Chinese Geomagnetic Reference Field 2020 by the Revised Surface Spline Method
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Revised Surface Spline Method
2.2. Source and Processing of the Geomagnetic Data
3. Results
3.1. Parameter Determination
3.2. Maps and Coefficients of CGRF2020
- The anomalies in the declination D and the east component Y are positive in most of North China and East China and are negative in most of West China. There are several positive anomalies located at (42° N, 118° E), (40° N, 107° E), (40° N, 83° E), and (35° N, 118° E), with the amplitude up to 10′ for D and up to 100 nT for Y; there are several negative anomalies centered near (42° N, 122° E), (40° N, 110° E), and (40° N, 80° E), with the amplitude up to −10′ for D and 100 nT for Y.
- The anomalies in the total intensity F and the vertical component Z are negative in most of China. Several old hard blocks correspond to the distribution of positive anomalies. For example, the anomaly over Sichuan Basin is a positive anomaly located at 28–33° N, 103–112° E, with the amplitude up to 100 nT for F and Z. There is also a positive anomaly (35–42° N, 75–88° E) near Tarim Basin, with the amplitude up to 150 nT for F and 200 nT for Z. There are three significant negative anomalies, the first one located in Qinling Mountains (30–35° N, 103–115° E), the second one located in Tianshan Mountains (38–42° N, 75–90° E), and the last one located in the south of Tibet (27–30° N, 78–100° E). Their amplitudes can be up to −100, 150, and −150 nT for F and Z, respectively.
- The spatial distributions of the anomalies in the horizontal component H and the north component X are almost the same. The amplitude of the anomalies is relatively weak in most areas of China, except for the three pairs of positive–negative anomalies. The first of them is located near Sichuan Basin and the west part of Qinling Mountains (27–33° N, 103–112° E), with the amplitude up to ±100 nT; the second pair is located near Tarim Basin and Tianshan Mountains (37–47° N, 73–87° E), with the amplitude up to ±150 nT; and the third is located near Southern Tibet or the Himalayas (25–32° N, 80–95° E), with the amplitude up to ±150 nT.
- The anomalies in the inclination I are negative in most parts of China. The centers of the negative anomalies are located in North China (37–45° N, 118–121° E) and Southeast China (23–32° N, 116–123° E), with the amplitude up to −8′. The centers of the positive anomalies are located in Sichuan Basin and Tarim Basin, with the amplitude up to 10′.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
a00 | a10 | a11 | a20 | a21 | a22 | a30 | a31 | a32 | a33 | |
---|---|---|---|---|---|---|---|---|---|---|
D | −51.2926 | 1.5265 | 0.7781 | −0.0144 | −0.0134 | 0.0055 | 0.0000 | 0.0001 | −0.0001 | 0.0001 |
I | −19.2891 | 0.2362 | 2.1605 | −0.0056 | 0.0168 | −0.0287 | 0.0000 | −0.0001 | 0.0000 | 0.0001 |
F | 56940.51 | −514.85 | −735.75 | 5.19 | 9.75 | 22.58 | −0.01 | −0.05 | 0.04 | −0.23 |
Ai | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | 32 | 34 |
---|---|---|---|---|---|---|---|---|---|---|
72 | 0.0043 | −0.0037 | 0.0183 | −0.0074 | −0.0233 | 0.0499 | −0.0271 | 0.0064 | 0.0127 | −0.0126 |
74 | 0.0136 | −0.0417 | 0.0199 | −0.0160 | 0.0056 | −0.0303 | 0.0072 | 0.0191 | −0.0445 | 0.0148 |
76 | −0.0278 | 0.0576 | −0.0261 | 0.0254 | −0.0037 | 0.0533 | −0.0591 | 0.0043 | 0.0517 | −0.0140 |
78 | 0.0122 | −0.0163 | 0.0071 | −0.0384 | 0.0018 | −0.0085 | 0.0125 | 0.0140 | −0.0573 | 0.0325 |
80 | 0.0025 | −0.0240 | 0.0235 | 0.0019 | 0.0103 | 0.0155 | −0.0077 | −0.0195 | 0.0466 | −0.0188 |
82 | 0.0050 | 0.0010 | 0.0183 | −0.0252 | 0.0022 | −0.0134 | −0.0003 | 0.0196 | −0.0234 | −0.0058 |
84 | −0.0055 | −0.0020 | −0.0100 | 0.0203 | 0.0022 | −0.0133 | 0.0112 | −0.0060 | −0.0108 | 0.0225 |
86 | 0.0009 | 0.0051 | 0.0008 | −0.0281 | 0.0275 | 0.0096 | −0.0113 | 0.0055 | 0.0060 | −0.0050 |
88 | −0.0039 | 0.0024 | 0.0020 | 0.0032 | −0.0010 | −0.0278 | 0.0129 | −0.0047 | −0.0077 | −0.0017 |
90 | 0.0037 | −0.0046 | 0.0092 | −0.0159 | 0.0150 | −0.0001 | −0.0023 | 0.0224 | −0.0011 | 0.0066 |
92 | −0.0003 | −0.0037 | 0.0001 | 0.0107 | −0.0245 | 0.0313 | −0.0070 | −0.0501 | 0.0325 | −0.0355 |
