Effects of Core Stabilization Exercise Programs on Changes in Erector Spinae Contractile Properties and Isokinetic Muscle Function of Adult Females with a Sedentary Lifestyle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Participants
2.2. Procedures
2.2.1. Tensiomyography
2.2.2. Isokinetic Muscle–Joint Function Test
2.3. Core Stabilization Exercise Program
2.4. Data Analysis
2.4.1. Analysis of Mechanical and Neuromuscular Properties of Muscle
2.4.2. Analysis of Isokinetic Muscle Function of Trunk
2.5. Statistical Processing
3. Results
3.1. Analysis of Mechanical and Neuromuscular Properties of the Erector Spinae
3.2. Analysis of Isokinetic Muscle Function of Trunk
4. Discussion and Limitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Owen, N.; Healy, G.N.; Matthews, C.E.; Dunstan, D.W. Too Much Sitting: The Population-Health Science of Sedentary Behavior. Exerc. Sport Sci. Rev. 2010, 38, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Romero-Blanco, C.; Rodríguez-Almagro, J.; Onieva-Zafra, M.D.; Parra-Fernández, M.L.; Prado-Laguna, M.D.C.; Hernández-Martínez, A. Physical Activity and Sedentary Lifestyle in University Students: Changes during Confinement Due to the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2020, 17, 6567. [Google Scholar] [CrossRef] [PubMed]
- Stockwell, S.; Trott, M.; Tully, M.; Shin, J.; Barnett, Y.; Butler, L.; McDermott, D.; Schuch, F.; Smith, L. Changes in physical activity and sedentary behaviours from before to during the COVID-19 pandemic lockdown: A systematic review. BMJ Open Sport Exerc. Med. 2021, 7, e000960. [Google Scholar] [CrossRef]
- Pratt, M.; Varela, A.R.; Salvo, D.; Kohl, H.W., III; Ding, D. Attacking the pandemic of physical inactivity: What is holding us back? Br. J. Sports Med. 2020, 54, 760–762. [Google Scholar] [CrossRef] [PubMed]
- Ozemek, C.; Lavie, C.J.; Rognmo, Ø. Global physical activity levels-Need for intervention. Prog. Cardiovasc. Dis. 2019, 62, 102–107. [Google Scholar] [CrossRef]
- Heneweer, H.; Vanhees, L.; Picavet, H.S.J. Physical activity and low back pain: A U-shaped relation? Pain 2009, 143, 21–25. [Google Scholar] [CrossRef]
- Moreno, M.A.; Catai, A.M.; Teodori, R.M.; Borges, B.L.A.; Cesar, M.d.C.; Silva, E.d. Effect of a muscle stretching program using the Global Postural Reeducation method on respiratory muscle strength and thoracoabdominal mobility of sedentary young males. J. Bras. Pneumol. 2007, 33, 679–686. [Google Scholar] [CrossRef] [Green Version]
- Kett, A.R.; Sichting, F. Sedentary behaviour at work increases muscle stiffness of the back: Why roller massage has potential as an active break intervention. Appl. Ergon. 2020, 82, 102947. [Google Scholar] [CrossRef]
- Cho, K.H.; Beom, J.W.; Lee, T.S.; Lim, J.H.; Lee, T.H.; Yuk, J.H. Trunk Muscles Strength as a Risk Factor for Nonspecific Low Back Pain: A Pilot Study. Ann. Rehabil. Med. 2014, 38, 234–240. [Google Scholar] [CrossRef] [Green Version]
- Saiklang, P.; Puntumetakul, R.; Selfe, J.; Yeowell, G. An Evaluation of an Innovative Exercise to Relieve Chronic Low Back Pain in Sedentary Workers. Hum. Factors 2020, 1–15. [Google Scholar] [CrossRef]
