Inhibition of Peroxidation Potential and Protein Oxidative Damage by Metal Mangiferin Complexes
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Metal-Mangiferin Complexes
2.3. Preparative Chromatography
2.4. HPLC-DAD Analysis of Purified Metal-MF Complexes
2.5. Sample Preparation
2.6. Equipment
2.7. Inhibition of Peroxidation Potential
2.8. Inhibition of Protein Degradation
2.9. Ethical Approval
2.10. Data Processing
3. Results
3.1. HPLC-ESI-MS Analysis of Reaction Mixtures
3.2. Preparative Chromatography of Metal-MF Complexes
3.3. Elemental Analysis of Metal-Mangiferin Complexes
3.4. FT-IR Analyses of Metal–Mangiferin Complexes
3.5. Inhibition of Peroxidation Potential and Protection against Protein Oxidative Damage
4. Discussion
4.1. Metal–Mangiferin Complexes
4.2. Evaluation of Antioxidant and Oxidative Damage Protection Properties of Metal-Mangiferin Complexes
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kasprzak, M.M.; Erxleben, A.; Ochocki, J. Properties and applications of flavonoid metal complexes. RSC Adv. 2015, 5, 45853–45877. [Google Scholar] [CrossRef]
- Tang, L.-J.; Chen, X.; Sun, Y.-N.; Ye, J.; Lu, J.; Han, Y.; Jiang, X.; Cheng, C.-C.; He, C.-C.; Qiu, P.-H.; et al. Synthesis and biological studies of 4′, 7, 8-trihydroxy-isoflavone metal complexes. J. Inorg. Biochem. 2011, 105, 1623–1629. [Google Scholar] [CrossRef]
- Dolatabadi, J.E.N. Molecular aspects on the interaction of quercetin and its metal complexes with DNA. Int. J. Biol. Macromol. 2011, 48, 227–233. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, L.; Wang, J.; Tang, N. Antioxidative and anti-tumour activities of solid quercetin metal(II) complexes. Transit. Met. Chem. 2001, 26, 57–63. [Google Scholar] [CrossRef]
- Ferrer, E.G.; Salinas, M.V.; Correa, M.J.; Naso, L.; Barrio, D.A.; Etcheverry, S.B.; Lezama, L.; Rojo, T.; Williams, P.A.M. Synthesis, characterization, antitumoral and osteogenic activities of quercetin vanadyl(IV) complexes. JBIC J. Biol. Inorg. Chem. 2006, 11, 791–801. [Google Scholar] [CrossRef]
- Bukhari, S.B.; Memon, S.; Tahir, M.M.; Bhanger, M. Synthesis, characterization and investigation of antioxidant activity of cobalt–quercetin complex. J. Mol. Struct. 2008, 892, 39–46. [Google Scholar] [CrossRef]
- Bukhari, S.B.; Memon, S.; Mahroof-Tahir, M.; Bhanger, M. Synthesis, characterization and antioxidant activity copper–quercetin complex. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2009, 71, 1901–1906. [Google Scholar] [CrossRef]
- Dehghan, G.; Khoshkam, Z. Tin(II)–quercetin complex: Synthesis, spectral characterisation and antioxidant activity. Food Chem. 2012, 131, 422–426. [Google Scholar] [CrossRef]
- Perron, N.R.; García, C.R.; Pinzón, J.R.; Chaur, M.N.; Brumaghim, J.L. Antioxidant and prooxidant effects of polyphenol compounds on copper-mediated DNA damage. J. Inorg. Biochem. 2011, 105, 745–753. [Google Scholar] [CrossRef]
