Investigation of the Thiva 2020–2021 Earthquake Sequence Using Seismological Data and Space Techniques
Abstract
:1. Introduction
2. Past Earthquakes
3. Seismological Data and Methods
3.1. Location and Relocation of Seismicity
3.2. Spatiotemporal Evolution of the Sequence
3.3. Focal Mechanisms and Activated Structures at Depth
4. Coulomb Stress Transfer Due to the 2 December 2020 Mainshock
5. Instrumental and Imaging Geodesy to Map Local Deformation
5.1. GNSS Geodetic Data to Map Local Deformation
5.2. Imaging Geodesy
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Additional Macroseismic Data
Appendix B. Seismological Methods
Origin Time | Latitude (°N) | Longitude (°E) | Depth (km) | ML | Strike1 (°) | Dip1 (°) | Rake1 (°) | CLID |
---|---|---|---|---|---|---|---|---|
2 December 2020 12:37:37.7 | 38.3001 | 23.4327 | 3.4 | 3.3 | 240.2 | 46.6 | −142.6 | 1 |
10 July 2021 12:54:17.7 | 38.3233 | 23.3276 | 9.8 | 3.2 | 293.9 | 37.1 | −94.6 | 2 |
20 July 2021 07:36:20.4 | 38.3233 | 23.3254 | 10.0 | 2.9 | 298.1 | 31.5 | −50.1 | 2 |
21 July 2021 03:54:53.9 | 38.3286 | 23.3064 | 9.9 | 3.1 | 238.3 | 38.3 | −122.6 | 2 |
25 July 2021 19:12:44.1 | 38.3273 | 23.3055 | 10.9 | 3.6 | 261.8 | 41.2 | −120.7 | 2 |
29 August 2021 18:15:23.0 | 38.2942 | 23.4932 | 11.8 | 3.2 | 317.1 | 44.3 | −48.9 | 9 |
30 August 2021 06:08:12.1 | 38.2876 | 23.4836 | 13.0 | 2.9 | 325.7 | 67 | −13.1 | 9 |
2 September 2021 09:03:54.2 | 38.3222 | 23.3335 | 10.9 | 3.0 | 248.7 | 39.7 | −125.5 | 5 |
2 September 2021 14:46:15.8 | 38.3248 | 23.3370 | 9.5 | 3.3 | 286.9 | 34.7 | −99.7 | 6 |
3 September 2021 05:13:51.6 | 38.3260 | 23.3263 | 8.2 | 3.5 | 290.8 | 32.9 | −95.5 | 2 |
10 September 2021 13:51:33.0 | 38.3211 | 23.3439 | 9.6 | 3.5 | 287.1 | 36.6 | −117.5 | 11 |
11 September 2021 05:28:16.0 | 38.3226 | 23.3545 | 9.7 | 3.5 | 279.3 | 35.6 | −95.4 | 11 |
11 September 2021 09:42:38.8 | 38.3233 | 23.3503 | 10.7 | 3.3 | 293.8 | 32.5 | −95.2 | 11 |
11 September 2021 17:45:48.8 | 38.3220 | 23.3427 | 10.6 | 3.2 | 278.7 | 38.6 | −110.8 | 10 |
21 September 2021 01:50:54.8 | 38.3207 | 23.3564 | 11.1 | 3.2 | 248.5 | 42.4 | −130.5 | 11 |
22 September 2021 01:03:07.7 | 38.3187 | 23.3574 | 9.3 | 3.4 | 295.3 | 28.9 | −93 | 11 |
23 September 2021 19:28:56.2 | 38.3145 | 23.3376 | 11.3 | 3.1 | 279.6 | 38.6 | −94.2 | 5 |
28 September 2021 11:41:55.0 | 38.3180 | 23.3442 | 10.3 | 3.1 | 98.4 | 36.6 | −93.8 | 10 |
29 September 2021 00:20:39.0 | 38.3176 | 23.3433 | 11.3 | 2.9 | 238.1 | 48 | −138.2 | 10 |
10 October 2021 05:37:41.1 | 38.3252 | 23.3513 | 10.6 | 2.8 | 242.5 | 48.7 | −137.1 | 11 |
Appendix C. Geodetic Methods
References
- Papazachos, B.C. Seismicity of the Aegean and surrounding area. Tectonophysics 1990, 178, 287–308. [Google Scholar] [CrossRef]
- Armijo, R.; Lyon-Caen, H.; Papanastassiou, D. East-west extension and Holocene normal-fault scarps in the Hellenic arc. Geology 1992, 20, 491–494. [Google Scholar] [CrossRef]
- McKenzie, D. Some remarks on the development of sedimentary basins. Earth Planet. Sci. Lett. 1978, 40, 25–32. [Google Scholar] [CrossRef]
- Ganas, A.; Parsons, T. Three-dimensional model of hellenic arc deformation and origin of the cretan uplift. J. Geophys. Res. Solid Earth 2009, 114, B06404. [Google Scholar] [CrossRef] [Green Version]