- Kett, A.R.; Sichting, F.; Milani, T.L. The Effect of Sitting Posture and Postural Activity on Low Back Muscle Stiffness. Biomechanics 2021, 1, 214–224. [Google Scholar] [CrossRef]
- Kuster, R.P.; Bauer, C.M.; Baumgartner, D. Is active sitting on a dynamic office chair controlled by the trunk muscles? PLoS ONE 2020, 15, e0242854. [Google Scholar] [CrossRef] [PubMed]
- Mörl, F.; Bradl, I. Lumbar posture and muscular activity while sitting during office work. J. Electromyogr. Kinesiol. 2013, 23, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Seo, K.S.; Lee, S.U. Effect of Superimposed Electromyostimulation on Back Extensor Strengthening: A Pilot Study. J. Strength Cond. Res. 2016, 30, 2470–2475. [Google Scholar] [CrossRef]
- Hanna, F.; Daas, R.N.; El-Shareif, T.J.; Al-Marridi, H.H.; Al-Rojoub, Z.M.; Adegboye, O.A. The Relationship Between Sedentary Behavior, Back Pain, and Psychosocial Correlates Among University Employees. Front. Public Health 2019, 7, 80. [Google Scholar] [CrossRef]
- Nowotny, A.H.; Calderon, M.G.; de Souza, P.A.; Aguiar, A.F.; Léonard, G.; Alves, B.M.O.; Amorim, C.F.; da Silva, R.A. Lumbar stabilisation exercises versus back endurance-resistance exercise training in athletes with chronic low back pain: Protocol of a randomised controlled trial. BMJ Open Sport Exerc. Med. 2018, 4, e000452. [Google Scholar] [CrossRef]
- Bento, T.P.F.; dos Santos Genebra, C.V.; Maciel, N.M.; Cornelio, G.P.; Simeão, S.F.A.P.; de Vitta, A. Low back pain and some associated factors: Is there any difference between genders? Braz. J. Phys. Ther. 2020, 24, 79–87. [Google Scholar] [CrossRef]
- Wu, A.; March, L.; Zheng, X.; Huang, J.; Wang, X.; Zhao, J.; Blyth, F.M.; Smith, E.; Buchbinder, R.; Hoy, D. Global low back pain prevalence and years lived with disability from 1990 to 2017: Estimates from the Global Burden of Disease Study 2017. Ann. Transl. Med. 2020, 8, 299. [Google Scholar] [CrossRef]
- Palacios-Ceña, D.; Albaladejo-Vicente, R.; Hernández-Barrera, V.; Lima-Florencio, L.; Fernández-de-Las-Peñas, C.; Jimenez-Garcia, R.; López-de-Andrés, A.; de Miguel-Diez, J.; Perez-Farinos, N. Female gender is associated with a higher prevalence of chronic neck pain, chronic low back pain, and migraine: Results of the Spanish National Health Survey, 2017. Pain. Med. 2021, 22, 382–395. [Google Scholar] [CrossRef]
- Patil, S.; Mahajan, A. Effect of Graded Plank Protocol on Core Stability in Sedentary Dentists. Int. J. Res. Rev. 2020, 7, 407–411. [Google Scholar]
- Narouei, S.; hossein Barati, A.; Akuzawa, H.; Talebian, S.; Ghiasi, F.; Akbari, A.; hossein Alizadeh, M. Effects of core stabilization exercises on thickness and activity of trunk and hip muscles in subjects with nonspecific chronic low back pain. J. Bodyw. Mov. Ther. 2020, 24, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.G.; Yong, M.S.; Na, S.S. The Effect of Trunk Stabilization Exercises with a Swiss Ball on Core Muscle Activation in the Elderly. J. Phys. Ther. Sci. 2014, 26, 1473–1474. [Google Scholar] [CrossRef] [Green Version]
