Identification of Sex Differences within Lunge Decelerations via Lower Extremity Support Moments; Implications for ACL Injury Disparity, Prevention, and Rehabilitation
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Protocol
2.3. Motion Capture and Data Analysis
2.4. Statistical Analysis
3. Results
3.1. Sagittal Plane
3.2. Frontal Plane
3.3. Transverse Plane
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boden, B.P.; Dean, G.S.; Feagin, J.A.; Garrett, W.E. Mechanisms of Anterior Cruciate Ligament Injury. Orthopedics 2000, 23, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Heidt, R.S.; Colosimo, A.J.; McLean, S.G.; van den Bogert, A.J.; Paterno, M.V.; Succop, P. Biomechanical Measures of Neuromuscular Control and Valgus Loading of the Knee Predict Anterior Cruciate Ligament Injury Risk in Female Athletes: A Prospective Study. Am. J. Sports Med. 2005, 33, 492–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powers, C.M. The Influence of Abnormal Hip Mechanics on Knee Injury: A Biomechanical Perspective. J. Orthop. Sports Phys. Ther. 2010, 40, 42–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hewett, T.E.; Myer, G.D.; Ford, K.R. Anterior Cruciate Ligament Injuries in Female Athletes: Part 1, Mechanisms and Risk Factors. Am. J. Sports Med. 2006, 34, 299–311. [Google Scholar] [CrossRef]
- Speer, K.P.; Spritzer, C.E.; Bassett, F.H.; Feagin, J.A.; Garrett, W.E. Osseous Injury Associated with Acute Tears of the Anterior Cruciate Ligament. Am. J. Sports Med. 1992, 20, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Abt, J.P.; Sell, T.C.; Laudner, K.G.; McCrory, J.L.; Loucks, T.L.; Berga, S.L.; Lephart, S.M. Neuromuscular and Biomechanical Characteristics Do Not Vary across the Menstrual Cycle. Knee Surg. Sports Traumatol. Arthrosc. 2007, 15, 901–907. [Google Scholar] [CrossRef] [PubMed]
- Beaulieu, M.L.; McLean, S.G. Sex-Dimorphic Landing Mechanics and Their Role within the Noncontact ACL Injury Mechanism: Evidence, Limitations and Directions. Sports Med. Arthrosc. Rehabil. Ther. Technol. 2012, 4, 10. [Google Scholar] [CrossRef] [Green Version]
- Chaudhari, A.M.W.; Lindenfeld, T.N.; Andriacchi, T.P.; Hewett, T.E.; Riccobene, J.; Myer, G.D.; Noyes, F.R. Knee and Hip Loading Patterns at Different Phases in the Menstrual Cycle: Implications for the Gender Difference in Anterior Cruciate Ligament Injury Rates. Am. J. Sports Med. 2007, 35, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Feucht, M.J.; Mauro, C.S.; Brucker, P.U.; Imhoff, A.B.; Hinterwimmer, S. The Role of the Tibial Slope in Sustaining and Treating Anterior Cruciate Ligament Injuries. Knee Surg. Sports Traumatol. Arthrosc. 2013, 21, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Hewett, T.E.; Stroupe, A.L.; Nance, T.A.; Noyes, F.R. Plyometric Training in Female Athletes. Decreased Impact Forces and Increased Hamstring Torques. Am. J. Sports Med. 1996, 24, 765–773. [Google Scholar] [CrossRef]
