Vegetarian “Sausages” with the Addition of Grape Flour
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Samples
2.3. Determination of Antioxidant Capacity by the ABTS Method
2.4. Ferric Reducing Antioxidant Power (FRAP)
2.5. Determination of Total Polyphenol Content
2.6. Protein and Fat Content Determination
2.7. Sensory Evaluation
2.8. Statistical Methods
3. Results and Discussion
- Antioxidant properties of experimentally produced vegetarian sausages
- Protein and fat content in experimentally produced vegetarian sausages
- Sensory properties of experimentally produced vegetarian sausages
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Mirabella, N.; Castellani, V.; Sala, S. Current options for the valorization of food manufacturing waste: A review. J. Clean. Prod. 2014, 65, 28–41. [Google Scholar] [CrossRef] [Green Version]
- Griffin, S.; Sarfraz, M.; Farida, V.; Nasim, M.J.; Ebokaiwe, A.P.; Keck, C.M.; Jacob, C. No time to waste organic waste: Nanosizing converts remains of food processing into refined materials. J. Environ. Manag. 2018, 210, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Laufenberg, G.; Kunz, B.; Nystroem, M. Transformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementation. Bioresour. Technol. 2003, 87, 167–198. [Google Scholar] [CrossRef]
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards integral utilization of grape pomace from winemaking process: A review. WASTE Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef]
- Kim, M.-J.; Jun, J.-G.; Park, S.-Y.; Choi, M.-J.; Park, E.; Kim, J.-I.; Kim, M.-J. Antioxidant activities of fresh grape juices prepared using various household processing methods. Food Sci. Biotechnol. 2017, 26, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Kapcsandi, V.; Hanczne Lakatos, E.; Sik, B.; Linka, L.A.; Szekelyhidi, R. Antioxidant and polyphenol content of different Vitis vinifera seed cultivars and two facilities of production of a functional bakery product. Chem. Pap. 2021, 75, 5711–5717. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Lomillo, J.; Luisa Gonzalez-SanJose, M. Applications of Wine Pomace in the Food Industry: Approaches and Functions. Compr. Rev. Food Sci. Food Saf. 2017, 16, 3–22. [Google Scholar] [CrossRef]
- Zhu, F.; Du, B.; Zheng, L.; Li, J. Advance on the bioactivity and potential applications of dietary fibre from grape pomace. FOOD Chem. 2015, 186, 207–212. [Google Scholar] [CrossRef]
- Antonic, B.; Dordevic, D.; Jancikova, S.; Holeckova, D.; Tremlova, B.; Kulawik, P. Effect of grape seed flour on the antioxidant profile, textural and sensory properties of waffles. Processes 2021, 9, 131. [Google Scholar] [CrossRef]
- Xie, Y.; Chen, J.; Xiao, A.; Liu, L. Antibacterial Activity of Polyphenols: Structure-Activity Relationship and Influence of Hyperglycemic Condition. Molecules 2017, 22, 1913. [Google Scholar] [CrossRef] [Green Version]