94 | 0.0003 | 0.0020 | −0.0027 | −0.0018 | 0.0204 | −0.0345 | 0.0250 | 0.0097 | 0.0025 | 0.0013 |
96 | 0.0005 | 0.0056 | −0.0051 | 0.0013 | −0.0148 | 0.0341 | −0.0263 | −0.0005 | 0.0048 | −0.0078 |
98 | −0.0064 | −0.0044 | 0.0009 | 0.0080 | −0.0080 | −0.0178 | 0.0126 | 0.0095 | −0.0129 | 0.0103 |
100 | 0.0120 | 0.0001 | 0.0015 | −0.0014 | 0.0014 | 0.0257 | −0.0303 | 0.0044 | 0.0060 | −0.0045 |
102 | −0.0105 | 0.0025 | −0.0048 | 0.0056 | −0.0085 | −0.0062 | 0.0243 | 0.0002 | −0.0153 | 0.0159 |
104 | 0.0059 | −0.0044 | 0.0105 | −0.0187 | 0.0262 | −0.0271 | −0.0049 | −0.0021 | 0.0103 | −0.0169 |
106 | 0.0007 | −0.0096 | 0.0075 | 0.0019 | −0.0093 | 0.0194 | 0.0059 | −0.0041 | 0.0107 | −0.0016 |
108 | 0.0004 | 0.0175 | −0.0124 | 0.0038 | 0.0038 | −0.0190 | 0.0007 | −0.0035 | 0.0027 | −0.0133 |
110 | −0.0165 | 0.0006 | −0.0058 | 0.0034 | −0.0083 | 0.0282 | −0.0096 | 0.0080 | −0.0234 | 0.0395 |
112 | 0.0247 | −0.0010 | −0.0033 | −0.0012 | 0.0081 | −0.0224 | 0.0108 | −0.0109 | 0.0183 | −0.0192 |
114 | −0.0149 | −0.0074 | 0.0171 | −0.0050 | −0.0111 | 0.0217 | −0.0159 | 0.0187 | −0.0192 | 0.0033 |
116 | 0.0089 | 0.0053 | −0.0086 | 0.0042 | 0.0129 | −0.0218 | 0.0110 | −0.0142 | 0.0305 | −0.0049 |
118 | −0.0103 | −0.0084 | −0.0068 | 0.0097 | −0.0230 | 0.0369 | −0.0138 | 0.0016 | −0.0206 | −0.0192 |
120 | 0.0208 | −0.0014 | 0.0134 | 0.0112 | −0.0139 | −0.0144 | 0.0052 | 0.0068 | 0.0228 | −0.0044 |
122 | −0.0288 | 0.0171 | −0.0286 | −0.0034 | 0.0031 | 0.0088 | 0.0197 | −0.0457 | 0.0114 | −0.0048 |
124 | 0.0272 | −0.0092 | −0.0005 | 0.0299 | −0.0092 | −0.0113 | 0.0004 | 0.0187 | 0.0030 | −0.0061 |
126 | −0.0141 | −0.0019 | 0.0043 | −0.0126 | 0.0047 | 0.0030 | −0.0075 | −0.0089 | 0.0069 | −0.0052 |
128 | −0.0071 | 0.0121 | −0.0004 | −0.0035 | −0.0021 | −0.0010 | 0.0067 | 0.0077 | −0.0119 | 0.0058 |
130 | 0.0183 | −0.0095 | 0.0011 | −0.0141 | 0.0363 | −0.0143 | −0.0010 | −0.0022 | 0.0079 | 0.0049 |
132 | −0.0087 | −0.0155 | 0.0113 | 0.0164 | −0.0506 | 0.0180 | 0.0018 | −0.0080 | −0.0002 | −0.0060 |
134 | −0.0031 | 0.0255 | −0.0224 | 0.0085 | 0.0132 | 0.0084 | −0.0191 | 0.0246 | −0.0064 | −0.0077 |
136 | 0.0068 | −0.0185 | 0.0207 | −0.0171 | 0.0083 | −0.0141 | 0.0173 | −0.0192 | 0.0087 | −0.0036 |
Ai | 36 | 38 | 40 | 42 | 44 | 46 | 48 | 50 | 52 | 54 |
72 | 0.0125 | −0.0127 | −0.0084 | 0.0408 | −0.0355 | −0.0135 | 0.0129 | 0.0026 | −0.0198 | 0.0136 |
74 | 0.0035 | −0.0110 | 0.0096 | −0.0050 | −0.0208 | 0.0493 | 0.0383 | −0.0404 | 0.0065 | 0.0059 |
76 | −0.0046 | −0.0004 | 0.0217 | −0.0499 | 0.0747 | −0.0726 | −0.0586 | 0.0557 | 0.0250 | −0.0757 |
78 | −0.0172 | 0.0188 | −0.0136 | 0.0427 | −0.0376 | 0.0092 | 0.0744 | −0.0369 | −0.0590 | 0.1285 |
80 | −0.0108 | 0.0353 | −0.0584 | −0.0133 | 0.0270 | −0.0042 | −0.0375 | 0.0139 | 0.0129 | −0.0582 |
82 | 0.0294 | −0.0702 | 0.0947 | 0.0107 | −0.0597 | 0.0613 | −0.0265 | 0.0156 | 0.0335 | −0.0164 |
84 | −0.0163 | 0.0463 | −0.0602 | −0.0266 | 0.0448 | −0.0580 | 0.0460 | −0.0481 | −0.0199 | 0.0069 |
86 | 0.0099 | −0.0510 | 0.0592 | 0.0071 | 0.0024 | 0.0297 | −0.0466 | 0.0727 | −0.0452 | 0.0635 |
88 | 0.0013 | 0.0225 | −0.0377 | 0.0193 | −0.0406 | −0.0168 | 0.0589 | −0.0565 | 0.0720 | −0.1049 |
90 | −0.0063 | −0.0003 | 0.0068 | −0.0156 | 0.0555 | −0.0219 | −0.0532 | 0.0250 | −0.0608 | 0.0745 |
92 | 0.0260 | −0.0073 | 0.0074 | −0.0061 | −0.0350 | 0.0420 | 0.0164 | 0.0947 | −0.0708 | 0.0390 |
94 | 0.0046 | −0.0129 | 0.0164 | −0.0619 | 0.1380 | −0.1504 | 0.0512 | −0.1462 | 0.1112 | −0.0701 |
96 | 0.0044 | −0.0064 | 0.0072 | 0.0413 | −0.1056 | 0.1712 | −0.0955 | 0.1155 | −0.0505 | 0.0244 |
98 | −0.0053 | 0.0044 | −0.0112 | 0.0265 | −0.0796 | 0.0864 | −0.2332 | 0.2231 | −0.1287 | 0.0095 |
100 | −0.0027 | 0.0048 | −0.0103 | −0.0032 | 0.0558 | −0.0773 | 0.2071 | −0.1435 | 0.0269 | 0.0512 |
102 | −0.0042 | 0.0003 | 0.0102 | 0.0133 | −0.0389 | 0.0505 | −0.1525 | 0.1101 | −0.0306 | −0.0431 |
104 | 0.0027 | 0.0091 | −0.0406 | 0.0472 | −0.0621 | 0.0797 | −0.0360 | −0.0147 | 0.0223 | 0.0367 |
106 | 0.0155 | −0.0338 | 0.0555 | −0.0661 | 0.0468 | −0.0241 | 0.0021 | 0.0873 | −0.0554 | −0.0478 |
108 | −0.0108 | 0.0238 | 0.0044 | −0.0007 | 0.0603 | −0.1007 | 0.0863 | −0.1403 | 0.1088 | 0.0375 |
110 | −0.0054 | 0.0015 | −0.0515 | 0.0318 | −0.0650 | 0.0749 | −0.0548 | 0.0614 | −0.0627 | −0.0619 |