- Akuthota, V.; Ferreiro, A.; Moore, T.; Fredericson, M. Core Stability Exercise Principles. Curr. Sports Med. Rep. 2008, 7, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Miguel, A.; Pardos-Sevilla, A.I.; Jiménez-Fuente, A.; Hubler-Figueiró, T.; d’Orsi, E.; Rech, C.R. Associations of Mutually Exclusive Categories of Physical Activity and Sedentary Time With Metabolic Syndrome in Older Adults: An Isotemporal substitution approach. J. Aging Phys. Act. 2021, 1, 1–9. [Google Scholar] [CrossRef]
- Hopstock, L.A.; Deraas, T.S.; Henriksen, A.; Martiny-Huenger, T.; Grimsgaard, S. Changes in adiposity, physical activity, cardiometabolic risk factors, diet, physical capacity and well-being in inactive women and men aged 57–74 years with obesity and cardiovascular risk–A 6-month complex lifestyle intervention with 6-month follow-up. PLoS ONE 2021, 16, e0256631. [Google Scholar] [CrossRef] [PubMed]
- Lind, L.; Zethelius, B.; Lindberg, E.; Pedersen, N.L.; Byberg, L. Changes in leisure-time physical activity during the adult life span and relations to cardiovascular risk factors—Results from multiple Swedish studies. PLoS ONE 2021, 16, e0256476. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Nam, J.Y. The Impact of Sedentary Behavior and Self-Rated Health on Cardiovascular Disease and Cancer among South Korean Elderly Persons Using the Korea National Health and Nutrition Examination Survey (KNHANES) 2014–2018 Data. Int. J. Environ. Res. Public Health 2021, 18, 7426. [Google Scholar] [CrossRef]
- García-Unanue, J.; Felipe, J.L.; Bishop, D.; Colino, E.; Ubago-Guisado, E.; López-Fernández, J.; Hernando, E.; Gallardo, L.; Sánchez-Sánchez, J. Muscular and Physical Response to an Agility and Repeated Sprint Tests According to the Level of Competition in Futsal Players. Front. Psychol. 2020, 11, 3671. [Google Scholar] [CrossRef]
- Kim, S.; Jee, Y. Effects of 3D Moving Platform Exercise on Physiological Parameters and Pain in Patients with Chronic Low Back Pain. Medicina 2020, 56, 351. [Google Scholar] [CrossRef]
- Sipaviciene, S.; Kliziene, I.; Pozeriene, J.; Zaicenkoviene, K. Effects of a Twelve-Week Program of Lumbar-Stabilization Exercises on Multifidus Muscles, Isokinetic Peak Torque and Pain for Women with Chronic Low Back Pain. J. Pain Relief. 2018, 7, 1–10. [Google Scholar] [CrossRef]
- Domaszewski, P.; Pakosz, P.; Konieczny, M.; Bączkowicz, D.; Sadowska-Krępa, E. Caffeine-Induced Effects on Human Skeletal Muscle Contraction Time and Maximal Displacement Measured by Tensiomyography. Nutrients 2021, 13, 815. [Google Scholar] [CrossRef] [PubMed]
- Thabet, A.A.; Alshehri, M.A. Efficacy of deep core stability exercise program in postpartum women with diastasis recti abdominis: A randomised controlled trial. J. Musculoskelet Neuronal. Interact. 2019, 19, 62–68. [Google Scholar] [PubMed]
- Križaj, D.; Šimunič, B.; Žagar, T. Short-term repeatability of parameters extracted from radial displacement of muscle belly. J. Electromyogr. Kinesiol. 2008, 18, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Martín-Rodríguez, S.; Loturco, I.; Hunter, A.M.; Rodríguez-Ruiz, D.; Munguia-Izquierdo, D. Reliability and measurement error of tensiomyography to assess mechanical muscle function: A systematic review. J. Strength Cond. Res. 2017, 31, 3524–3536. [Google Scholar] [CrossRef] [PubMed]