- Sturnick, D.R.; Vacek, P.M.; DeSarno, M.J.; Gardner-Morse, M.G.; Tourville, T.W.; Slauterbeck, J.R.; Johnson, R.J.; Shultz, S.J.; Beynnon, B.D. Combined Anatomic Factors Predicting Risk of Anterior Cruciate Ligament Injury for Males and Females. Am. J. Sports Med. 2015, 43, 839–847. [Google Scholar] [CrossRef] [PubMed]
- Silvers, H.J.; Mandelbaum, B.R. Prevention of Anterior Cruciate Ligament Injury in the Female Athlete. Br. J. Sports Med. 2007, 41 (Suppl. S1), i52–i59. [Google Scholar] [CrossRef] [PubMed]
- Stearns, K.M.; Powers, C.M. Improvements in Hip Muscle Performance Result in Increased Use of the Hip Extensors and Abductors during a Landing Task. Am. J. Sports Med. 2014, 42, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Tsuda, E.; Okamura, Y.; Otsuka, H.; Komatsu, T.; Tokuya, S. Direct Evidence of the Anterior Cruciate Ligament-Hamstring Reflex Arc in Humans. Am. J. Sports Med. 2001, 29, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Decker, M.J.; Torry, M.R.; Wyland, D.J.; Sterett, W.I.; Richard Steadman, J. Gender Differences in Lower Extremity Kinematics, Kinetics and Energy Absorption during Landing. Clin. Biomech. 2003, 18, 662–669. [Google Scholar] [CrossRef]
- Fleming, B.C.; Renstrom, P.A.; Ohlen, G.; Johnson, R.J.; Peura, G.D.; Beynnon, B.D.; Badger, G.J. The Gastrocnemius Muscle Is an Antagonist of the Anterior Cruciate Ligament. J. Orthop. Res. 2001, 19, 1178–1184. [Google Scholar] [CrossRef]
- Hashemi, J.; Breighner, R.; Chandrashekar, N.; Hardy, D.M.; Chaudhari, A.M.; Shultz, S.J.; Slauterbeck, J.R.; Beynnon, B.D. Hip Extension, Knee Flexion Paradox: A New Mechanism for Non-Contact ACL Injury. J. Biomech. 2011, 44, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Herzog, W.; Read, L.J. Lines of Action and Moment Arms of the Major Force-Carrying Structures Crossing the Human Knee Joint. J. Anat. 1993, 182 Pt 2, 213–230. [Google Scholar] [PubMed]
- Kanamori, A.; Zeminski, J.; Rudy, T.W.; Li, G.; Fu, F.H.; Woo, S.L.-Y. The Effect of Axial Tibial Torque on the Function of the Anterior Cruciate Ligament: A Biomechanical Study of a Simulated Pivot Shift Test. Arthroscopy 2002, 18, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, M.T.; Wong, E.K.; Woo, S.L.; Yagi, M.; Debski, R.E. Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads. J. Orthop. Res. 2004, 22, 85–89. [Google Scholar] [CrossRef]
- Myer, G.D.; Ford, K.R.; Brent, J.L.; Hewett, T.E. Differential Neuromuscular Training Effects on ACL Injury Risk Factors in”high-Risk” versus “Low-Risk” Athletes. BMC Musculoskelet. Disord. 2007, 8, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quatman, C.; Hewett, T. The Anterior Cruciate Ligament Injury Controversy: Is “Valgus Collapse” a Sex-Specific Mechanism? Br. J. Sports Med. 2009, 43, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Shimokochi, Y.; Shultz, S.J. Mechanisms of Noncontact Anterior Cruciate Ligament Injury. J. Athl. Train. 2008, 43, 396–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ford, K.R.; Myer, G.D.; Hewett, T.E. Valgus Knee Motion during Landing in High School Female and Male Basketball Players. Med. Sci. Sports Exerc. 2003, 35, 1745–1750. [Google Scholar] [CrossRef] [Green Version]