- A Kostyuk, V.; I Potapovich, A.; Kostyuk, T.V.; Cherian, M.G. Metal complexes of dietary flavonoids: Evaluation of radical scavenger properties and protective activity against oxidative stress in vivo. Cell. Mol. Biol. 2007, 53, 62–69. [Google Scholar]
- Selles, A.J.N.; Daglia, M.; Rastrelli, L. The potential role of mangiferin in cancer treatment through its immunomodulatory, anti-angiogenic, apoptopic, and gene regulatory effects. BioFactors 2016, 42, 475–491. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Hou, Y.; Yao, J.; Fang, J. Neuroprotection of mangiferin against oxidative damage via arousing Nrf2 signaling pathway in PC12 cells. BioFactors 2019, 45, 381–392. [Google Scholar] [CrossRef]
- Sánchez, G.; Re, L.; Giuliani, A.; Sellésd, A.; Davison, G.; Fernándeza, O. Protective effects of Mangifera indica L. extract, mangiferin and selected antioxidants against TPA-induced biomolecules oxidation and peritoneal macrophage activation in mice. Pharmacol. Res. 2000, 42, 565–573. [Google Scholar] [CrossRef] [PubMed]
- Morozkina, S.N.; Vu, T.H.N.; Generalova, Y.E.; Snetkov, P.P.; Uspenskaya, M.V. Mangiferin as New Potential Anti-Cancer Agent and Mangiferin-Integrated Polymer Systems—A Novel Research Direction. Biomolecules 2021, 11, 79. [Google Scholar] [CrossRef]
- Harsha, P.; Thotakura, N.; Kumar, M.; Sharma, S.; Mittal, A.; Khurana, R.K.; Singh, B.; Negi, P.; Raza, K. A novel PEGylated carbon nanotube conjugated mangiferin: An explorative nanomedicine for brain cancer cells. J. Drug Deliv. Sci. Technol. 2019, 53, 101186. [Google Scholar] [CrossRef]
- Khurana, R.K.; Gaspar, B.; Welsby, G.; Katare, O.P.; Singh, K.K.; Singh, B. Improving the biopharmaceutical attributes of mangiferin using vitamin E-TPGS co-loaded self-assembled phosholipidic nano-mixed micellar systems. Drug Deliv. Transl. Res. 2018, 8, 617–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samadarsi, R.; Dutta, D. Design and characterization of mangiferin nanoparticles for oral delivery. J. Food Eng. 2018, 247, 80–94. [Google Scholar] [CrossRef]
- Sellés, A.J.N.; Rodríguez, M.D.D.; Balseiro, E.R.; González, L.N.; Nicolais, V.; Rastrelli, L. Comparison of Major and Trace Element Concentrations in 16 Varieties of Cuban Mango Stem Bark (Mangifera indica L.). J. Agric. Food Chem. 2007, 55, 2176–2181. [Google Scholar] [CrossRef]
- Özdemirler, G.; Mehmetçik, G.; Öztezcan, S.; Toker, G.; Sivas, A.; Uysal, M. Peroxidation Potential and Antioxidant Activity of Serum in Patients with Diabetes Mellitus and Myocard Infarction. Horm. Metab. Res. 1995, 27, 194–196. [Google Scholar] [CrossRef]
- Oliver, C.N.; Ahn, B.-W.; Moermant, E.J.; Goldstein, S.; Stadtman, E.R. Age-related changes in oxidized proteins. J. Biol. Chem. 1987, 262, 5488–5491. [Google Scholar] [CrossRef]
- Clinical Trial Approval by the National Regulatory Commission. Protocol No. 008-2016. Available online: www.conabios.gob.do (accessed on 12 April 2020).