- Briole, P.; Ganas, A.; Elias, P.; Dimitrov, D. The GPS velocity field of the Aegean. New observations, contribution of the earthquakes, crustal blocks model. Geophys. J. Int. 2021, 226, 468–492. [Google Scholar] [CrossRef]
- Makropoulos, K.; Kaviris, G.; Kouskouna, V. An updated and extended earthquake catalogue for Greece and adjacent areas since 1900. Nat. Hazards Earth Syst. Sci. 2012, 12, 1425–1430. [Google Scholar] [CrossRef] [Green Version]
- Kaviris, G.; Elias, P.; Kapetanidis, V.; Serpetsidaki, A.; Karakonstantis, A.; Plicka, V.; De Barros, L.; Sokos, E.; Kassaras, I.; Sakkas, V.; et al. The Western Gulf of Corinth (Greece) 2020–2021 Seismic Crisis and Cascading Events: First Results from the Corinth Rift Laboratory Network. Seism. Rec. 2021, 1, 85–95. [Google Scholar] [CrossRef]
- Pacchiani, F.; Lyon-Caen, H. Geometry and spatio-temporal evolution of the 2001 Agios Ioanis earthquake swarm (Corinth Rift, Greece). Geophys. J. Int. 2010, 180, 59–72. [Google Scholar] [CrossRef]
- Kapetanidis, V.; Deschamps, A.; Papadimitriou, P.; Matrullo, E.; Karakonstantis, A.; Bozionelos, G.; Kaviris, G.; Serpetsidaki, A.; Lyon-Caen, H.; Voulgaris, N.; et al. The 2013 earthquake swarm in Helike, Greece: Seismic activity at the root of old normal faults. Geophys. J. Int. 2015, 202, 2044–2073. [Google Scholar] [CrossRef] [Green Version]
- Kapetanidis, V.; Michas, G.; Kaviris, G.; Vallianatos, F. Spatiotemporal Properties of Seismicity and Variations of Shear-Wave Splitting Parameters in the Western Gulf of Corinth (Greece). Appl. Sci. 2021, 11, 6573. [Google Scholar] [CrossRef]
- Kaviris, G.; Spingos, I.; Kapetanidis, V.; Papadimitriou, P.; Voulgaris, N.; Makropoulos, K. Upper crust seismic anisotropy study and temporal variations of shear-wave splitting parameters in the western Gulf of Corinth (Greece) during 2013. Phys. Earth Planet. Inter. 2017, 269, 148–164. [Google Scholar] [CrossRef]
- De Barros, L.; Cappa, F.; Deschamps, A.; Dublanchet, P. Imbricated Aseismic Slip and Fluid Diffusion Drive a Seismic Swarm in the Corinth Gulf, Greece. Geophys. Res. Lett. 2020, 47, e2020GL087142. [Google Scholar] [CrossRef]
- Kassaras, I.; Kapetanidis, V.; Ganas, A.; Tzanis, A.; Kosma, C.; Karakonstantis, A.; Valkaniotis, S.; Chailas, S.; Kouskouna, V.; Papadimitriou, P. The New Seismotectonic Atlas of Greece (v1.0) and Its Implementation. Geosciences 2020, 10, 447. [Google Scholar] [CrossRef]
- Stucchi, M.; Rovida, A.; Gomez Capera, A.A.; Alexandre, P.; Camelbeeck, T.; Demircioglu, M.B.; Gasperini, P.; Kouskouna, V.; Musson, R.M.W.; Radulian, M.; et al. The SHARE European Earthquake Catalogue (SHEEC) 1000–1899. J. Seismol. 2013, 17, 523–544. [Google Scholar] [CrossRef] [Green Version]
- Ganas, A.; Oikonomou, I.A.; Tsimi, C. NOAfaults: A digital database for active faults in Greece. Bull. Geol. Soc. Greece 2017, 47, 518. [Google Scholar] [CrossRef] [Green Version]
- Ganas, A. NOAFAULTS KMZ layer Version 3.0 (2020 update) (V3.0) [Data set]. Zenodo 2020. [Google Scholar] [CrossRef]
- Kiratzi, A. The 12 June 2017 Mw 6.3 Lesvos Island (Aegean Sea) earthquake: Slip model and directivity estimated with finite-fault inversion. Tectonophysics 2018, 724–725, 1–10. [Google Scholar] [CrossRef]