112 | −0.0158 | 0.0174 | 0.0093 | 0.0017 | 0.0194 | −0.0219 | 0.0287 | −0.0017 | 0.0253 | 0.0397 |
114 | 0.0132 | −0.0121 | 0.0234 | −0.0228 | 0.0257 | −0.0609 | 0.0317 | −0.0541 | 0.0254 | −0.0303 |
116 | −0.0024 | −0.0051 | −0.0254 | 0.0133 | −0.0398 | 0.0934 | −0.0607 | 0.1106 | −0.0902 | 0.0528 |
118 | 0.0301 | −0.0038 | 0.0214 | 0.0224 | 0.0182 | −0.0694 | 0.0293 | −0.0867 | 0.0830 | −0.0455 |
120 | −0.0027 | −0.0266 | 0.0093 | −0.0615 | 0.0430 | 0.0020 | 0.0176 | 0.0182 | −0.0520 | 0.0310 |
122 | 0.0178 | −0.0001 | 0.0289 | −0.0154 | −0.0046 | −0.0133 | 0.0060 | −0.0182 | 0.1013 | −0.0730 |
124 | −0.0168 | −0.0021 | −0.0171 | 0.0483 | −0.0193 | 0.0535 | −0.0782 | 0.1060 | −0.1709 | 0.1076 |
126 | 0.0107 | 0.0183 | −0.0201 | −0.0318 | −0.0014 | −0.0381 | 0.0537 | −0.1043 | 0.1000 | −0.0547 |
128 | −0.0086 | 0.0086 | −0.0208 | 0.0891 | −0.0551 | 0.0864 | −0.0994 | 0.1962 | −0.1374 | 0.0512 |
130 | −0.0038 | 0.0008 | −0.0038 | −0.0503 | 0.0250 | −0.0658 | 0.0907 | −0.1544 | 0.0855 | −0.0341 |
132 | −0.0039 | −0.0028 | 0.0347 | −0.0282 | 0.0580 | −0.0238 | −0.0109 | 0.0396 | −0.0062 | 0.0187 |
134 | 0.0200 | −0.0044 | −0.0219 | 0.0251 | −0.0237 | −0.0098 | 0.0298 | −0.0395 | 0.0302 | −0.0453 |
136 | 0.0064 | −0.0155 | 0.0196 | −0.0215 | 0.0191 | −0.0094 | 0.0040 | 0.0114 | −0.0266 | 0.0339 |
Ai | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | 32 | 34 |
---|---|---|---|---|---|---|---|---|---|---|
72 | −0.0117 | 0.0249 | −0.0167 | 0.0158 | −0.0291 | 0.0126 | 0.0140 | −0.0191 | 0.0093 | −0.0036 |
74 | −0.0152 | 0.0084 | −0.0105 | 0.0068 | 0.0220 | −0.0101 | 0.0154 | −0.0288 | 0.0408 | −0.0260 |
76 | 0.0133 | −0.0103 | 0.0147 | −0.0150 | −0.0126 | −0.0126 | −0.0060 | 0.0166 | −0.0266 | 0.0046 |
78 | 0.0188 | −0.0402 | 0.0448 | −0.0277 | 0.0065 | 0.0320 | −0.0058 | −0.0050 | 0.0218 | −0.0205 |
80 | −0.0103 | 0.0114 | −0.0084 | −0.0114 | 0.0478 | −0.0448 | 0.0020 | 0.0130 | −0.0124 | 0.0088 |
82 | 0.0029 | 0.0040 | 0.0058 | −0.0220 | −0.0026 | 0.0029 | 0.0186 | −0.0436 | 0.0252 | 0.0034 |
84 | −0.0091 | 0.0045 | 0.0050 | 0.0090 | −0.0049 | 0.0163 | −0.0110 | 0.0299 | −0.0192 | 0.0030 |
86 | −0.0036 | 0.0134 | −0.0332 | 0.0160 | 0.0018 | −0.0213 | 0.0093 | −0.0276 | 0.0213 | −0.0075 |
88 | 0.0010 | 0.0033 | 0.0093 | −0.0014 | −0.0130 | 0.0221 | −0.0101 | 0.0167 | −0.0001 | −0.0034 |
90 | 0.0007 | −0.0100 | −0.0033 | 0.0112 | −0.0103 | 0.0085 | 0.0036 | −0.0336 | 0.0064 | −0.0001 |
92 | 0.0095 | −0.0041 | 0.0092 | −0.0066 | −0.0118 | 0.0311 | −0.0470 | 0.0751 | −0.0314 | 0.0139 |
94 | −0.0145 | 0.0032 | 0.0007 | 0.0047 | 0.0002 | −0.0134 | 0.0212 | −0.0460 | 0.0112 | 0.0035 |
96 | 0.0174 | −0.0118 | 0.0069 | −0.0092 | 0.0065 | −0.0007 | 0.0187 | −0.0127 | 0.0168 | −0.0081 |
98 | −0.0145 | 0.0116 | −0.0096 | 0.0123 | −0.0186 | 0.0166 | −0.0184 | 0.0098 | −0.0095 | 0.0077 |
100 | 0.0060 | −0.0050 | 0.0062 | −0.0044 | 0.0089 | −0.0117 | −0.0010 | 0.0053 | 0.0035 | −0.0029 |
102 | −0.0094 | 0.0112 | −0.0107 | 0.0092 | −0.0090 | 0.0134 | 0.0048 | −0.0076 | −0.0057 | 0.0024 |
104 | 0.0143 | −0.0125 | 0.0069 | −0.0087 | 0.0031 | −0.0043 | −0.0092 | 0.0133 | 0.0002 | −0.0008 |
106 | −0.0051 | −0.0079 | 0.0056 | 0.0009 | 0.0041 | −0.0005 | 0.0067 | −0.0193 | 0.0171 | −0.0226 |
108 | −0.0159 | 0.0392 | −0.0154 | −0.0007 | −0.0057 | 0.0047 | −0.0058 | 0.0036 | 0.0182 | −0.0143 |
110 | 0.0307 | −0.0377 | 0.0130 | −0.0021 | 0.0075 | −0.0043 | 0.0083 | −0.0178 | 0.0146 | −0.0159 |
112 | −0.0326 | 0.0072 | 0.0036 | −0.0016 | −0.0003 | −0.0018 | −0.0033 | 0.0113 | −0.0156 | 0.0022 |
114 | 0.0243 | 0.0084 | −0.0047 | −0.0047 | 0.0021 | 0.0021 | −0.0026 | −0.0015 | 0.0205 | −0.0106 |
116 | −0.0154 | −0.0022 | 0.0001 | 0.0007 | −0.0014 | 0.0057 | 0.0017 | −0.0078 | −0.0094 | 0.0050 |
118 | 0.0128 | 0.0003 | −0.0133 | 0.0294 | −0.0201 | −0.0106 | 0.0146 | −0.0055 | 0.0076 | −0.0057 |
120 | −0.0109 | −0.0108 | 0.0025 | −0.0022 | −0.0056 | 0.0278 | −0.0257 | 0.0116 | 0.0088 | −0.0172 |
122 | 0.0187 | 0.0201 | −0.0001 | −0.0087 | 0.0159 | −0.0165 | 0.0113 | −0.0135 | −0.0065 | 0.0190 |
124 | −0.0234 | −0.0220 | 0.0094 | −0.0149 | −0.0034 | 0.0051 | −0.0057 | 0.0122 | 0.0023 | 0.0007 |
126 | 0.0509 | −0.0272 | 0.0317 | −0.0044 | 0.0205 | −0.0149 | 0.0155 | −0.0138 | −0.0210 | 0.0211 |