- Hewett, T.E.; Lindenfeld, T.N.; Riccobene, J.V.; Noyes, F.R. The Effect of Neuromuscular Training on the Incidence of Knee Injury in Female Athletes. A Prospective Study. Am. J. Sports Med. 1999, 27, 699–706. [Google Scholar] [CrossRef]
- Kernozek, T.W.; Torry, M.R.; Van Hoof, H.; Cowley, H.; Tanner, S. Gender Differences in Frontal and Sagittal Plane Biomechanics during Drop Landings. Med. Sci. Sports Exerc. 2005, 37, 1003–1012; discussion 1013. [Google Scholar]
- Lephart, S.M.; Ferris, C.M.; Riemann, B.L.; Myers, J.B.; Fu, F.H. Gender Differences in Strength and Lower Extremity Kinematics during Landing. Clin. Orthop. Relat. Res. 2002, 162–169. [Google Scholar] [CrossRef]
- Ford, K.R.; Myer, G.D.; Toms, H.E.; Hewett, T.E. Gender Differences in the Kinematics of Unanticipated Cutting in Young Athletes. Med. Sci. Sports Exerc. 2005, 37, 124–129. [Google Scholar] [CrossRef] [Green Version]
- Steele, J.R.; Brown, J.M. Effects of Chronic Anterior Cruciate Ligament Deficiency on Muscle Activation Patterns during an Abrupt Deceleration Task. Clin. Biomech. 1999, 14, 247–257. [Google Scholar] [CrossRef]
- Chappell, J.D.; Creighton, R.A.; Giuliani, C.; Yu, B.; Garrett, W.E. Kinematics and Electromyography of Landing Preparation in Vertical Stop-Jump: Risks for Noncontact Anterior Cruciate Ligament Injury. Am. J. Sports Med. 2007, 35, 235–241. [Google Scholar] [CrossRef]
- Chappell, J.D.; Yu, B.; Kirkendall, D.T.; Garrett, W.E. A Comparison of Knee Kinetics between Male and Female Recreational Athletes in Stop-Jump Tasks. Am. J. Sports Med. 2002, 30, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Fagenbaum, R.; Darling, W.G. Jump Landing Strategies in Male and Female College Athletes and the Implications of Such Strategies for Anterior Cruciate Ligament Injury. Am. J. Sports Med. 2003, 31, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Malinzak, R.A.; Colby, S.M.; Kirkendall, D.T.; Yu, B.; Garrett, W.E. A Comparison of Knee Joint Motion Patterns between Men and Women in Selected Athletic Tasks. Clin. Biomech. 2001, 16, 438–445. [Google Scholar] [CrossRef]
- Griffin, L.Y.; Agel, J.; Albohm, M.J.; Arendt, E.A.; Dick, R.W.; Garrett, W.E.; Garrick, J.G.; Hewett, T.E.; Huston, L.; Ireland, M.L.; et al. Noncontact Anterior Cruciate Ligament Injuries: Risk Factors and Prevention Strategies. J. Am. Acad. Orthop. Surg. 2000, 8, 141–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLean, S.G.; Huang, X.; Su, A.; Van Den Bogert, A.J. Sagittal Plane Biomechanics Cannot Injure the ACL during Sidestep Cutting. Clin. Biomech. 2004, 19, 828–838. [Google Scholar] [CrossRef] [Green Version]