- Papadimitriou, P.; Kassaras, I.; Kaviris, G.; Tselentis, G.-A.; Voulgaris, N.; Lekkas, E.; Chouliaras, G.; Evangelidis, C.; Pavlou, K.; Kapetanidis, V.; et al. The 12th June 2017 Mw = 6.3 Lesvos earthquake from detailed seismological observations. J. Geodyn. 2018, 115, 23–42. [Google Scholar] [CrossRef]
- Ganas, A.; Elias, P.; Kapetanidis, V.; Valkaniotis, S.; Briole, P.; Kassaras, I.; Argyrakis, P.; Barberopoulou, A.; Moshou, A. The July 20, 2017 M6.6 Kos Earthquake: Seismic and Geodetic Evidence for an Active North-Dipping Normal Fault at the Western End of the Gulf of Gökova (SE Aegean Sea). Pure Appl. Geophys. 2019, 176, 4177–4211. [Google Scholar] [CrossRef]
- Triantafyllou, I.; Papadopoulos, G.A.; Lekkas, E. Impact on built and natural environment of the strong earthquakes of 23 April 1933, and 20 July 2017, in the southeast Aegean Sea, eastern Mediterranean. Nat. Hazards 2020, 100, 671–695. [Google Scholar] [CrossRef]
- Papadimitriou, P.; Kapetanidis, V.; Karakonstantis, A.; Spingos, I.; Kassaras, I.; Sakkas, V.; Kouskouna, V.; Karatzetzou, A.; Pavlou, K.; Kaviris, G.; et al. First Results on the Mw = 6.9 Samos Earthquake of 30 October 2020. Bull. Geol. Soc. Greece 2020, 56, 251–279. [Google Scholar] [CrossRef]
- Karakostas, V.; Tan, O.; Kostoglou, A.; Papadimitriou, E.; Bonatis, P. Seismotectonic implications of the 2020 Samos, Greece, M w 7.0 mainshock based on high-resolution aftershock relocation and source slip model. Acta Geophys. 2021, 69, 979–996. [Google Scholar] [CrossRef]
- Kaviris, G.; Spingos, I.; Kapetanidis, V.; Papadimitriou, P.; Voulgaris, N. On the origin of upper crustal shear-wave anisotropy at Samos Island, Greece. Acta Geophys. 2021, 69, 1051–1064. [Google Scholar] [CrossRef]
- Ganas, A.; Elias, P.; Briole, P.; Valkaniotis, S.; Escartin, J.; Tsironi, V.; Karasante, I.; Kosma, C. Co-seismic and post-seismic deformation, field observations and fault model of the 30 October 2020 Mw = 7.0 Samos earthquake, Aegean Sea. Acta Geophys. 2021, 69, 999–1024. [Google Scholar] [CrossRef]
- Ganas, A.; Valkaniotis, S.; Briole, P.; Serpetsidaki, A.; Kapetanidis, V.; Karasante, I.; Kassaras, I.; Papathanassiou, G.; Karamitros, I.; Tsironi, V.; et al. Domino-style earthquakes along blind normal faults in Northern Thessaly (Greece): Kinematic evidence from field observations, seismology, SAR interferometry and GNSS. Bull. Geol. Soc. Greece 2021, 58, 37. [Google Scholar] [CrossRef]
- Karakostas, V.; Papazachos, C.; Papadimitriou, E.; Foumelis, M.; Kiratzi, A.; Pikridas, C.; Kostoglou, A.; Kkallas, C.; Chatzis, N.; Bitharis, S.; et al. The March 2021 Tyrnavos, central Greece, doublet (Μw6.3 and Mw6.0): Aftershock relocation, faulting details, coseismic slip and deformation. Bull. Geol. Soc. Greece 2021, 58, 131. [Google Scholar] [CrossRef]
- Lekkas, E.; Agorastos, K.; Mavroulis, S.; Kranis, C.; Skourtsos, E.; Carydis, P.; Gogou, M.; Katsetsiadou, K.-N.; Papadopoulos, G.; Triantafyllou, I.; et al. The Early March 2021 THESSALY Earthquake Sequence. 2021, pp. 1–195. Available online: https://edcm.edu.gr/images/docs/newsletters/Newsletter_22_2021-Thessaly-EQs.pdf (accessed on 28 January 2022).