128 | −0.0543 | 0.0351 | −0.0381 | 0.0147 | −0.0341 | 0.0246 | −0.0132 | 0.0126 | 0.0172 | −0.0027 |
130 | 0.0326 | −0.0221 | 0.0139 | −0.0051 | 0.0333 | −0.0341 | 0.0134 | −0.0117 | −0.0159 | 0.0032 |
132 | −0.0144 | 0.0047 | 0.0176 | −0.0218 | 0.0100 | −0.0125 | 0.0206 | 0.0041 | 0.0113 | −0.0189 |
134 | 0.0262 | −0.0341 | 0.0199 | −0.0127 | 0.0097 | −0.0026 | 0.0008 | −0.0292 | 0.0275 | −0.0153 |
136 | −0.0149 | 0.0209 | −0.0216 | 0.0208 | −0.0196 | 0.0159 | −0.0118 | 0.0179 | −0.0147 | 0.0028 |
Ai | 36 | 38 | 40 | 42 | 44 | 46 | 48 | 50 | 52 | 54 |
72 | 0.0011 | 0.0022 | −0.0086 | 0.0045 | 0.0070 | −0.0040 | −0.0299 | 0.0456 | −0.0213 | 0.0005 |
74 | 0.0144 | −0.0015 | −0.0070 | 0.0082 | −0.0113 | 0.0098 | 0.0175 | −0.0138 | 0.0027 | 0.0042 |
76 | 0.0176 | −0.0274 | 0.0370 | −0.0146 | −0.0053 | 0.0185 | −0.0193 | −0.0178 | 0.0140 | −0.0053 |
78 | −0.0093 | −0.0022 | 0.0128 | −0.0491 | 0.0299 | −0.0261 | 0.0071 | 0.0028 | 0.0002 | 0.0071 |
80 | 0.0100 | −0.0040 | 0.0393 | −0.0347 | 0.0746 | −0.0665 | 0.0778 | −0.0194 | −0.0049 | −0.0112 |
82 | −0.0102 | −0.0149 | −0.0092 | 0.0090 | −0.0479 | 0.0427 | −0.0491 | −0.0065 | 0.0069 | 0.0113 |
84 | −0.0083 | 0.0261 | 0.0066 | −0.0166 | 0.0501 | −0.0616 | 0.0511 | 0.0019 | −0.0071 | 0.0047 |
86 | 0.0097 | −0.0285 | 0.0098 | −0.0039 | −0.0283 | 0.0363 | −0.0030 | −0.0119 | 0.0027 | −0.0247 |
88 | 0.0080 | −0.0171 | 0.0376 | −0.0053 | −0.0018 | 0.0137 | −0.0670 | 0.0543 | −0.0107 | 0.0299 |
90 | 0.0004 | 0.0058 | −0.0212 | −0.0148 | 0.0270 | −0.0351 | 0.0868 | −0.0716 | 0.0114 | −0.0092 |
92 | −0.0092 | 0.0108 | −0.0065 | 0.0254 | −0.0271 | 0.0318 | −0.0581 | 0.0498 | −0.0131 | −0.0105 |
94 | −0.0030 | −0.0127 | 0.0158 | −0.0105 | −0.0069 | −0.0063 | 0.0205 | −0.0275 | 0.0211 | 0.0136 |
96 | −0.0013 | 0.0183 | −0.0143 | −0.0029 | 0.0122 | 0.0162 | −0.0378 | 0.0498 | −0.0372 | −0.0132 |
98 | −0.0082 | −0.0025 | 0.0050 | 0.0042 | −0.0075 | −0.0074 | 0.0464 | −0.0450 | −0.0018 | 0.0440 |
100 | 0.0024 | 0.0045 | −0.0069 | −0.0185 | 0.0321 | −0.0032 | −0.0590 | 0.0491 | 0.0022 | −0.0348 |
102 | 0.0079 | −0.0209 | 0.0305 | −0.0017 | −0.0291 | 0.0004 | 0.0290 | −0.0286 | 0.0255 | −0.0067 |
104 | −0.0068 | 0.0159 | −0.0168 | −0.0171 | 0.0762 | −0.0455 | 0.0380 | −0.0024 | −0.0532 | 0.0350 |
106 | 0.0255 | −0.0310 | 0.0206 | 0.0079 | −0.0752 | 0.0517 | −0.0724 | 0.0449 | 0.0200 | −0.0148 |
108 | 0.0067 | 0.0058 | 0.0032 | −0.0259 | 0.0754 | −0.0539 | 0.0677 | −0.0419 | 0.0093 | −0.0105 |
110 | 0.0140 | −0.0221 | 0.0281 | −0.0205 | −0.0068 | 0.0153 | −0.0284 | −0.0038 | 0.0068 | 0.0054 |
112 | 0.0038 | 0.0026 | −0.0135 | 0.0091 | 0.0000 | −0.0288 | 0.0453 | −0.0301 | 0.0267 | −0.0145 |
114 | 0.0037 | −0.0025 | 0.0131 | −0.0130 | 0.0097 | 0.0164 | −0.0285 | 0.0519 | −0.0431 | 0.0146 |
116 | 0.0031 | −0.0048 | −0.0214 | 0.0300 | −0.0192 | 0.0049 | −0.0084 | −0.0337 | 0.0207 | −0.0001 |
118 | −0.0089 | 0.0246 | 0.0040 | −0.0013 | −0.0183 | 0.0253 | −0.0134 | 0.0577 | −0.0340 | 0.0044 |
120 | 0.0307 | −0.0370 | −0.0012 | −0.0117 | 0.0310 | −0.0332 | 0.0111 | −0.0526 | 0.0341 | −0.0087 |
122 | −0.0304 | 0.0258 | 0.0136 | −0.0081 | 0.0030 | −0.0201 | 0.0488 | 0.0089 | −0.0075 | −0.0008 |
124 | −0.0035 | 0.0057 | −0.0226 | 0.0141 | −0.0082 | 0.0414 | −0.0734 | 0.0179 | −0.0180 | 0.0109 |
126 | −0.0103 | 0.0037 | 0.0118 | −0.0103 | 0.0064 | −0.0437 | 0.0687 | −0.0304 | 0.0321 | −0.0084 |
128 | −0.0064 | −0.0024 | −0.0042 | 0.0012 | −0.0133 | 0.0579 | −0.0557 | 0.0057 | −0.0106 | −0.0008 |
130 | 0.0079 | 0.0076 | −0.0022 | 0.0067 | 0.0061 | −0.0374 | 0.0240 | 0.0021 | 0.0136 | −0.0061 |
132 | 0.0103 | −0.0192 | 0.0018 | 0.0005 | −0.0075 | 0.0220 | −0.0046 | −0.0068 | 0.0006 | −0.0029 |
134 | 0.0163 | 0.0040 | −0.0078 | 0.0168 | −0.0098 | −0.0047 | −0.0062 | 0.0080 | 0.0008 | −0.0014 |
136 | 0.0033 | −0.0132 | 0.0162 | −0.0260 | 0.0252 | −0.0124 | 0.0054 | 0.0027 | −0.0120 | 0.0094 |
Ai | 16 | 18 | 20 | 22 | 24 | 26 | 28 | 30 | 32 | 34 |
---|---|---|---|---|---|---|---|---|---|---|
72 | −14.6349 | 13.7592 | −7.2368 | 16.7847 | −51.4039 | 64.9940 | −37.1171 | −0.1891 | 11.4560 | −9.3127 |
74 | 10.6347 | −1.9384 | 1.2586 | −12.5948 | 34.6707 | −27.8421 | 13.1336 | 4.5755 | −1.4905 | −5.5042 |
76 | −1.2869 | −15.1666 | 1.5082 | −2.7027 | 19.3015 | −26.7798 | 17.4671 | −8.9993 | −5.6847 | 14.9245 |