- Loturco, I.; Pereira, L.A.; Kobal, R.; Kitamura, K.; Ramírez-Campillo, R.; Zanetti, V.; Abad, C.C.C.; Nakamura, F.Y. Muscle Contraction Velocity: A Suitable Approach to Analyze the Functional Adaptations in Elite Soccer Players. J. Sports Sci. Med. 2016, 15, 483–491. [Google Scholar]
- Lohr, C.; Braumann, K.-M.; Reer, R.; Schroeder, J.; Schmidt, T. Reliability of tensiomyography and myotonometry in detecting mechanical and contractile characteristics of the lumbar erector spinae in healthy volunteers. Eur. J. Appl. Physiol. 2018, 118, 1349–1359. [Google Scholar] [CrossRef]
- Dahmane, R.; Valenčič, V.; Knez, N.; Eržen, I. Evaluation of the ability to make non-invasive estimation of muscle contractile properties on the basis of the muscle belly response. Med. Biol. Eng. Comput. 2001, 39, 51–55. [Google Scholar] [CrossRef]
- Valenčič, V.; Knez, N. Measuring of Skeletal Muscles’ Dynamic Properties. Artif. Organs 1997, 21, 240–242. [Google Scholar] [CrossRef]
- Agten, A.; Stevens, S.; Verbrugghe, J.; Eijnde, B.O.; Timmermans, A.; Vandenabeele, F. The lumbar multifidus is characterised by larger type I muscle fibres compared to the erector spinae. Anat. Cell Biol. 2020, 53, 143–150. [Google Scholar] [CrossRef]
- Mannion, A.F.; Dumas, G.A.; Cooper, R.G.; Espinosa, F.; Faris, M.W.; Stevenson, J.M. Muscle fibre size and type distribution in thoracic and lumbar regions of erector spinae in healthy subjects without low back pain: Normal values and sex differences. J. Anat. 1997, 190, 505–513. [Google Scholar] [CrossRef]
- Karp, J.R. Muscle Fiber Types and Training. Strength Cond. J. 2001, 23, 21–26. [Google Scholar] [CrossRef]
- de Paula Simola, R.Á.; Harms, N.; Raeder, C.; Kellmann, M.; Meyer, T.; Pfeiffer, M.; Ferrauti, A. Assessment of Neuromuscular Function After Different Strength Training Protocols Using Tensiomyography. J. Strength Cond. Res. 2015, 29, 1339–1348. [Google Scholar] [CrossRef] [PubMed]
- García-Manso, J.M.; Rodríguez-Matoso, D.; Sarmiento, S.; de Saa, Y.; Vaamonde, D.; Rodríguez-Ruiz, D.; Da Silva-Grigoletto, M.E. Effect of high-load and high-volume resistance exercise on the tensiomyographic twitch response of biceps brachii. J. Electromyogr. Kinesiol. 2012, 22, 612–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Manso, J.M.; Rodríguez-Ruiz, D.; Rodríguez-Matoso, D.; de Saa, Y.; Sarmiento, S.; Quiroga, M. Assessment of muscle fatigue after an ultra-endurance triathlon using tensiomyography (TMG). J. Sports Sci. 2011, 29, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Proske, U.; Morgan, D.L. Do cross-bridges contribute to the tension during stretch of passive muscle? J. Muscle Res. Cell Motil. 1999, 20, 433–442. [Google Scholar] [CrossRef]
- Solomonow, M. Neuromuscular manifestations of viscoelastic tissue degradation following high and low risk repetitive lumbar flexion. J. Electromyogr. Kinesiol. 2012, 22, 155–175. [Google Scholar] [CrossRef]
- Wilke, J.; Vogt, L.; Pfarr, T.; Banzer, W. Reliability and validity of a semi-electronic tissue compliance meter to assess muscle stiffness. J. Back. Musculoskelet Rehabil. 2018, 31, 991–997. [Google Scholar] [CrossRef]