- Olejar, K.J.; Ricci, A.; Swift, S.; Zujovic, Z.; Gordon, K.C.; Fedrizzi, B.; Versari, A.; Kilmartin, P.A. Characterization of an antioxidant and antimicrobial extract from cool climate, white grape marc. Antioxidants 2019, 8, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulze, M.B.; Manson, J.E.; Willett, W.C.; Hu, F.B. Processed meat intake and incidence of Type 2 diabetes in younger and middle-aged women. Diabetologia 2003, 46, 1465–1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arihara, K. Strategies for designing novel functional meat products. MEAT Sci. 2006, 74, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Boada, L.D.; Henríquez-Hernández, L.A.; Luzardo, O.P. The impact of red and processed meat consumption on cancer and other health outcomes: Epidemiological evidences. Food Chem. Toxicol. 2016, 92, 236–244. [Google Scholar] [CrossRef]
- World Health Organization. IARC Monographs evaluate consumption of red meat and processed meat and cancer risk. Int. Agency Res. Cancer 2015, 114, 1–2. [Google Scholar]
- Kuchtová, V.; Kohajdová, Z.; Karovičová, J.; Lauková, M. Physical, textural and sensory properties of cookies incorporated with grape skin and seed preparations. Pol. J. Food Nutr. Sci. 2018, 68, 309–317. [Google Scholar]
- Acun, S.; Gül, H. Effects of grape pomace and grape seed flours on cookie quality. Qual. Assur. Saf. Crops Foods 2014, 6, 81–88. [Google Scholar] [CrossRef]
- Koca, I.; Tekguler, B.; Yilmaz, V.A.; Hasbay, I.; Koca, A.F. The use of grape, pomegranate and rosehip seed flours in Turkish noodle (erişte) production. J. Food Process. Pres. 2018, 42, e13343. [Google Scholar] [CrossRef] [Green Version]
- Rosales Soto, M.U.; Brown, K.; Ross, C.F. Antioxidant activity and consumer acceptance of grape seed flour-containing food products. Inter. J. Food Sci. Technol. 2012, 47, 592–602. [Google Scholar] [CrossRef]
- Samohvalova, O.; Grevtseva, N.; Brykova, T.; Grigorenko, A. The effect of grape seed powder on the quality of butter biscuits. East.-Eur. J. Enterpr. Technol. 2016, 3, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006, 19, 669–675. [Google Scholar] [CrossRef]
- Behbahani, B.A.; Shahidi, F.; Yazdi, F.T.; Mortazavi, S.A.; Mohebbi, M. Use of Plantago major seed mucilage as a novel edible coating incorporated with Anethum graveolens essential oil on shelf life extension of beef in refrigerated storage. Int. J. Biol. Macromol. 2017, 94, 515–526. [Google Scholar] [CrossRef] [PubMed]
- Tomadoni, B.; Cassani, L.; Ponce, A.; Moreira, M.R.; Aguero, M. V Optimization of ultrasound, vanillin and pomegranate extract treatment for shelf-stable unpasteurized strawberry juice. LWT-FOOD Sci. Technol. 2016, 72, 475–484. [Google Scholar] [CrossRef]
- Banman, C. Vegetarian Meat Substitutes. J. Ren. Nutr. 2008, 18, e9–e11. [Google Scholar] [CrossRef]
- Kyriakopoulou, K.; Keppler, J.K.; van der Goot, A.J. Functionality of ingredients and additives in plant-based meat analogues. Foods 2021, 10, 600. [Google Scholar] [CrossRef]
- Klobásy Na Gril S Paprikou 250g Well Well. Available online: https://www.veganstore.cz/p/klobasy-na-gril-s-paprikou-250g-well-well# (accessed on 4 February 2022).
- Curtain, F.; Grafenauer, S. Plant-based meat substitutes in the flexitarian age: An audit of products on supermarket shelves. Nutrients 2019, 11, 2603. [Google Scholar] [CrossRef] [Green Version]