78 | −6.6708 | 42.5043 | −20.1758 | 23.4548 | −58.2267 | 32.8239 | −11.1312 | 0.1198 | 2.0167 | 1.7611 |
80 | 5.1969 | −37.1238 | 10.4947 | −10.2332 | 41.1358 | −7.4607 | −9.6125 | 24.0920 | −10.5866 | −11.9769 |
82 | 2.9112 | 5.8836 | 18.1010 | −23.0959 | 7.5271 | −22.0457 | 12.3434 | −9.9386 | −14.1503 | 30.8439 |
84 | −2.9171 | 3.5657 | −3.4691 | −16.4864 | 42.6278 | −24.4700 | 17.9801 | −3.1890 | 13.3405 | −15.6858 |
86 | 6.2943 | −20.8039 | 22.6271 | −0.6962 | −32.8713 | 19.5658 | −21.0528 | 6.4805 | −13.9210 | 12.8213 |
88 | −3.4032 | 10.1920 | −5.5591 | −8.7708 | 21.6194 | 5.6233 | 4.1947 | 3.9910 | −1.1427 | 2.2928 |
90 | 0.7563 | −4.2991 | −1.6159 | 8.6991 | −14.9230 | 4.1343 | −42.7192 | 27.7681 | −16.7673 | 7.7860 |
92 | 4.8735 | −4.7560 | 7.0941 | −0.4393 | −23.9449 | 62.8203 | −19.5332 | 28.4429 | −16.5018 | −4.0118 |
94 | −6.2815 | 5.4927 | −4.9520 | 7.9354 | −13.9294 | 8.1646 | −45.2812 | 11.0199 | −5.8203 | 13.9166 |
96 | 6.2837 | −6.2564 | 2.9430 | −4.2688 | 13.6180 | −9.1942 | 28.9355 | −14.6804 | 18.7779 | −21.0134 |
98 | −4.2468 | 5.1656 | −7.0385 | 6.2189 | −14.7397 | 12.1954 | −5.5613 | −5.8178 | −0.0426 | 4.8654 |
100 | 6.1354 | −6.1413 | 8.1017 | −4.0519 | 15.1407 | −19.9295 | 1.0231 | 6.0794 | 3.5981 | −6.6333 |
102 | −8.2728 | 6.8407 | −7.9535 | 5.5245 | −19.1472 | 26.6431 | 0.6804 | −13.2343 | 2.9787 | −2.1152 |
104 | 10.8701 | −10.9272 | 15.1468 | −10.5687 | 10.4264 | −10.0029 | −14.8287 | 28.4519 | −17.8533 | 6.9129 |
106 | −2.8819 | −10.4081 | −3.4031 | 6.3000 | −5.1743 | 8.1854 | −9.2933 | 15.5077 | −22.0842 | 22.5702 |
108 | −13.5480 | 46.0477 | −18.0280 | 3.7190 | −3.6025 | 8.9688 | −14.9151 | 14.6006 | 1.2973 | −15.6363 |
110 | 13.8667 | −31.2848 | 4.2254 | −0.0766 | −2.0574 | −0.5575 | 0.3229 | 5.2300 | −16.4278 | 23.2953 |
112 | −11.5528 | 11.0092 | 2.3718 | 7.9406 | 0.2783 | −0.5420 | −2.5247 | 1.5259 | −4.1484 | −5.1059 |
114 | −1.1618 | 11.5883 | −13.0790 | −5.0932 | 2.5293 | −2.3888 | 3.5583 | 1.2971 | 8.4702 | 3.7272 |
116 | 1.7154 | −9.4996 | 17.7469 | −18.7953 | 11.4076 | −0.6741 | −7.7922 | 5.8191 | −19.7159 | 10.1240 |
118 | 5.7027 | 1.1162 | −12.2477 | 25.7830 | −12.6469 | −6.8059 | 8.8340 | 8.9776 | −2.1026 | 4.5643 |
120 | −10.0626 | −0.3263 | 3.0639 | −10.0471 | −0.2518 | 23.0213 | −24.4916 | −3.5038 | 7.1407 | 1.6889 |
122 | 10.9964 | −2.1712 | 4.0445 | 2.5280 | −2.2493 | −5.3337 | 2.4238 | 18.2616 | −21.6725 | 0.8413 |
124 | 0.8605 | −18.7314 | 15.4017 | −15.5972 | 6.6312 | 5.3215 | −9.9649 | 1.1456 | 13.3540 | −5.6655 |
126 | 9.4586 | −1.7134 | 0.1001 | 8.0642 | −7.3272 | 2.4939 | 7.4439 | −13.6202 | −10.7725 | 15.6161 |
128 | −13.6334 | 12.7715 | −5.8955 | −2.1874 | −3.3535 | 3.3510 | −11.7776 | 22.4687 | −5.1762 | 21.2140 |
130 | 7.2579 | −12.1961 | 3.9581 | −4.5075 | 15.3084 | −2.6174 | 4.8517 | −9.0343 | −3.7837 | −17.9162 |
132 | 0.3425 | 3.7098 | 0.8993 | 8.3591 | −10.5178 | −9.9437 | 1.5077 | 1.0401 | 5.4419 | 0.8753 |
134 | −1.6012 | −3.6495 | 0.3836 | −3.4033 | 0.3153 | 11.5465 | −0.7363 | −4.8852 | 8.5154 | −5.5271 |
136 | 2.1789 | −0.6194 | 4.0557 | −6.6561 | 7.6590 | −10.7368 | 5.5924 | −2.6753 | 3.5481 | −9.9871 |
Ai | 36 | 38 | 40 | 42 | 44 | 46 | 48 | 50 | 52 | 54 |
72 | 0.0011 | 0.0022 | −0.0086 | 0.0045 | 0.0070 | −0.0040 | −0.0299 | 0.0456 | −0.0213 | 0.0005 |
74 | 0.0144 | −0.0015 | −0.0070 | 0.0082 | −0.0113 | 0.0098 | 0.0175 | −0.0138 | 0.0027 | 0.0042 |
76 | 0.0176 | −0.0274 | 0.0370 | −0.0146 | −0.0053 | 0.0185 | −0.0193 | −0.0178 | 0.0140 | −0.0053 |
78 | −0.0093 | −0.0022 | 0.0128 | −0.0491 | 0.0299 | −0.0261 | 0.0071 | 0.0028 | 0.0002 | 0.0071 |
80 | 0.0100 | −0.0040 | 0.0393 | −0.0347 | 0.0746 | −0.0665 | 0.0778 | −0.0194 | −0.0049 | −0.0112 |
82 | −0.0102 | −0.0149 | −0.0092 | 0.0090 | −0.0479 | 0.0427 | −0.0491 | −0.0065 | 0.0069 | 0.0113 |
84 | −0.0083 | 0.0261 | 0.0066 | −0.0166 | 0.0501 | −0.0616 | 0.0511 | 0.0019 | −0.0071 | 0.0047 |
86 | 0.0097 | −0.0285 | 0.0098 | −0.0039 | −0.0283 | 0.0363 | −0.0030 | −0.0119 | 0.0027 | −0.0247 |
88 | 0.0080 | −0.0171 | 0.0376 | −0.0053 | −0.0018 | 0.0137 | −0.0670 | 0.0543 | −0.0107 | 0.0299 |
90 | 0.0004 | 0.0058 | −0.0212 | −0.0148 | 0.0270 | −0.0351 | 0.0868 | −0.0716 | 0.0114 | −0.0092 |