- Papadopoulos, G.A.; Agalos, A.; Karavias, A.; Triantafyllou, I.; Parcharidis, I.; Lekkas, E. Seismic and Geodetic Imaging (DInSAR) Investigation of the March 2021 Strong Earthquake Sequence in Thessaly, Central Greece. Geosciences 2021, 11, 311. [Google Scholar] [CrossRef]
- Vallianatos, F.; Michas, G.; Hloupis, G. Seismicity Patterns Prior to the Thessaly (Mw6.3) Strong Earthquake on 3 March 2021 in Terms of Multiresolution Wavelets and Natural Time Analysis. Geosciences 2021, 11, 379. [Google Scholar] [CrossRef]
- Kassaras, I.; Kapetanidis, V.; Ganas, A.; Karakonstantis, A.; Papadimitriou, P.; Kaviris, G.; Kouskouna, V.; Voulgaris, N. Seismotectonic analysis of the 2021 Damasi-Tyrnavos (Thessaly, Central Greece) earthquake sequence and implications on the stress field rotations. J. Geodyn. 2022, 150, 101898. [Google Scholar] [CrossRef]
- Vallianatos, F.; Michas, G.; Hloupis, G.; Chatzopoulos, G. The Evolution of Preseismic Patterns Related to the Central Crete (Mw6.0) Strong Earthquake on 27 September 2021 Revealed by Multiresolution Wavelets and Natural Time Analysis. Geosciences 2022, 12, 33. [Google Scholar] [CrossRef]
- Vassilakis, E.; Kaviris, G.; Kapetanidis, V.; Papageorgiou, E.; Foumelis, M.; Konsolaki, A.; Petrakis, S.; Evangelidis, C.; Alexopoulos, J.; Karastathis, V.; et al. The 27 September 2021, earthquake in central Crete (Greece). Detailed analysis of the earthquake sequence and indications for contemporary arc-parallel extension at the Hellenic arc. Appl. Sci. 2022. submitted. [Google Scholar]
- Sboras, S.; Ganas, A.; Pavlides, S. Morphotectonic Analysis of the Neotectonic and Active Faults of Beotia (Central Greece), Using, G.I.S. Techniques. Bull. Geol. Soc. Greece 2017, 43, 1607–1618. [Google Scholar] [CrossRef] [Green Version]
- Goldsworthy, M.; Jackson, J.; Haines, J. The continuity of active fault systems in Greece. Geophys. J. Int. 2002, 148, 596–618. [Google Scholar] [CrossRef] [Green Version]
- Tsodoulos, I.M.; Koukouvelas, I.K.; Pavlides, S. Tectonic geomorphology of the easternmost extension of the Gulf of Corinth (Beotia, Central Greece). Tectonophysics 2008, 453, 211–232. [Google Scholar] [CrossRef]
- Elias, P.; Spingos, I.; Kaviris, G.; Karavias, A.; Gatsios, T.; Sakkas, V.; Parcharidis, I. Combined Geodetic and Seismological Study of the December 2020 Mw = 4.6 Thiva (Central Greece) Shallow Earthquake. Appl. Sci. 2021, 11, 5947. [Google Scholar] [CrossRef]
- Stewart, I.S.; Piccardi, L. Seismic faults and sacred sanctuaries in Aegean antiquity. Proc. Geol. Assoc. 2017, 128, 711–721. [Google Scholar] [CrossRef]
- Nur, A.; Cline, E.H. Poseidon’s Horses: Plate Tectonics and Earthquake Storms in the Late Bronze Age Aegean and Eastern Mediterranean. J. Archaeol. Sci. 2000, 27, 43–63. [Google Scholar] [CrossRef]
- Ambraseys, N. Earthquakes in the Mediterranean and Middle East; Cambridge University Press: New York, NY, USA, 2009. [Google Scholar]
- Eginitis, D. Le tremblement de terre de Thèbes du 17 Octobre 1914. Ann. L’observatoire Natl. D’athènes 1916, 7, 23–26. [Google Scholar]
- Schmidt, J.F. Studien über Erdbeben; Alwin Georgi: Leipzig, Germany, 1879; 360p. [Google Scholar]
- Ambraseys, N.N.; Jackson, J.A. Seismicity and associated strain of central Greece between 1890 and 1988. Geophys. J. Int. 1990, 101, 663–708. [Google Scholar] [CrossRef] [Green Version]
- Papazachos, B.C.; Papazachou, C. The Earthquakes of Greece; Ziti Publications: Thessaloniki, Greek, 2003. [Google Scholar]
- Goulandris, E. Sur le tremblement de terre de Thèbes du 17 Octobre 1914. Ann. L’observatoire Natl. D’athènes 1916, 7, 47–50. [Google Scholar]
- Galanopoulos, A.G. A catalogue of Shocks with I0 ≥ VI or M ≥ 5 for the Years 1801–1958; Seismological Laboratory, Athens University: Athens, Greece, 1960; p. 119. [Google Scholar]
- Kárnik, V. Seismicity of the European Area, Part 1; Reidel, D., Ed.; Springer Science & Business Media: Berlin, Germany, 1969. [Google Scholar]
- Shebalin, N.V.; Kárnik, V.; Hadzievski, D. Catalogue of earthquakes of the Balkan region. In Part I, UNDP-UNESCO Survey of the Seismicity of the Balkan Region; UNESCO: Skopje, North Macedonia, 1974. [Google Scholar]
- Kouskouna, V. Updating the macroseismic intensity database of 19th century damaging earthquakes in Greece: A case study in Samos Island. Acta Geophys. 2021, 69, 1101–1111. [Google Scholar] [CrossRef]
- Grunthal, G. European MakroseismicScale 1998, EMS-98; European Seismological Commission: Luxembourg, 1998. [Google Scholar]
- Musson, R.M.W.; Jimenéz, M.J. Macroseismic Estimation of Earthquake Parameters. NA4 Deliverable D3, NERIES Project. 2008. Available online: http://emidius.mi.ingv.it/neries_NA4/docs/NA4_D3.pdf (accessed on 28 January 2022).