- Kenny, G.P.; Reardon, F.D.; Zaleski, W.; Reardon, M.L.; Haman, F.; Ducharme, M.B. Muscle temperature transients before, during, and after exercise measured using an intramuscular multisensor probe. J. Appl. Physiol. 2003, 94, 2350–2357. [Google Scholar] [CrossRef] [Green Version]
- Janecki, D.; Jarocka, E.; Jaskólska, A.; Marusiak, J.; Jaskólski, A. Muscle passive stiffness increases less after the second bout of eccentric exercise compared to the first bout. J. Sci. Med. Sport 2011, 14, 338–343. [Google Scholar] [CrossRef]
- Areeudomwong, P.; Puntumetakul, R.; Jirarattanaphochai, K.; Wanpen, S.; Kanpittaya, J.; Chatchawan, U.; Yamauchi, J. Core Stabilization Exercise Improves Pain Intensity, Functional Disability and Trunk Muscle Activity of Patients with Clinical Lumbar Instability: A Pilot Randomized Controlled Study. J. Phys. Ther. Sci. 2012, 24, 1007–1012. [Google Scholar] [CrossRef] [Green Version]
- Mannion, A.F.; Taimela, S.; Müntener, M.; Dvorak, J. Active Therapy for Chronic Low Back Pain: Part 1. Effects on Back Muscle Activation, Fatigability, and Strength. Spine 2001, 26, 897–908. [Google Scholar] [CrossRef] [PubMed]
- Calatayud, J.; Casaña, J.; Martín, F.; Jakobsen, M.D.; Colado, J.C.; Andersen, L.L. Progression of Core Stability Exercises Based on the Extent of Muscle Activity. Am. J. Phys. Med. Rehabil. 2017, 96, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Ko, K.J.; Kang, S.J. Effects of 12-week core stabilization exercise on the Cobb angle and lumbar muscle strength of adolescents with idiopathic scoliosis. J. Exerc. Rehabil. 2017, 13, 244–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekendiz, B.; Cug, M.; Korkusuz, F. Effects of Swiss-ball Core Strength Training on Strength, Endurance, Flexibility, and Balance in Sedentary Women. J. Strength Cond. Res. 2010, 24, 3032–3040. [Google Scholar] [CrossRef] [Green Version]
- Barr, K.P.; Griggs, M.; Cadby, T. Lumbar Stabilization Core Concepts And Current Literature, Part 1. Am. J. Phys. Med. Rehabil. 2005, 84, 473–480. [Google Scholar] [CrossRef]
- Miyake, Y.; Kobayashi, R.; Kelepecz, D.; Nakajima, M. Core exercises elevate trunk stability to facilitate skilled motor behavior of the upper extremities. J. Bodyw. Mov. Ther. 2013, 17, 259–265. [Google Scholar] [CrossRef]
- Granacher, U.; Gollhofer, A.; Hortobágyi, T.; Kressig, R.W.; Muehlbauer, T. The Importance of Trunk Muscle Strength for Balance, Functional Performance, and Fall Prevention in Seniors: A Systematic Review. Sports Med. 2013, 43, 627–641. [Google Scholar] [CrossRef]
- Maeo, S.; Takahashi, T.; Takai, Y.; Kanehisa, H. Trunk Muscle Activities During Abdominal Bracing: Comparison Among Muscles And Exercises. J. Sports Sci. Med. 2013, 12, 467–474. [Google Scholar]
Variables | Values | |
---|---|---|
Participants | N | 105 |
Age (years) | 30.99 ± 10.85 | |
Weight (kg) | 57.79 ± 10.44 | |
Height (cm) | 159.99 ± 15.03 | |
Physical Activity | Vigorous intensity (day/week) | 0.29 ± 15.03 |
Vigorous intensity (min/day) | 10.19 ± 19.65 | |
Moderate intensity (day/week) | 0.66 ± 0.90 | |
Moderate intensity (min/day) | 18.35 ± 29.80 | |
Sedentary time (min/day) | 469.71 ± 45.16 |
Classification | Exercise Type | Exercise | Intensity | Time |
---|---|---|---|---|