92 | −0.0092 | 0.0108 | −0.0065 | 0.0254 | −0.0271 | 0.0318 | −0.0581 | 0.0498 | −0.0131 | −0.0105 |
94 | −0.0030 | −0.0127 | 0.0158 | −0.0105 | −0.0069 | −0.0063 | 0.0205 | −0.0275 | 0.0211 | 0.0136 |
96 | −0.0013 | 0.0183 | −0.0143 | −0.0029 | 0.0122 | 0.0162 | −0.0378 | 0.0498 | −0.0372 | −0.0132 |
98 | −0.0082 | −0.0025 | 0.0050 | 0.0042 | −0.0075 | −0.0074 | 0.0464 | −0.0450 | −0.0018 | 0.0440 |
100 | 0.0024 | 0.0045 | −0.0069 | −0.0185 | 0.0321 | −0.0032 | −0.0590 | 0.0491 | 0.0022 | −0.0348 |
102 | 0.0079 | −0.0209 | 0.0305 | −0.0017 | −0.0291 | 0.0004 | 0.0290 | −0.0286 | 0.0255 | −0.0067 |
104 | −0.0068 | 0.0159 | −0.0168 | −0.0171 | 0.0762 | −0.0455 | 0.0380 | −0.0024 | −0.0532 | 0.0350 |
106 | 0.0255 | −0.0310 | 0.0206 | 0.0079 | −0.0752 | 0.0517 | −0.0724 | 0.0449 | 0.0200 | −0.0148 |
108 | 0.0067 | 0.0058 | 0.0032 | −0.0259 | 0.0754 | −0.0539 | 0.0677 | −0.0419 | 0.0093 | −0.0105 |
110 | 0.0140 | −0.0221 | 0.0281 | −0.0205 | −0.0068 | 0.0153 | −0.0284 | −0.0038 | 0.0068 | 0.0054 |
112 | 0.0038 | 0.0026 | −0.0135 | 0.0091 | 0.0000 | −0.0288 | 0.0453 | −0.0301 | 0.0267 | −0.0145 |
114 | 0.0037 | −0.0025 | 0.0131 | −0.0130 | 0.0097 | 0.0164 | −0.0285 | 0.0519 | −0.0431 | 0.0146 |
116 | 0.0031 | −0.0048 | −0.0214 | 0.0300 | −0.0192 | 0.0049 | −0.0084 | −0.0337 | 0.0207 | −0.0001 |
118 | −0.0089 | 0.0246 | 0.0040 | −0.0013 | −0.0183 | 0.0253 | −0.0134 | 0.0577 | −0.0340 | 0.0044 |
120 | 0.0307 | −0.0370 | −0.0012 | −0.0117 | 0.0310 | −0.0332 | 0.0111 | −0.0526 | 0.0341 | −0.0087 |
122 | −0.0304 | 0.0258 | 0.0136 | −0.0081 | 0.0030 | −0.0201 | 0.0488 | 0.0089 | −0.0075 | −0.0008 |
124 | −0.0035 | 0.0057 | −0.0226 | 0.0141 | −0.0082 | 0.0414 | −0.0734 | 0.0179 | −0.0180 | 0.0109 |
126 | −0.0103 | 0.0037 | 0.0118 | −0.0103 | 0.0064 | −0.0437 | 0.0687 | −0.0304 | 0.0321 | −0.0084 |
128 | −0.0064 | −0.0024 | −0.0042 | 0.0012 | −0.0133 | 0.0579 | −0.0557 | 0.0057 | −0.0106 | −0.0008 |
130 | 0.0079 | 0.0076 | −0.0022 | 0.0067 | 0.0061 | −0.0374 | 0.0240 | 0.0021 | 0.0136 | −0.0061 |
132 | 0.0103 | −0.0192 | 0.0018 | 0.0005 | −0.0075 | 0.0220 | −0.0046 | −0.0068 | 0.0006 | −0.0029 |
134 | 0.0163 | 0.0040 | −0.0078 | 0.0168 | −0.0098 | −0.0047 | −0.0062 | 0.0080 | 0.0008 | −0.0014 |
136 | 0.0033 | −0.0132 | 0.0162 | −0.0260 | 0.0252 | −0.0124 | 0.0054 | 0.0027 | −0.0120 | 0.0094 |
References
- Kaufman, A.A.; Hansen, R.O.; Kleinberg, R.L.K. Principles of the Magnetic Methods in Geophysics; Elsevier: Oxford, UK, 2009; p. 301. [Google Scholar]
- Gvishiani, A.; Soloviev, A. Observations, Modeling and Systems Analysis in Geomagnetic Data Interpretation; Springer: Cham, Switzerland, 2020; p. 311. [Google Scholar]
- Eppelbaum, L.V. Geophysical Potential Fields: Geological and Environmental Applications; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Fu, C.Y.; Chen, Y.T.; Qi, G.Z. Fundamentals of Geophysics; Science Press: Beijing, China, 1985. (In Chinese) [Google Scholar]
- Xu, W.Y. Geomagnetism; Seismological Press: Beijing, China, 2003. (In Chinese) [Google Scholar]
- Witze, A. Earth’s magnetic field is acting up and geologists don’t know why. Nature 2019, 565, 143–144. [Google Scholar] [CrossRef] [PubMed]
- Alken, P.; Thébault, E.; Beggan, C.D.; Amit, H.; Aubert, J.; Baerenzung, J.; Bondar, T.N.; Brown, W.J.; Califf, S.; Chambodut, A.; et al. International Geomagnetic Reference Field: The thirteenth generation. Earth Planets Space 2021, 73, 49. [Google Scholar] [CrossRef]
- Alldredge, L.R. Geomagnetic local and regional harmonic analysis. J. Geophys. Res. 1982, 87, 1921–1926. [Google Scholar] [CrossRef]
- Alldredge, L.R. On regional magnetic charts. J. Geomag. Geoelectr. 1987, 39, 723–738. [Google Scholar] [CrossRef]
- Haines, G.V. Regional magnetic field modeling: A review. J. Geomag. Geoelectr. 1990, 42, 1001–1018. [Google Scholar] [CrossRef] [Green Version]
- Haines, G.V.; Newitt, L.R. Canadian geomagnetic reference field 1985. J. Geomag. Geoelectr. 1986, 38, 895–921. [Google Scholar] [CrossRef] [Green Version]
- Barton, C.E. Global and regional geomagnetic reference fields. Explor. Geophys. 1988, 19, 401–416. [Google Scholar] [CrossRef]
- Newitt, L.R.; Haines, G.V. A Canadian geomagnetic reference field for epoch 1987.5. J. Geomag. Geoelectr. 1989, 41, 249–260. [Google Scholar] [CrossRef] [Green Version]
