scholar] [CrossRef] [Green Version]
- Lastra-González, P.; Lizasoain-Arteaga, E.; Castro-Fresno, D.; Flintsch, G. Analysis of replacing virgin bitumen by plastic waste in asphalt concrete mixtures. Int. J. Pavement Eng. 2021, 1–10. [Google Scholar] [CrossRef]
Property | Standard | Units | Gneiss 8/20 | Gneiss 4/12 | Sand 0/4 | Filler | Limit |
---|---|---|---|---|---|---|---|
Flakiness index (FI) | EN 933-3 [34] | % | FI15 | FI15 | --- | --- | FI20 |
Resistance to fragmentation: Los Angeles (LA) | EN 1097-2 [35] | % | LA20 | LA20 | --- | --- | LA30 |
Reistance to wear: micro-Deval (MDE) | EN 1097-1 [36] | % | MDE10 | MDE10 | --- | --- | MDE15 |
Polished stone value (PSV) | EN 1097-8 [37] | % | PSV50 | PSV50 | --- | --- | PSV50 |
Water absorption (WA) | EN 1097-6 [38] | % | 0.5 | 0.6 | 0.6 | --- | WA241 |
Assessment of fines: methylene blue (MBF) | EN 933-9 [39] | g/kg | --- | --- | MBF10 | MBF10 | MBF10 |
Voids of dry compacted filler (ν) | EN 1097-4 [40] | % | --- | --- | --- | 32 | ν28/38 |
Delta ring and ball (°C) | EN 13179-1 [41] | °C | --- | --- | --- | 14 | ΔR&B |
Ranking | Parameter | Both Parameters | |
---|---|---|---|
ε3600 | fc | ||
Best | HDPE500 6% | HDPE500 8% | ABS 6% |
ABS 6% | ABS 6% | HDPE500 6% | |
HDPE 8% | HDPE 6% | HDPE 8% | |
ABS 8% | HDPE500 6% | ABS 4% | HDPE500 8% | |
ABS 4% | HDPE 8% | --- | |
LDPE(uw) 8% | ABS 4% | LDPE(uw) 8% | |
Reference | LDPE(uw) 8% | ABS 8% | |
HDPE500 4% | HDPE 4% | HDPE 6% | |
HDPE 4% | HDPE500 4% | HDPE 4% | HDPE500 4% | |
HDPE500 8% | ABS 8% | --- | |
LDPE(uw) 4% | LDPE(uw) 6% | Reference | |
LDPE(uw) 6% | LDPE(uw) 4% | LDPE(uw) 4% | LDPE(uw) 6% | |
Worst | HDPE 6% | Reference | --- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fonseca, M.; Capitão, S.; Almeida, A.; Picado-Santos, L. Influence of Plastic Waste on the Workability and Mechanical Behaviour of Asphalt Concrete. Appl. Sci. 2022, 12, 2146. https://doi.org/10.3390/app12042146
Fonseca M, Capitão S, Almeida A, Picado-Santos L. Influence of Plastic Waste on the Workability and Mechanical Behaviour of Asphalt Concrete. Applied Sciences. 2022; 12(4):2146. https://doi.org/10.3390/app12042146
Chicago/Turabian StyleFonseca, Mariana, Silvino Capitão, Arminda Almeida, and Luís Picado-Santos. 2022. "Influence of Plastic Waste on the Workability and Mechanical Behaviour of Asphalt Concrete" Applied Sciences 12, no. 4: 2146. https://doi.org/10.3390/app12042146
APA StyleFonseca, M., Capitão, S., Almeida, A., & Picado-Santos, L. (2022). Influence of Plastic Waste on the Workability and Mechanical Behaviour of Asphalt Concrete. Applied Sciences, 12(4), 2146. https://doi.org/10.3390/app12042146