- Besier, T.F.; Lloyd, D.G.; Ackland, T.R.; Cochrane, J.L. Anticipatory Effects on Knee Joint Loading during Running and Cutting Maneuvers. Med. Sci. Sports Exerc. 2001, 33, 1176–1181. [Google Scholar] [CrossRef] [PubMed]
- Podraza, J.T.; White, S.C.; Ramsey, D.K. Multi-Plane, Multi-Joint Lower Extremity Support Moments during a Rapid Deceleration Task: Implications for Knee Loading. Hum. Mov. Sci. 2018, 58, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Winter, D.A. Overall Principle of Lower Limb Support during Stance Phase of Gait. J. Biomech. 1980, 13, 923–927. [Google Scholar] [CrossRef]
- Bell, A.L.; Pedersen, D.R.; Brand, R.A. A Comparison of the Accuracy of Several Hip Center Location Prediction Methods. J. Biomech. 1990, 23, 617–621. [Google Scholar] [CrossRef]
- Bell, A.L.; Brand, R.A.; Pedersen, D.R. Prediction of Hip Joint Centre Location from External Landmarks. Hum. Mov. Sci. 1989, 8, 3–16. [Google Scholar] [CrossRef]
- Yu, B.; Gabriel, D.; Noble, L.; An, K. Estimate of the Optimum Cutoff Frequency for the Butterworth Low-Pass Digital Filter. J. App. Biomech. 1999, 15, 318–329. [Google Scholar] [CrossRef]
- Bisseling, R.W.; Hof, A.L. Handling of Impact Forces in Inverse Dynamics. J. Biomech. 2006, 39, 2438–2444. [Google Scholar] [CrossRef]
- Podraza, J.T.; White, S.C. Effect of Knee Flexion Angle on Ground Reaction Forces, Knee Moments and Muscle Co-Contraction during an Impact-like Deceleration Landing: Implications for the Non-Contact Mechanism of ACL Injury. Knee 2010, 17, 291–295. [Google Scholar] [CrossRef]
- Kristianslund, E.; Krosshaug, T.; van den Bogert, A.J. Effect of Low Pass Filtering on Joint Moments from Inverse Dynamics: Implications for Injury Prevention. J. Biomech. 2012, 45, 666–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markolf, K.L.; Burchfield, D.M.; Shapiro, M.M.; Shepard, M.F.; Finerman, G.A.; Slauterbeck, J.L. Combined Knee Loading States That Generate High Anterior Cruciate Ligament Forces. J. Orthop. Res. 1995, 13, 930–935. [Google Scholar] [CrossRef] [PubMed]
- Kernozek, T.W.; Ragan, R.J. Estimation of Anterior Cruciate Ligament Tension from Inverse Dynamics Data and Electromyography in Females during Drop Landing. Clin. Biomech. 2008, 23, 1279–1286. [Google Scholar] [CrossRef] [PubMed]
- Beynnon, B.D.; Fleming, B.C.; Johnson, R.J.; Nichols, C.E.; Renström, P.A.; Pope, M.H. Anterior Cruciate Ligament Strain Behavior during Rehabilitation Exercises in Vivo. Am. J. Sports Med. 1995, 23, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Draganich, L.F.; Vahey, J.W. An in Vitro Study of Anterior Cruciate Ligament Strain Induced by Quadriceps and Hamstrings Forces. J. Orthop. Res. 1990, 8, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, J.; Breighner, R.; Chandrashekar, N.; Slauterbeck, J.R.; Beynnon, B.D. Letter to the Editor: A Framework for Assessing the Viability of Proposed Anterior Cruciate Ligament Injury Mechanisms. Am. J. Sports Med. 2010, 38, NP3-7. [Google Scholar] [CrossRef] [PubMed]