- Ates, A.; Kearey, P.; Tufan, S. New gravity and magnetic anomaly maps of Turkey. Geophys. J. Int. 1999, 116, 499–502. [Google Scholar] [CrossRef] [Green Version]
- Kote, M.; Haok, V. Modeling European magnetic repeat station and survey data by SCHA in search of time-variation anomalies. Phys. Earth Planet Inter. 2000, 122, 205–220. [Google Scholar]
- Buyuksarac, A.; Jordanova, D.; Ates, A.; Karloukovski, V. Interpretation of the gravity and magnetic anomalies of the Cappadocia region, central Turkey. Pure Appl. Geophys. 2005, 162, 2197–2213. [Google Scholar] [CrossRef]
- Di, C.-Z.; Gu, Z.-W.; Soriano, B.M.; Chen, B.; Lao, C.G.; Zhang, Y.; Xin, C.-J.; Gao, J.-T. The study of magnetic field models for Philippines and its neighboring regions. Chin. J. Geophys. 2011, 54, 1061–1074. (in Chinese). [Google Scholar] [CrossRef]
- Xia, G.H.; Cheng, S.L.; Wu, L.L. The geomagnetic field chart of China in 1980.0 and the mathematical model. Chin. J. Geophys. 1988, 31, 82–89. (In Chinese) [Google Scholar]
- Xu, W.Y.; Xia, G.H.; An, Z.C. Magnetic survey and China GRF2000. Earth Planet Space 2003, 55, 215–217. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.Y.; Wei, Z.G.; Xia, G.H. Regional features of the secular variations of the geomagnetic field in China for 2000. Chin. J. Geophys. 2005, 48, 551–560. (In Chinese) [Google Scholar] [CrossRef]
- An, Z.C. Spherical cap harmonic analysis of geomagnetic field for China. Chin. J. Geophys. 1993, 36, 753–764. (In Chinese) [Google Scholar]
- An, Z.C. Spherical cap harmonic analysis of the geomagnetic field and its secular variation in China for 2000. Chin. J. Geophys. 2003, 46, 68–77. (In Chinese) [Google Scholar] [CrossRef]
- An, Z.C. Spherical cap harmonic model of the Chinese geomagnetic reference field for 1936. Chin. J. Geophys. 2003, 46, 624–627. (In Chinese) [Google Scholar] [CrossRef]
- An, Z.C. Spherical cap harmonic analysis of the geomagnetic residual field in China for 1950~1990. Chin. J. Geophys. 2003, 46, 767–771. (In Chinese) [Google Scholar] [CrossRef]
- An, Z.-C.; Tang, D.-H.; Wang, Y.-H.; Yuan-Fang, X.; Golovkov, V.P.; Rotanova, N.M.; Kharitonov, A.L. MAGSAT magnetic anomaly maps for Asia. Chin. J. Geophys. 1996, 39, 461–469. (In Chinese) [Google Scholar]
- An, Z.C.; Tang, D.H.; Rotanova, N.M.; Golovkov, V.P. Spherical cap Harmonic analysis of MAGSAT magnetic anomalies over Asia. Chin. J. Geophys. 1998, 41, 168–173. (In Chinese) [Google Scholar]
- Gao, J.-T.; An, Z.-C.; Gu, Z.-W.; Han, W.; Zhan, Z.-J.; Yao, T.-Q. Selection of geomagnetic normal field and calculation of geomagnetic anomalous field. Chin. J. Geophys. 2005, 48, 66–73. (In Chinese) [Google Scholar] [CrossRef]
- Gu, Z.-W.; An, Z.-C.; Gao, J.-T.; Han, W. Spherical cap harmonic analysis of the geomagnetic field in the Beijing-Tianjin-Hebei region. Chin. J. Geophys. 2004, 47, 1128–1134. (In Chinese) [Google Scholar] [CrossRef]
- Chen, B.; Ni, Z.; Ru-Gang, X.; Zuo-Wen, G.; Jie-Hao, Y.; Lei, W. The Geomagnetic field in China and neighboring regions for the 2010.0 epoch. Chin. J. Geophys. 2016, 59, 1446–1456. (In Chinese) [Google Scholar] [CrossRef]
- Qiu, Y.D. Inversion of lithospheric magnetic field in China mainland with CHAMP and Swarm satellite magnetic survey data. Ph.D. Thesis, Wuhan University, Wuhan, China, 2017. [Google Scholar]
- Chattopadhyay, G.; Chattopadhyay, C. A probe into the chaotic nature of total ozone time series by correlation dimension method. Soft Comput. 2008, 12, 1007–1012. [Google Scholar] [CrossRef] [Green Version]
- Aldebert, C.; Koenig, G.; Baklouti, M.; Fraunié, P.; Devenon, J.-L. A Fast and Generic Method to Identify Parameters in Complex and Embedded Geophysical Models: The Example of Turbulent Mixing in the Ocean. J. Adv. Modeling Earth Syst. 2021, 13, e2020MS002245. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Chattopadhyay, G. Modeling and Prediction of Monthly Total Ozone Concentrations by Use of an Artificial Neural Network Based on Principal Component Analysis. Pure Appl. Geophys. 2012, 169, 1891–1908. [Google Scholar] [CrossRef]
- Yu, Z.W. A new interpolation method for geological surface. J. China Univ. Min. Technol. 1987, 4, 69–76. [Google Scholar]