- Kouskouna, V.; Kaperdas, V.; Sakellariou, N. Comparing calibration coefficients constrained from early to recent macroseismic and instrumental earthquake data in Greece and applied to eighteenth century earthquakes. J. Seismol. 2020, 24, 293–317. [Google Scholar] [CrossRef]
- Gasperini, P.; Bernardini, F.; Valensise, G.; Boschi, E. Defining seismogenic sources from historical earthquake reports. Bull. Seismol. Soc. Am. 1999, 89, 94–110. [Google Scholar]
- Bakun, W.H.; Wentworth, C.M. Estimating earthquake location and magnitude from seismic intensity data. Bull. Seismol. Soc. Am. 1997, 87, 1502–1521. [Google Scholar]
- Shumila, V.I. Algorithms of macroseismic intensity field interpretation with application to Vrancea region. In Proceedings of the 24th ESC General Assembly, Athina, Greece, 19–24 September 1994; p. 133. [Google Scholar]
- Bakun, W.H.; Scotti, O. Regional intensity attenuation models for France and the estimation of magnitude and location of historical earthquakes. Geophys. J. Int. 2006, 164, 596–610. [Google Scholar] [CrossRef] [Green Version]
- Evangelidis, C.P.; Triantafyllis, N.; Samios, M.; Boukouras, K.; Kontakos, K.; Ktenidou, O.-J.; Fountoulakis, I.; Kalogeras, I.; Melis, N.S.; Galanis, O.; et al. Seismic Waveform Data from Greece and Cyprus: Integration, Archival, and Open Access. Seismol. Res. Lett. 2021, 92, 1672–1684. [Google Scholar] [CrossRef]
- Klein, F.W. User’s Guide to HYPOINVERSE-2000: A Fortran Program to Solve for Earthquake Locations and Magnitudes, Open-File Rep. 2002-171; U.S. Geological Survey: Reston, VA, USA, 2002. [Google Scholar] [CrossRef] [Green Version]
- Kaviris, G.; Papadimitriou, P.; Makropoulos, K. Magnitude Scales in Central Greece. Bull. Geol. Soc. Greece 2007, 40, 1114–1124. [Google Scholar] [CrossRef] [Green Version]
- Papadimitriou, P.; Kaviris, G.; Makropoulos, K. Evidence of shear-wave splitting in the eastern Corinthian Gulf (Greece). Phys. Earth Planet. Inter. 1999, 114, 3–13. [Google Scholar] [CrossRef]
- Papadimitriou, P.; Kaviris, G.; Karakonstantis, A.; Makropoulos, K. The Cornet seismological network: 10 years of operation, recorded seismicity and significant applications. Ann. Geol Des Pays Hell. 2010, 45, 193–208. [Google Scholar]
- Kaviris, G. Study of Seismic Source Properties of the Eastern Gulf of Corinth. Ph.D. Thesis, Geophysics-Geothermics Department, Faculty of Geology, University of Athens, Athens, Greece, 2003. (In Greek). [Google Scholar]
- Karakonstantis, A. 3-D Simulation of Crust and Upper Mantle Structure in the Broader Hellenic Area through Seismic Tomography. Ph.D. Thesis, Department of Geophysics-Geothermics, Faculty of Geology, University of Athens, Athens, Greece, 2017. (In Greek). [Google Scholar]
- D’Ajello Caracciolo, F.; Console, R. Earthquake location in tectonic structures of the Alpine Chain: The case of the Constance Lake (Central Europe) seismic sequence. Acta Geophys. 2021, 69, 1163–1175. [Google Scholar] [CrossRef]
- Chatelain, J.L. Etude fine de la Sismicité en Zone de Collision Continentale au Moyen d’un Réseau de Stations Portables: La région Hindu-Kush Pamir, Thèse de 3eme Cycle; Université de Grenoble: Saint-Martin-d’Hères, France, 1978; p. 219. [Google Scholar]