- Howell, S.M. Anterior Tibial Translation during a Maximum Quadriceps Contraction: Is It Clinically Significant? Am. J. Sports Med. 1990, 18, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Kvist, J.; Gillquist, J. Sagittal Plane Knee Translation and Electromyographic Activity during Closed and Open Kinetic Chain Exercises in Anterior Cruciate Ligament-Deficient Patients and Control Subjects. Am. J. Sports Med. 2001, 29, 72–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, B.; Garrett, W.E. Mechanisms of Non-Contact ACL Injuries. Br. J. Sports Med. 2007, 41 (Suppl. S1), i47–i51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappozzo, A.; Catani, F.; Leardini, A.; Benedetti, M.G.; Croce, U.D. Position and Orientation in Space of Bones during Movement: Experimental Artefacts. Clin. Biomech. 1996, 11, 90–100. [Google Scholar] [CrossRef]
- Holden, N.P.; Stanhope, S.J. The Effect of Variation in Knee Center Location Estimates on Net Knee Joint Moments. Gait Posture 1998, 7, 1–6. [Google Scholar] [CrossRef]
- Holden, J.; Orsini, J.; Siegel, K.; Kepple, T.; Gerber, L.; Stanhope, S. Surface Movement Errors in Shank Kinematics and Knee Kinetics during Gait. Gait Posture 1997, 5, 217–227. [Google Scholar] [CrossRef]
- Winter, D.A. Biomechanics and Motor Control of Human Movement, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1990. [Google Scholar]
- Bates, N.A.; Ford, K.R.; Myer, G.D.; Hewett, T.E. Kinetic and Kinematic Differences between First and Second Landings of a Drop Vertical Jump Task: Implications for Injury Risk Assessments. Clin. Biomech. 2013, 28, 459–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickin, D.C.; Johann, E.; Wang, H.; Popp, J.K. Combined Effects of Drop Height and Fatigue on Landing Mechanics in Active Females. J. Appl. Biomech. 2015, 31, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Vanrenterghem, J.; Venables, E.; Pataky, T.; Robinson, M.A. The Effect of Running Speed on Knee Mechanical Loading in Females during Side Cutting. J. Biomech. 2012, 45, 2444–2449. [Google Scholar] [CrossRef] [PubMed]
- Chappell, J.D.; Limpisvasti, O. Effect of a Neuromuscular Training Program on the Kinetics and Kinematics of Jumping Tasks. Am. J. Sports Med. 2008, 36, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
Condition | Sex | Plane | ||
---|---|---|---|---|
Sagittal | Frontal | Transverse | ||
0–25 | Female | 0.30 ± 0.32 (0.102–0.498) * | 0.01 ± 0.23 (−0.133–0.153) | 0.45 ± 0.32 (0.252–0.648) * |
Male | −0.25 ± 0.54 (−0.584–0.084) | 0.71 ± 0.44 (0.437–0.983) ^ | 0.10 ± 0.15 (0.007–0.193) | |
25–50 | Female | 0.28 ± 0.29 (0.073–0.488) * | −0.09 ± 0.22 (−0.247–0.067) | 0.08 ± 0.12 (−0.006–0.166) |
Male | −0.36 ± 0.58 (−0.775–0.055) | 0.18 ± 0.19 (0.044–0.316) ^^ | 0.12 ± 0.17 (−0.002–0.242) | |
50–75 | Female | 0.22 ± 0.44 (−0.095–0.535) | −0.06 ± 0.22 (−0.217–0.097) | 0.01 ± 0.13 (−0.083–0.103) |
Male | −0.05 ± 0.64 (−0.508–0.408) | 0.08 ± 0.23 (−0.085–0.245) | 0.12 ± 0.20 (−0.023–0.263) |
Hip | ||||