- Tsednee, M.; Huang, Y.-C.; Chen, Y.-R.; Yeh, K.-C. Identification of metal species by ESI-MS/MS through release of free metals from the corresponding metal-ligand complexes. Sci. Rep. 2016, 6, 26785. [Google Scholar] [CrossRef] [PubMed]
- Ni, R.; Mohamadin, M.I.; Mian Jong, V.Y. Synthesis, spectral characterisation and antimicrobial properties of Cu (II) and Fe (II) complexes with xanthone. Sci Res. J. 2017, 14, 1–14. [Google Scholar] [CrossRef]
- Wang, H.-F.; Shen, R.; Tang, N. Synthesis and characterization of the Zn(II) and Cu(II) piperidinyl isoeuxanthone complexes: DNA-binding and cytotoxic activity. Eur. J. Med. Chem. 2009, 44, 4509–4515. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.-L.; Deng, S.-P.; Zhang, Y.-L.; Yuan, T.; Li, Y.-B.; Han, H.-H.; Liu, Y.-C.; Chen, Z.-F. Water Soluble Copper(II) and Zinc(II) Complexes of Mangiferin: Synthesis, Antitumour Activity and DNA Binding Studies. J. Chem. Res. 2016, 40, 659–663. [Google Scholar] [CrossRef]
- Barbosa, M.I.; dos Santos, E.R.; Graminha, A.E.; Bogado, A.L.; Teixeira, L.R.; Beraldo, H.; Trevisan, M.T.S.; Ellena, J.; Castellano, E.E.; Rodrigues, B.L.; et al. The mer-[RuCl3(dppb)(H2O)] complex: A versatile tool for synthesis of RuII compounds. Polyhedron 2011, 30, 41–46. [Google Scholar] [CrossRef]
- Pi, J.; Zeng, J.; Luo, J.-J.; Yang, P.-H.; Cai, J.-Y. Synthesis and biological evaluation of Germanium(IV)–polyphenol complexes as potential anti-cancer agents. Bioorganic Med. Chem. Lett. 2013, 23, 2902–2908. [Google Scholar] [CrossRef]
- Nuñez Selles, A.J. Terapia antioxidante, estrés oxidativo y productos antioxidantes: Retos y oportunidades. Rev. Cub Salud Pub. 2011, 37, 644–660. [Google Scholar]
- Buccellato, F.R.; D’Anca, M.; Fenoglio, C.; Scarpini, E.; Galimberti, D. Role of Oxidative Damage in Alzheimer’s Disease and Neurodegeneration: From Pathogenic Mechanisms to Biomarker Discovery. Antioxidants 2021, 10, 1353. [Google Scholar] [CrossRef]
- Núñez-Sellés, A.J. Antioxidant therapy: Myth or reality? J. Braz. Chem. Soc. 2005, 16, 699–710. [Google Scholar] [CrossRef] [Green Version]
- Sies, H.; Jones, D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383. [Google Scholar] [CrossRef]
- Paredes, F.; Williams, H.C.; Martin, A.S. Metabolic adaptation in hypoxia and cancer. Cancer Lett. 2021, 502, 133–142. [Google Scholar] [CrossRef]
- Yang, C.-Q.; Xu, J.-H.; Yan, D.-D.; Liu, B.-L.; Liu, K.; Huang, F. Mangiferin ameliorates insulin resistance by inhibiting inflammation and regulatiing adipokine expression in adipocytes under hypoxic condition. Chin. J. Nat. Med. 2017, 15, 664–673. [Google Scholar] [CrossRef]
- Gold-Smith, F.; Fernandez, A.; Bishop, K. Mangiferin and Cancer: Mechanisms of Action. Nutrients 2016, 8, 396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linder, M.C. The relationship of copper to DNA damage and damage prevention in humans. Mutat. Res. Mol. Mech. Mutagen. 2012, 733, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Kieliszek, M. Selenium. Adv. Food Nutr. Res. 2021, 96, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Zoidis, E.; Seremelis, I.; Kontopoulos, N.; Danezis, G.P. Selenium-Dependent Antioxidant Enzymes: Actions and Properties of Selenoproteins. Antioxidants 2018, 7, 66. [Google Scholar] [CrossRef] [Green Version]