- Woessner, J.; Wiemer, S. Assessing the quality of earthquake catalogues: Estimating the magnitude of completeness and its uncertainty. Bull. Seismol. Soc. Am. 2005, 95, 684–698. [Google Scholar] [CrossRef]
- Waldhauser, F. hypoDD—A Program to Compute Double-Difference Hypocenter Locations. U.S. Geological Survey Open-File Report 01-113. 2001. Available online: https://pubs.usgs.gov/of/2001/0113/ (accessed on 28 January 2022). [CrossRef]
- Kapetanidis, V. Spatiotemporal Patterns of Microseismicity for the Identification of Active Fault Structures Using Seismic Waveform Cross-Correlation and Double-Difference Relocation. Ph.D. Thesis, Department of Geophysics-Geothermics, Faculty of Geology and Geoenvironment, University of Athens, Athens, Greece, 2017. [Google Scholar]
- Shapiro, S.A.; Huenges, E.; Borm, G. Estimating the crust permeability from fluid-injection-induced seismic emission at the KTB site. Geophys. J. Int. 1997, 131, F15–F18. [Google Scholar] [CrossRef]
- Kagan, Y.Y. 3-D rotation of double-couple earthquake sources. Geophys. J. Int. 1991, 106, 709–716. [Google Scholar] [CrossRef]
- Toda, S.; Stein, R.S.; Sevilgen, V.; Lin, J. Coulomb 3.3 Graphic-Rich Deformation and Stress-Change Software for Earthquake, Tectonic, and Volcano Research and Teaching-User Guide. U.S. Geological Survey Open-File Report 2011–1060. 2011. Available online: http://pubs.usgs.gov/of/2011/1060/ (accessed on 28 January 2022). [CrossRef]
- Kapetanidis, V.; Kassaras, I. Contemporary crustal stress of the Greek region deduced from earthquake focal mechanisms. J. Geodyn. 2019, 123, 55–82. [Google Scholar] [CrossRef]
- Briole, P.; Elias, P.; Parcharidis, I.; Bignami, C.; Benekos, G.; Samsonov, G.; Kyriakopoulos, C.; Stramondo, S.; Chamot-Rooke, N.; Drakatou, M.L.; et al. The seismic sequence of January-February 2014 at Cephalonia Island (Greece): Constraints from SAR interferometry and GPS. Geophys. J. Int. 2015, 203, 1528–1540. [Google Scholar] [CrossRef] [Green Version]
- Ganas, A.; Elias, P.; Bozionelos, G.; Papathanassiou, G.; Avallone, A.; Papastergios, A.; Valkaniotis, S.; Parcharidis, I.; Briole, P. Coseismic deformation, field observations and seismic fault of the 17 November 2015 M = 6.5, Lefkada Island, Greece earthquake. Tectonophysics 2016, 687, 210–222. [Google Scholar] [CrossRef]
- Elias, P.; Briole, P. Ground Deformations in the Corinth Rift, Greece, Investigated Through the Means of SAR Multitemporal Interferometry. Geochemistry, Geophys. Geosystems 2018, 19, 4836–4857. [Google Scholar] [CrossRef] [Green Version]
- Gatsios, T.; Cigna, F.; Tapete, D.; Sakkas, V.; Pavlou, K.; Parcharidis, I. Copernicus sentinel-1 MT-InSAR, GNSS and seismic monitoring of deformation patterns and trends at the methana volcano, Greece. Appl. Sci. 2020, 10, 6445. [Google Scholar] [CrossRef]
- Chousianitis, K.; Papanikolaou, X.; Drakatos, G.; Tselentis, G.-A. NOANET: A Continuously Operating GNSS Network for Solid-Earth Sciences in Greece. Seismol. Res. Lett. 2021, 92, 2050–2064. [Google Scholar] [CrossRef]
- Sakkas, V. Ground Deformation Modelling of the 2020 Mw6.9 Samos Earthquake (Greece) Based on InSAR and GNSS Data. Remote Sens. 2021, 13, 1665. [Google Scholar] [CrossRef]
- Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/dhus/#/home (accessed on 28 January 2022).
- METRICA. Available online: https://metrica.gr/ (accessed on 28 January 2022).