Condition | Sex | Plane | ||
Sagittal | Frontal | Transverse | ||
0–25 | Female | 0.02 ± 0.21 (−0.130–0.170) | 0.08 ± 0.27 (−0.113–0.273) * | 0.05 ± 0.10 (−0.022–0.122) |
Male | 0.54 ± 0.50 (0.182–0.898) ^ | −0.18 ± 0.24 (−0.3517–−0.0083) | 0.11 ± 0.15 (0.003–0.217) | |
25–50 | Female | 0.03 ± 0.28 (−0.170–0.230) | 0.11 ± 0.24 (−0.062–0.282) ** | 0.09 ± 0.11 (0.011–0.169) |
Male | 0.71 ± 0.40 (0.424–0.996) ^^ | −0.17 ± 0.25 (−0.349–0.009) | 0.11 ± 0.15 (0.003–0.217) | |
50–75 | Female | 0.21 ± 0.33 (−0.026–0.446) | 0.03 ± 0.21 (−0.120–0.180) | 0.11 ± 0.12 (0.024–0.196) |
Male | 0.40 ± 0.51 (0.035–0.765) | −0.06 ± 0.28 (−0.260–0.140) | 0.12 ± 0.16 (0.006–0.235) | |
Knee | ||||
Condition | Sex | Plane | ||
Sagittal | Frontal | Transverse | ||
0–25 | Female | 0.17 ± 0.16 (0.056–0.285) | 0.06 ± 0.08 (0.003–0.117) | 0.02 ± 0.02 (0.006–0.034) |
Male | 0.34 ± 0.17 (0.218–0.462) * | 0.02 ± 0.08 (−0.037–0.077) | 0.02 ± 0.03 (−0.002–0.042) | |
25–50 | Female | 0.17 ± 0.19 (0.034–0.306) | 0.01 ± 0.07 (−0.040–0.060) | 0.02 ± 0.02 (0.006–0.034) |
Male | 0.43 ± 0.16 (0.316–0.545) ** | −0.01 ± 0.13 (−0.103–0.083) | 0.02 ± 0.03 (−0.002–0.042) | |
50–75 | Female | 0.34 ± 0.22 (0.183–0.497) | −0.01 ± 0.08 (−0.067–0.047) | 0.04 ± 0.03 (0.019–0.062) |
Male | 0.43 ± 0.20 (0.287–0.573) | 0.00 ± 0.14 (−0.1–0.1) | 0.03 ± 0.06 (−0.013–0.073) | |
Ankle | ||||
Condition | Sex | Plane | ||
Sagittal | Frontal | Transverse | ||
0–25 | Female | −0.16 ± 0.27 (−0.353–0.033) | −0.03 ± 0.08 (−0.087–0.027) | 0.01 ± 0.02 (−0.004–0.024) |
Male | 0.04 ± 0.19 (−0.096–0.176) | −0.03 ± 0.11 (−0.109–0.049) | 0.02 ± 0.02 (0.006–0.034) | |
25–50 | Female | −0.14 ± 0.15 (−0.247–−0.033) | −0.01 ± 0.07 (−0.060–0.040) | 0.01 ± 0.02 (−0.004–0.024) |
Male | 0.08 ± 0.14 (−0.020–0.180) * | −0.01 ± 0.09 (−0.074–0.054) | 0.03 ± 0.02 (0.016–0.044) ** | |
50–75 | Female | −0.09 ± 0.24 (−0.262–0.082) | 0.02 ± 0.11 (−0.059–0.099) | 0.02 ± 0.02 (0.006–0.034) |
Male | 0.09 ± 0.25 (−0.089–0.269) | −0.01 ± 0.07 (−0.060–0.040) | 0.02 ± 0.03 (−0.002–0.041) |
Condition | Sex | Plane | ||
---|---|---|---|---|
Sagittal | Frontal | Transverse | ||
0–25 | Female | 1.93 ± 0.95 (1.25–2.61) | 1.07 ± 0.51 (0.705–1.44) * | −0.27 ± 0.19 (−0.406–−0.134) |
Male | 2.07 ± 1.28 (1.15–2.99) | 0.41 ± 0.49 (0.059–0.761) | −0.35 ± 0.39 (−0.629–−0.071) | |
25–50 | Female | 2.54 ± 0.64 (2.08–2.99) | 0.74 ± 0.51 (0.375–1.10) | −0.43 ± 0.25 (−0.609–−0.251) |
Male | 2.95 ± 0.65 (2.49–3.42) | 0.31 ± 0.50 (−0.048–0.668) | −0.55 ± 0.31 (−0.772–−0.328) | |
50–75 | Female | 2.69 ± 0.69 (2.19–3.18) | 0.63 ± 0.54 (0.243–1.02) | −0.51 ± 0.24 (−0.682–−0.338) |
Male | 2.92 ± 0.62 (2.48–3.36) | 0.27 ± 0.50 (−0.088–0.628) | −0.58 ± 0.31 (−0.802–−0.358) |
Hip | ||||
Condition | Sex | Plane | ||
Sagittal | Frontal | Transverse | ||
0–25 | Female | 0.27 ± 0.62 (−0.174–0.714) | −1.34 ± 0.38 (−1.61–−1.07) | −0.14 ± 0.15 (−0.247–−0.033) |
Male | −0.31 ± 0.70 (−0.811–0.191) | −0.91 ± 0.45 (−1.23–−0.588) ^ | −0.22 ± 0.31 (−0.442–0.002) | |