- Harnack, L.; Mork, S.; Valluri, S.; Weber, C.; Schmitz, K.; Stevenson, J.; Pettit, J. Nutrient Composition of a Selection of Plant-Based Ground Beef Alternative Products Available in the United States. J. Acad. Nutr. Diet. 2021, 121, 2401–2408. [Google Scholar] [CrossRef]
- Xia, E.-Q.; Deng, G.-F.; Guo, Y.-J.; Li, H.-B. Biological Activities of Polyphenols from Grapes. Int. J. Mol. Sci. 2010, 11, 622–646. [Google Scholar] [CrossRef]
- Ghafoor, K.; Choi, Y.H.; Jeon, J.Y.; Jo, I.H. Optimization of Ultrasound-Assisted Extraction of Phenolic Compounds, Antioxidants, and Anthocyanins from Grape (Vitis vinifera) Seeds. J. Agric. Food Chem. 2009, 57, 4988–4994. [Google Scholar] [CrossRef]
- Kondrashov, A.; Ševčík, R.; Benáková, H.; Koštířová, M.; Štípek, S. The key role of grape variety for antioxidant capacity of red wines. E Spen. Eur. E J. Clin. Nutr. Metab. 2009, 4, e41–e46. [Google Scholar] [CrossRef] [Green Version]
- Hoye, C., Jr.; Ross, C.F. Total phenolic content, consumer acceptance, and instrumental analysis of bread made with grape seed flour. J. Food Sci. 2011, 76, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Aksoylu, Z.; Çağindi, Ö.; Köse, E. Effects of blueberry, grape seed powder and poppy seed incorporation on physicochemical and sensory properties of biscuit. J. Food Qual. 2015, 38, 164–174. [Google Scholar] [CrossRef]
- Ryu, K.S.; Shim, K.S.; Shin, D. Effect of grape pomace powder addition on TBARS and color of cooked pork sausages during storage. Korean J. Food Sci. Anim. Resour. 2014, 34, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riazi, F.; Zeynali, F.; Hoseini, E.; Behmadi, H.; Savadkoohi, S. Oxidation phenomena and color properties of grape pomace on nitrite-reduced meat emulsion systems. MEAT Sci. 2016, 121, 350–358. [Google Scholar] [CrossRef] [PubMed]
- Spigno, G.; Tramelli, L.; De Faveri, D.M. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng. 2007, 81, 200–208. [Google Scholar] [CrossRef]
- Kurt, Ş. The effects of grape seed flour on the quality of Turkish dry fermented sausage (sucuk) during ripening and refrigerated storage. Korean J. Food Sci. Anim. Resour. 2016, 36, 300. [Google Scholar] [CrossRef] [Green Version]
- Özvural, E.B.; Vural, H. Grape seed flour is a viable ingredient to improve the nutritional profile and reduce lipid oxidation of frankfurters. Meat Sci. 2011, 88, 179–183. [Google Scholar] [CrossRef]
- Ortega-Heras, M.; Gómez, I.; de Pablos-Alcalde, S.; González-Sanjosé, M.L. Application of the Just-About-Right Scales in the Development of New Healthy Whole-Wheat Muffins by the Addition of a Product Obtained from White and Red Grape Pomace. Foods 2019, 8, 419. [Google Scholar] [CrossRef] [Green Version]
- Savadkoohi, S.; Hoogenkamp, H.; Shamsi, K.; Farahnaky, A. Color, sensory and textural attributes of beef frankfurter, beef ham and meat-free sausage containing tomato pomace. MEAT Sci. 2014, 97, 410–418. [Google Scholar] [CrossRef]
- Hoek, A.C.; Elzerman, J.E.; Hageman, R.; Kok, F.J.; Luning, P.A.; de Graaf, C. Are meat substitutes liked better over time? A repeated in-home use test with meat substitutes or meat in meals. Food Qual. Prefer. 2013, 28, 253–263. [Google Scholar] [CrossRef]