- Kiełczykowska, M.; Kocot, J.; Paździor, M.; Musik, I. Selenium—A fascinating antioxidant of protective properties. Adv. Clin. Exp. Med. 2018, 27, 245–255. [Google Scholar] [CrossRef]
- Rodríguez-Arce, E.; Saldías, M. Antioxidant properties of flavonoid metal complexes and their potential inclusion in the development of novel strategies for the treatment against neurodegenerative diseases. Biomed. Pharmacother. 2021, 143, 112236. [Google Scholar] [CrossRef]
- Khater, M.; Ravishankar, D.; Greco, F.; Osborn, H.M. Metal complexes of flavonoids: Their synthesis, characterization and enhanced antioxidant and anticancer activities. Futur. Med. Chem. 2019, 11, 2845–2867. [Google Scholar] [CrossRef]
Sample | Peak 1 | Peak 2 | Peak 3 | Peak 4 | ||||
---|---|---|---|---|---|---|---|---|
RT (min) | [M − H]− | RT (min) | [M − H]− | RT (min) | [M − H]− | RT (min) | [M − H]− | |
MF | 17.8 ± 0.2 | 421 | - | - | - | - | - | - |
Cu (1:2) | 17.6 ± 0.2 | 421 | 25.8 ± 0.4 | 905 | 27.5 ± 0.4 | 903 | - | - |
Zn (1:2) | 17.8 ± 0.3 | 421 | 26.2 ± 0.2 | 907 | 28.8 ± 0.4 | 905 | - | - |
Zn (1:3) | 17.4 ± 0.4 | 421 | 26.4 ± 0.3 | 907 | 28.6 ± 0.4 | 905 | 41.4 ± 0.6 | 1388 |
Se (1:2) | 17.6 ± 0.4 | 421 | - | - | 33.5 ± 0.5 | 934 | - | - |
Se (1:3) | 18.0 ± 0.4 | 421 | - | - | 33.3 ± 0.5 | 934 | 44.5 ± 0.5 | 1447 |
Sample | RT (min) | [M − H]− (m/z) | Elemental Composition | Others | ||||
---|---|---|---|---|---|---|---|---|
C | O | Cu | Zn | Se | ||||
MF | 17.8 ± 0.2 | 421 | 55.61 | 40.66 | 0.34 | |||
Cu 1 | 25.8 ± 0.4 | 905 | 48.41 | 36.20 | 0.06 | 0.11 | ||
Cu 2 | 27.5 ± 0.4 | 903 | 49.01 | 37,14 | 0.07 | 1.49 | ||
Zn 1 | 26.2 ± 0.2 | 907 | 48.51 | 37.20 | 0.08 | 1.24 | ||
Zn 2 | 28.8 ± 0.4 | 905 | 48.42 | 37.31 | 0.07 | 1.00 | ||
Zn 3 | 26.4 ± 0.3 | 907 | 48.48 | 37.18 | 0.08 | 1.07 | ||
Zn 4 | 28.6 ± 0.4 | 905 | 48.43 | 37.33 | 0.07 | 1.03 | ||
Zn 5 | 41.4 ± 0.6 | 1388 | 46.88 | 35.97 | 0.09 | 2.14 | ||
Se 1 | 33.5 ± 0.5 | 934 | 48.88 | 39.51 | 0.08 | 3.12 | ||
Se 2 | 33.3 ± 0.5 | 934 | 48.70 | 39.47 | 0.08 | 2.96 | ||
Se 3 | 44.5 ± 0.5 | 1447 | 47.13 | 38.54 | 0.11 | 3.22 |
Signal | Sample | ||||
---|---|---|---|---|---|
MF | Metal/Ratio | Peak 2 | Peak 3 | Peak 4 | |
O-Hstr | 3366.31 | Cu (1:2) | 3365.69 | 3366.14 | |
Zn (1:2) | 3366.57 | 3365.57 | |||
Zn (1:3) | 3366.57 | 3365.57 | 3366.76 | ||
Se (1:2) | 3366.70 | ||||
Se (1:3) | 3366.70 | 3366.85 | |||
C-Hstr | 2971.68 | Cu (1:2) | 2940.07 | 2939.76 | |
Zn (1:2) | 2915.87 | 2939.53 | |||
Zn (1:3) | 2915.87 | 2939.53 | 2943.07 | ||
Se (1:2) | 2939.20 | ||||
Se (1:3) | 2939.20 | 2939.34 | |||
C=Ostr | 1648.39 | Cu (1:2) | 1648.62 | 1650.09 | |