- Gu, Z.; Zhan, Z.; Gao, J.; Han, W.; An, Z.; Yao, T.; Chen, B. Geomagnetic Survey and Geomagnetic Model research in China. Earth Planets Space 2006, 58, 741–750. [Google Scholar] [CrossRef] [Green Version]
- Gu, Z.; Zhan, Z.; Gao, J.; Yao, T.; Han, W. Application of GPS in Geomagnetic Survey. Earth Planets Space 2006, 58, 723–729. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Liu, L.; Ren, Z. Equinoctial asymmetry in solar quiet fields along the 120° E meridian chain. Appl. Sci. 2021, 11, 9150. [Google Scholar] [CrossRef]
- Gu, Z.-W.; Bin, C.; Jin-Tian, G.; Chang-Jiang, X.; Jie-Hao, Y.; Chuan-Zhi, D. Research of geomagnetic spatial-temporal variations in China by NOC method. Chin. J. Geophys. 2009, 52, 2602–2612. (In Chinese) [Google Scholar] [CrossRef]
- Chen, B.; Yuan, J.; Wang, C.; Rugang, X.U.; Wang, Z.; China Earthquake Administration; AE Agency. Data processing flowchart of Chinese mobile geomagnetic monitoring array. J. Seismo. Res. 2017, 40, 335–339. (In Chinese) [Google Scholar]
- Maus, S. An ellipsoidal harmonic representation of Earth’s lithospheric magnetic field to degree and order 720. Geochem. Geophys. Geosystems 2010, 11, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Chulliat, A. The US/UK World Magnetic Model for 2015–2020. In Technical Report; National Geophysical Data Center: Boulder, CO, USA, 2015. [Google Scholar]
- Linjuan, N.; Yaodong, Q.; Wenbin, S.; Suqin, Z.; Bingbing, Z. Accuracy evaluation and applicability of IGRF12 and WMM2015 model in Chinese Mainland. Geomat. Inf. Sci. Wuhan Univ. 2017, 42, 1229–1235. (In Chinese) [Google Scholar] [CrossRef]
- Mao, F. Three-Dimensional Spherical Cap Harmonic Analysis of China Geomagnetic Field at 2015.0. Master’s Thesis, Institute of Geophysics, China Earthquake Administration, Beijing, China, 2019. [Google Scholar]
- Yan, F.; Huang, Y.; Liu, S.; Li, Y.-J.; Jiang, Y. Modeling of CHAMP satellite data according to the 3D surface spline model of geomagnetic fields. Appl. Geophys. 2021, 17, 616–623. [Google Scholar]
R = 5 | R = 4.5 | R = 4 | R = 3.5 | R = 3 | R = 2.5 | R = 2 | |
---|---|---|---|---|---|---|---|
K = 1 | |||||||
Dσ (degree) | 0.1539 | 0.1528 | 0.1503 | 0.1499 | 0.1453 | 0.1407 | 0.1317 |
Iσ (degree) | 0.1010 | 0.0994 | 0.0986 | 0.0961 | 0.0946 | 0.0924 | 0.0857 |
Fσ (nT) | 108.60 | 108.38 | 107.07 | 106.18 | 102.45 | 99.64 | 93.73 |
Xσ (nT) | 87.28 | 86.27 | 85.50 | 83.63 | 81.69 | 80.36 | 73.98 |
Yσ (nT) | 75.71 | 74.96 | 73.80 | 73.72 | 71.36 | 69.33 | 65.01 |
Zσ (nT) | 113.23 | 112.70 | 111.44 | 110.13 | 106.98 | 103.57 | 97.86 |
K = 2 | |||||||
Dσ (degree) | 0.1542 | 0.1529 | 0.1507 | 0.1498 | 0.14528 | 0.1407 | 0.1318 |
Iσ (degree) | 0.0994 | 0.0987 | 0.0983 | 0.0956 | 0.0944 | 0.0923 | 0.0857 |
Fσ (nT) | 108.66 | 108.38 | 107.24 | 106.18 | 102.46 | 99.60 | 93.74 |
Xσ (nT) | 86.51 | 85.67 | 85.38 | 83.28 | 81.70 | 80.23 | 73.96 |
Yσ (nT) | 75.55 | 74.94 | 73.89 | 73.67 | 71.36 | 69.33 | 65.03 |
Zσ (nT) | 112.98 | 112.68 | 111.53 | 110.03 | 106.89 | 103.56 | 97.85 |
K = 3 | |||||||
Dσ (degree) | 0.1535 | 0.1529 | 0.1505 | 0.1498 | 0.1453 | 0.1407 | 0.1318 |
Iσ (degree) | 0.0990 | 0.0987 | 0.0982 | 0.0956 | 0.0944 | 0.0923 | 0.0857 |
Fσ (nT) | 108.69 | 108.32 | 106.94 | 106.06 | 102.50 | 99.68 | 93.70 |
Xσ (nT) | 86.06 | 85.74 | 85.09 | 83.24 | 81.71 | 80.31 | 73.94 |
Yσ (nT) | 75.44 | 74.94 | 73.89 | 73.66 | 71.36 | 69.34 | 65.02 |
Zσ (nT) | 112.97 | 112.61 | 111.35 | 109.97 | 106.90 | 103.60 | 97.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.; Yuan, J.; Ni, Z.; Wang, C. Chinese Geomagnetic Reference Field 2020 by the Revised Surface Spline Method. Appl. Sci. 2022, 12, 2297. https://doi.org/10.3390/app12052297
Chen B, Yuan J, Ni Z, Wang C. Chinese Geomagnetic Reference Field 2020 by the Revised Surface Spline Method. Applied Sciences. 2022; 12(5):2297. https://doi.org/10.3390/app12052297
Chicago/Turabian StyleChen, Bin, Jiehao Yuan, Zhe Ni, and Can Wang. 2022. "Chinese Geomagnetic Reference Field 2020 by the Revised Surface Spline Method" Applied Sciences 12, no. 5: 2297. https://doi.org/10.3390/app12052297
APA StyleChen, B., Yuan, J., Ni, Z., & Wang, C. (2022). Chinese Geomagnetic Reference Field 2020 by the Revised Surface Spline Method. Applied Sciences, 12(5), 2297. https://doi.org/10.3390/app12052297