Warm-up | Self-myofascial release (Foam roller) | Quadriceps rolling Hamstring rolling Gluteus rolling Back (lower and upper) rolling | Pain-free range 20 s/1 set Total 3 sets | 10 min |
Stretching (Static and Dynamic) | Quadriceps stretching Hamstring stretching Gluteus stretching Erector spinae stretching Cat-camel stretching Hip flexion and extension | |||
Main Exercise | Core stabilization exercise | Bracing and Hollowing Plank (side and prone) Hip Bridge Back Extension Bird dog Trunk Twist | 1 rep (5 s contraction 5 s relaxation) 20 reps/1 set Total 3 sets | 40 min |
Cool-down | Self-myofascial release (Foam roller) | Quadriceps rolling Hamstring rolling Gluteus rolling Back (lower and upper) rolling | Pain-free range 20 s/1 set Total 3 sets | 10 min |
Stretching (Static and Dynamic) | Quadriceps stretching Hamstring stretching Gluteus stretching Erector spinae stretching Cat-camel stretching Hip flexion and extension |
Variables | Pre | Post | z | p |
---|---|---|---|---|
Tc (ms) | 16.37 ± 3.98 | 16.38 ± 3.44 | −1.143 | 0.253 |
Dm (mm) | 2.49 ± 1.32 | 2.87 ± 1.14 | −3.998 | <0.001 *** |
Vc90 (mm/ms) | 0.06 ± 0.04 | 0.07 ± 0.03 | −3.889 | <0.001 *** |
Variables | Pre | Post | z | p | ||
---|---|---|---|---|---|---|
60°/s | Flexor | PT (Nm) | 132.19 ± 35.39 | 135.61 ± 29.74 | −0.686 | 0.493 |
PT (%BW) | 227.52 ± 49.23 | 235.01 ± 37.99 | −0.887 | 0.375 | ||
Extensor | PT (Nm) | 101.54 ± 37.79 | 118.92 ± 34.66 | −6.605 | <0.001 *** | |
PT (%BW) | 174.21 ± 57.58 | 206.11 ± 55.59 | −6.681 | <0.001 *** | ||
Ratio | 139.43 ± 38.16 | 120.72 ± 31.86 | −5.424 | <0.001 *** | ||
90°/s | Flexor | PT (Nm) | 130.25 ± 34.65 | 133.55 ± 31.24 | −1.461 | 0.144 |
PT (%BW) | 224.20 ± 46.92 | 232.03 ± 41.68 | −1.950 | 0.051 | ||
Extensor | PT (Nm) | 88.55 ± 31.71 | 106.83 ± 30.75 | −7.218 | <0.001 *** | |
PT (%BW) | 152.30 ± 48.66 | 183.65 ± 46.55 | −7.232 | <0.001 *** | ||
Ratio | 159.21 ± 52.48 | 132.07 ± 31.52 | −6.285 | <0.001 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.; Kim, C.; An, S.; Jeon, K. Effects of Core Stabilization Exercise Programs on Changes in Erector Spinae Contractile Properties and Isokinetic Muscle Function of Adult Females with a Sedentary Lifestyle. Appl. Sci. 2022, 12, 2501. https://doi.org/10.3390/app12052501
Lee H, Kim C, An S, Jeon K. Effects of Core Stabilization Exercise Programs on Changes in Erector Spinae Contractile Properties and Isokinetic Muscle Function of Adult Females with a Sedentary Lifestyle. Applied Sciences. 2022; 12(5):2501. https://doi.org/10.3390/app12052501
Chicago/Turabian StyleLee, Hyungwoo, Chanki Kim, Seungho An, and Kyoungkyu Jeon. 2022. "Effects of Core Stabilization Exercise Programs on Changes in Erector Spinae Contractile Properties and Isokinetic Muscle Function of Adult Females with a Sedentary Lifestyle" Applied Sciences 12, no. 5: 2501. https://doi.org/10.3390/app12052501
APA StyleLee, H., Kim, C., An, S., & Jeon, K. (2022). Effects of Core Stabilization Exercise Programs on Changes in Erector Spinae Contractile Properties and Isokinetic Muscle Function of Adult Females with a Sedentary Lifestyle. Applied Sciences, 12(5), 2501. https://doi.org/10.3390/app12052501