Zn (1:2) | 1649.13 | 1651.31 | |||
Zn (1:3) | 1649.13 | 1651.31 | 1651.34 | ||
Se (1:2) | 1648.37 | ||||
Se (1:3) | 1648.37 | 1648.87 | |||
CH-CHstr | 1489.16 | Cu (1:2) | 1488.16 | 1495.18 | |
Zn (1:2) | 1487.94 | 1493.27 | |||
Zn (1:3) | 1487.94 | 1493.27 | 1488.34 | ||
Se (1:2) | 1487.16 | ||||
Se (1:3) | 1487.16 | 1490.93 | |||
C-Ostr | 1255.37 | Cu (1:2) | 1255.86 | 1254.83 | |
Zn (1:2) | 1255.51 | 1254.81 | |||
Zn (1:3) | 1255.51 | 1254.81 | 1255.86 | ||
Se (1:2) | 1294.58 | ||||
Se (1:3) | 1294.58 | 1254.86 | |||
C-Cstr | 1091.14 | Cu (1:2) | 1095.84 | 1095.94 | |
Zn (1:2) | 1095.35 | 1095.58 | |||
Zn (1:3) | 1095.35 | 1095.58 | 1095.19 | ||
Se (1:2) | 1076.47 | ||||
Se (1:3) | 1076.47 | 1095.49 | |||
M-Ostr | NA | Cu (1:2) | 817.8 | 818.1 | |
Zn (1:2) | 818.3 | 818.6 | |||
Zn (1:3) | 817.8 | 818.1 | 817.8 | ||
Se (1:2) | 818.1 | ||||
Se (1:3) | 817.6 | 817.8 |
Sample | Chromatogr. Peak | PP (μM) | CO (μM) | Inhibition (%) | |
---|---|---|---|---|---|
PP | Protein Degradation | ||||
Control | 16.4 ± 1.1 a | 504.8 ± 50.5 a | - | - | |
Mangiferin | 1 | 15.9 ± 1.5 a | 490.6 ± 55.2 a | 3.10 | 2.81 |
Cu (1:2) | 2 | 16.0 ± 1.4 a | 497.0 ± 48.4 a | 0.01 | NA |
3 | 16.2 ± 1.6 a | 501.4 ± 49.7 a | 0.02 | NA | |
Zn (1:2) | 2 | 13.8 ± 1.5 ab | 456.8 ± 50.5 a | 13.21 | 6.94 |
3 | 14.4 ± 1.5 ab | 472.9 ± 45.8 a | 9.43 | 3.67 | |
Zn (1:3) | 4 | 10.8 ± 1.2 abc | 419.0 ± 56.8 ab | 32.08 | 14.49 |
Se (1:2) | 3 | 12.6±1.4 abc | 444.9±52.2 ab | 20.75 | 12.24 |
Se (1:3) | 4 | 8.1±1.7 bcd | 388.0±55.0 ab | 49.06 | 20.81 |
Metal Nucleus | Peak | Stoichiometric Ratio | Predicted Complex Molecular Formula | Estimated Complex Molecular Mass |
---|---|---|---|---|
Copper (II) | 2 | 1:2 | C38H34O22Cu.2H2O | 942.22 |
3 | 1:2 | C38H32O22Cu.2H2O | 940.21 | |
Zinc (II) | 2 | 1:2 | C38H34O22Zn.2H2O | 944.06 |
3 | 1:2 | C38H32O22Zn.2H2O | 942.04 | |
4 | 1:3 | C57H46O33Zn2.4H2O | 1461.76 | |
Selenium (IV) | 3 | 1:2 | C38H34O23Se | 937.61 |
4 | 1:3 | C57H46O33Se2 | 1448.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nuñez-Selles, A.J.; Nuevas-Paz, L.; Martínez-Sánchez, G. Inhibition of Peroxidation Potential and Protein Oxidative Damage by Metal Mangiferin Complexes. Appl. Sci. 2022, 12, 2240. https://doi.org/10.3390/app12042240
Nuñez-Selles AJ, Nuevas-Paz L, Martínez-Sánchez G. Inhibition of Peroxidation Potential and Protein Oxidative Damage by Metal Mangiferin Complexes. Applied Sciences. 2022; 12(4):2240. https://doi.org/10.3390/app12042240
Chicago/Turabian StyleNuñez-Selles, Alberto J., Lauro Nuevas-Paz, and Gregorio Martínez-Sánchez. 2022. "Inhibition of Peroxidation Potential and Protein Oxidative Damage by Metal Mangiferin Complexes" Applied Sciences 12, no. 4: 2240. https://doi.org/10.3390/app12042240
APA StyleNuñez-Selles, A. J., Nuevas-Paz, L., & Martínez-Sánchez, G. (2022). Inhibition of Peroxidation Potential and Protein Oxidative Damage by Metal Mangiferin Complexes. Applied Sciences, 12(4), 2240. https://doi.org/10.3390/app12042240