- Bender, A.B.B.; Speroni, C.S.; Salvador, P.R.; Loureiro, B.B.; Lovatto, N.M.; Goulart, F.R.; Lovatto, M.T.; Miranda, M.Z.; Silva, L.P.; Penna, N.G. Grape Pomace Skins and the Effects of Its Inclusion in the Technological Properties of Muffins. J. Culin. Sci. Technol. 2017, 15, 143–157. [Google Scholar] [CrossRef]
- Majzoobi, M.; Talebanfar, S.; Eskandari, M.H.; Farahnaky, A. Improving the quality of meat-free sausages using κ-carrageenan, konjac mannan and xanthan gum. Int. J. Food Sci. Technol. 2017, 52, 1269–1275. [Google Scholar] [CrossRef]
- Kamani, M.H.; Meera, M.S.; Bhaskar, N.; Modi, V.K. Partial and total replacement of meat by plant-based proteins in chicken sausage: Evaluation of mechanical, physico-chemical and sensory characteristics. J. Food Sci. Technol. 2019, 56, 2660–2669. [Google Scholar] [CrossRef] [PubMed]
Grape Flour Addition (%) | ABTS (%) | FRAP (µmol/g Trolox) |
---|---|---|
0 | 7.94 ± 0.13 a,* | 39.18 ± 0.15 a |
1 | 8.51 ± 0.04 b | 43.42 ± 0.46 b |
3 | 9.23 ± 0.03 c | 46.41 ± 0.15 c |
7 | 10.03 ± 0.06 d | 48.98 ± 0.13 d |
10 | 11.28 ± 0.12 e | 56.51 ± 0.28 e |
20 | 12.90 ± 0.07 f | 64.61 ± 0.22 f |
Grape Flour Addition (%) | Total Polyphenol Content (Gallic Acid mg/g) |
---|---|
0 | 7.14 ± 0.03 a* |
1 | 8.56 ± 0.01 b |
3 | 9.87 ± 0.03 c |
7 | 10.11 ± 0.02 d |
10 | 11.89 ± 0.01 e |
20 | 12.44 ± 0.02 f |
Total Polyphenol Content (Correlation Expression: r2) | Antioxidant Capacities |
---|---|
53.9% * | ABTS |
55.9% * | FRAP |
Grape Flour Addition (%) | Protein Content (%) | Fat Content (%) |
---|---|---|
0 | 15.57 ± 0.15 a,* | 12.60 ± 0.77 |
1 | 13.73 ± 0.27 c | 11.56 ± 3.18 a |
3 | 13.60 ± 0.59 | 12.78 ± 1.12 |
7 | 13.48 ± 0.54 | 15.73 ± 0.07 b |
10 | 13.24 ± 0.18 b,c | 13.77 ± 0.20 |
20 | 12.54 ± 0.15 d | 13.50 ± 0.32 |
Sample | Color | Appearance of the Cut | Texture | Aroma | Taste | Fracturability |
---|---|---|---|---|---|---|
0% | 41..53 ± 29.83 | 46.39 ± 30.71 | 56.75 ± 23.16 | 71.13 ± 13.3 a* | 71.75 ± 14.91 a | 60.75 ± 25.31 |
1% | 50.97 ± 28.21 | 47.36 ± 29.76 | 51.75 ± 25.89 | 77.13 ± 8.30 a | 71.63 ± 14.28 a | 67.38 ± 22.74 |
3% | 47.92 ± 31.9 | 53.33 ± 30.66 | 70.88 ± 25.20 a | 70.50 ± 15.21 a | 66.00 ± 21.20 a | 50.88 ± 26.70 |
7% | 39.86 ± 27.37 | 41.39 ± 25.49 | 53.00 ± 27.91 | 36.62 ± 14.11 | 58.75 ± 13.25 | 46.39 ± 23.79 |
10% | 35.69 ± 25.25 | 40.83 ± 25.60 | 36.25 ± 21.99 | 65.88 ± 11.94 | 48.63 ± 19.36 | 44.75 ± 24.69 |
20% | 27.22 ± 23.36 | 27.64 ± 22.49 | 22.63 ± 21.95 b | 48.25 ± 13.02 b | 36.00 ± 17.45 b | 34.38 ± 26.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tremlova, B.; Havlova, L.; Benes, P.; Zemancova, J.; Buchtova, H.; Tesikova, K.; Dordevic, S.; Dordevic, D. Vegetarian “Sausages” with the Addition of Grape Flour. Appl. Sci. 2022, 12, 2189. https://doi.org/10.3390/app12042189
Tremlova B, Havlova L, Benes P, Zemancova J, Buchtova H, Tesikova K, Dordevic S, Dordevic D. Vegetarian “Sausages” with the Addition of Grape Flour. Applied Sciences. 2022; 12(4):2189. https://doi.org/10.3390/app12042189
Chicago/Turabian StyleTremlova, Bohuslava, Lenka Havlova, Patrik Benes, Johana Zemancova, Hana Buchtova, Karolina Tesikova, Simona Dordevic, and Dani Dordevic. 2022. "Vegetarian “Sausages” with the Addition of Grape Flour" Applied Sciences 12, no. 4: 2189. https://doi.org/10.3390/app12042189