- URANUS Powered by TREE COMPANY. Available online: https://uranus.gr/ (accessed on 28 January 2022).
- Dach, R.; Lutz, S.; Walser, P.; Fridez, P. Bernese GNSS Software Version 5.2; User manual; Astronomical Institute, University of Bern, Bern Open Publishing: Bern, Switzerland, 2015. [Google Scholar]
- Chousianitis, K.; Ganas, A.; Evangelidis, C.P. Strain and rotation rate patterns of mainland Greece from continuous GPS data and comparison between seismic and geodetic moment release. J. Geophys. Res. Solid Earth 2015, 120, 3909–3931. [Google Scholar] [CrossRef]
- Lagouvardos, K.; Kotroni, V.; Bezes, A.; Koletsis, I.; Kopania, T.; Lykoudis, S.; Mazarakis, N.; Papagiannaki, K.; Vougioukas, S. The automatic weather stations NOANN network of the National Observatory of Athens: Operation and database. Geosci. Data J. 2017, 4, 4–16. [Google Scholar] [CrossRef]
- SRTM Data. Available online: https://srtm.csi.cgiar.org/10 (accessed on 28 January 2022).
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Costantini, M. A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote Sens. 1998, 36, 813–821. [Google Scholar] [CrossRef]
- Fielding, E.J.; Simons, M.; Owen, S.; Lundgren, P.; Hua, H.; Agram, P.; Liu, Z.; Moore, A.; Milillo, P.; Polet, J.; et al. Rapid Imaging of Earthquake Ruptures with Combined Geodetic and Seismic Analysis. Procedia Technol. 2014, 16, 876–885. [Google Scholar] [CrossRef]
- Causse, M.; Cornou, C.; Maufroy, E.; Grasso, J.-R.; Baillet, L.; El Haber, E. Exceptional ground motion during the shallow Mw 4.9 2019 Le Teil earthquake, France. Commun. Earth Environ. 2021, 2, 14. [Google Scholar] [CrossRef]
- Champenois, J.; Baize, S.; Vallee, M.; Jomard, H.; Alvarado, A.; Espin, P.; Ekström, G.; Audin, L. Evidences of Surface Rupture Associated With a Low-Magnitude (M w 5.0) Shallow Earthquake in the Ecuadorian Andes. J. Geophys. Res. Solid Earth 2017, 122, 8446–8458. [Google Scholar] [CrossRef]
- Stein, R.S. The role of stress transfer in earthquake occurrence. Nature 1999, 402, 605–609. [Google Scholar] [CrossRef]
- Cheloni, D.; D’Agostino, N.; Selvaggi, G.; Avallone, A.; Fornaro, G.; Giuliani, R.; Reale, D.; Sansosti, E.; Tizzani, P. Aseismic transient during the 2010-2014 seismic swarm: Evidence for longer recurrence of M ≥ 6.5 earthquakes in the Pollino gap (Southern Italy)? Sci. Rep. 2017, 7, 576. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, D.K.; Jha, B.; Kundu, B.; Gahalaut, V.K.; Vissa, N.K. Groundwater extraction-induced seismicity around Delhi region, India. Sci. Rep. 2021, 11, 10097. [Google Scholar] [CrossRef]
- King, N.E.; Argus, D.; Langbein, J.; Agnew, D.C.; Bawden, G.; Dollar, R.S.; Liu, Z.; Galloway, D.; Reichard, E.; Yong, A.; et al. Space geodetic observation of expansion of the San Gabriel Valley, California, aquifer system, during heavy rainfall in winter 2004–2005. J. Geophys. Res. Solid Earth 2007, 112, B03409. [Google Scholar] [CrossRef]
- Duverger, C.; Lambotte, S.; Bernard, P.; Lyon-Caen, H.; Deschamps, A.; Nercessian, A. Dynamics of microseismicity and its relationship with the active structures in the western Corinth Rift (Greece). Geophys. J. Int. 2018, 215, 196–221. [Google Scholar] [CrossRef]
- Mesimeri, M.; Karakostas, V. Repeating earthquakes in western Corinth Gulf (Greece): Implications for aseismic slip near locked faults. Geophys. J. Int. 2018, 215, 659–676. [Google Scholar] [CrossRef]
- Massin, F.; Farrell, J.; Smith, R.B. Repeating earthquakes in the Yellowstone volcanic field: Implications for rupture dynamics, ground deformation, and migration in earthquake swarms. J. Volcanol. Geotherm. Res. 2013, 257, 159–173. [Google Scholar] [CrossRef]