25–50 | Female | −0.14 ± 0.49 (−0.491–0.211) * | −1.19 ± 0.30 (−2.12–−1.70) | −0.27 ± 0.17 (−0.392–−0.148) |
Male | −0.92 ±0.57 (−1.33–−0.512) | −0.92 ± 0.57 (−1.33–−0.512) | −0.35 ± 0.23 (−0.515–−0.186) | |
50–75 | Female | −0.37 ± 0.52 (−0.742–0.002) ** | −1.15 ± 0.25 (−1.33–−0.971) | −0.32 ±0.16 (−0.435–−0.206) |
Male | −1.02 ± 0.68 (−1.51–−0.534) | −0.76 ± 0.58 (−1.17–−0.3451) | −0.36 ± 0.27(−0.553–−0.167) | |
Knee | ||||
Condition | Sex | Plane | ||
Sagittal | Frontal | Transverse | ||
0–25 | Female | 1.43 ± 0.55 (1.04–1.82) | −0.17 ± 0.23 (−0.334–−0.006) | 0.13 ± 0.11 (0.051–0.209) |
Male | 1.57 ± 0.55 (1.18–1.96) | −0.38 ± 0.27 (−0.573–−0.187) | 0.13 ± 0.11 (0.051–0.209) | |
25–50 | Female | 1.68 ± 0.56 (1.28–2.08) | −0.33 ± 0.33 (−0.566–−0.094) | 0.20 ± 0.10 (0.128–0.272) |
Male | 1.84 ± 0.42 (1.54–2.14) | −0.49 ± 0.34 (−0.733–−0.246) | 0.24 ± 0.13 (0.147–0.333) | |
50–75 | Female | 1.80 ± 0.53 (1.42–2.18) | −0.40 ± 0.29 (−0.607–−0.193) | 0.24 ± 0.10 (0.169–0.312) |
Male | 1.73 ± 0.52 (1.36–2.10) | −0.41 ± 0.34 (−0.653–−0.167) | 0.25 ± 0.15 (0.143–0.357) | |
Ankle | ||||
Condition | Sex | Plane | ||
Sagittal | Frontal | Transverse | ||
0–25 | Female | −0.77 ± 0.74 (−1.30–−0.241) | 0.11 ± 0.25 (−0.069–0.289) | 0.00 ± 0.04 (−0.03−0.03) |
Male | −0.19 ± 0.51 (−0.555–0.175) | 0.12 ± 0.23 (−0.045–0.285) | 0.00 ± 0.07 (−0.05−0.05) | |
25–50 | Female | −0.73 ± 0.44 (−1.04–−0.415) | 0.12 ± 0.21 (−0.030–0.270) | 0.03 ± 0.04 (0.001−0.059) |
Male | −0.18 ± 0.35 (−0.430–0.070) * | 0.12 ± 0.21 (−0.030–0.270) | 0.03 ± 0.07 (−0.020−0.080) | |
50–75 | Female | −0.52 ± 0.59 (−0.942–−0.098) | 0.11 ± 0.26 (−0.076–0.296) | 0.05 ± 0.04 (0.021–0.079) |
Male | −0.17 ± 0.51 (−0.534–0.195) | 0.08 ± 0.15 (−0.027–0.187) | 0.02 ± 0.07 (−0.030–0.070) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podraza, J.T.; White, S.C. Identification of Sex Differences within Lunge Decelerations via Lower Extremity Support Moments; Implications for ACL Injury Disparity, Prevention, and Rehabilitation. Appl. Sci. 2022, 12, 2616. https://doi.org/10.3390/app12052616
Podraza JT, White SC. Identification of Sex Differences within Lunge Decelerations via Lower Extremity Support Moments; Implications for ACL Injury Disparity, Prevention, and Rehabilitation. Applied Sciences. 2022; 12(5):2616. https://doi.org/10.3390/app12052616
Chicago/Turabian StylePodraza, Jeffery T., and Scott C. White. 2022. "Identification of Sex Differences within Lunge Decelerations via Lower Extremity Support Moments; Implications for ACL Injury Disparity, Prevention, and Rehabilitation" Applied Sciences 12, no. 5: 2616. https://doi.org/10.3390/app12052616
APA StylePodraza, J. T., & White, S. C. (2022). Identification of Sex Differences within Lunge Decelerations via Lower Extremity Support Moments; Implications for ACL Injury Disparity, Prevention, and Rehabilitation. Applied Sciences, 12(5), 2616. https://doi.org/10.3390/app12052616