- Fischer, T.; Horálek, J.; Hrubcová, P.; Vavryčuk, V.; Bräuer, K.; Kämpf, H. Intra-continental earthquake swarms in West-Bohemia and Vogtland: A review. Tectonophysics 2014, 611, 1–27. [Google Scholar] [CrossRef]
- Bourouis, S.; Bernard, P. Evidence for coupled seismic and aseismic fault slip during water injection in the geothermal site of Soultz (France), and implications for seismogenic transients. Geophys. J. Int. 2007, 169, 723–732. [Google Scholar] [CrossRef] [Green Version]
- Bourouis, S.; Cornet, F.H. Microseismic activity and fluid fault interactions: Some results from the Corinth Rift Laboratory (CRL), Greece. Geophys. J. Int. 2009, 178, 561–580. [Google Scholar] [CrossRef] [Green Version]
- Kassaras, I.; Kapetanidis, V.; Karakonstantis, A.; Kouskouna, V.; Ganas, A.; Chouliaras, G.; Drakatos, G.; Moshou, A.; Mitropoulou, V.; Argyrakis, P.; et al. Constraints on the dynamics and spatio-temporal evolution of the 2011 Oichalia seismic swarm (SW Peloponnesus, Greece). Tectonophysics 2014, 614, 100–127. [Google Scholar] [CrossRef]
- Kraft, T.; Wassermann, J.; Schmedes, E.; Igel, H. Meteorological triggering of earthquake swarms at Mt. Hochstaufen, SE-Germany. Tectonophysics 2006, 424, 245–258. [Google Scholar] [CrossRef]
- Leclère, H.; Fabbri, O.; Daniel, G.; Cappa, F. Reactivation of a strike-slip fault by fluid overpressuring in the southwestern French-Italian Alps. Geophys. J. Int. 2012, 189, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Halpaap, F.; Rondenay, S.; Perrin, A.; Goes, S.; Ottemöller, L.; Austrheim, H.; Shaw, R.; Eeken, T. Earthquakes track subduction fluids from slab source to mantle wedge sink. Sci. Adv. 2019, 5, eaav7369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hainzl, S. Seismicity patterns of earthquake swarms due to fluid intrusion and stress triggering. Geophys. J. Int. 2004, 159, 1090–1096. [Google Scholar] [CrossRef]
- Aoyama, H.; Takeo, M.; Ide, S. Evolution mechanisms of an earthquake swarm under the Hida Mountains, central Japan, in 1998. J. Geophys. Res. 2002, 107, 2174. [Google Scholar] [CrossRef]
- Vavryčuk, V.; Hrubcová, P. Seismological evidence of fault weakening due to erosion by fluids from observations of intraplate earthquake swarms. J. Geophys. Res. Solid Earth 2017, 122, 3701–3718. [Google Scholar] [CrossRef]
- Caputo, R.; Chatzipetros, A.; Pavlides, S.; Sboras, S. The greek database of seismogenic sources (GreDaSS): State-of-the-art for northern greece. Ann. Geophys. 2012, 55, 859–894. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W.H.F. New, improved version of generic mapping tools released. Eos. Trans. Am. Geophys. Union 1998, 79, 579. [Google Scholar] [CrossRef]
- Shcherbakov, R.; Turcotte, D.L. A modified form of Båth’s law. Bull. Seismol. Soc. Am. 2004, 94, 1968–1975. [Google Scholar] [CrossRef]
- Wu, D.; Yan, H.; Shen, Y. TSAnalyzer, a GNSS Time Series Analysis Software. GPS Solut. 2017, 21, 1389–1394. [Google Scholar] [CrossRef]
Source | Date (yyyy/mm/dd) | I0 | φ (°N) | λ (°E) | Uepi (km) | Mw | D (km) | IDPs |
---|---|---|---|---|---|---|---|---|
This study | 1853/08/18 | 9 | 38.347 | 23.261 | 8.5 | 6.2 ± 0.1 | - | 41 |
[14] | 9–10 | 38.319 | 23.317 | 20 | 6.7 ± 0.3 | - | 8 | |
This study | 1893/05/23 | 9 | 38.306 | 23.275 | 5.7 | 6.2 ± 0.3 | 5 | 13 |
[14] | 8 | 38.310 | 23.250 | 5 | 6.2 ± 0.3 | - | - | |
This study | 1914/10/17 | 8–9 | 38.306 | 23.388 | 6.7 | 6.0 ± 0.1 | 8 ± 1 | 62 |
[6] | - | 38.20 | 23.50 | - | 5.9 | 8 | - | |
This study | 1917/09/23 | 7–8 | 38.319 | 23.317 | 0.0 | 4.5 | 2 | 3 |
[47] | 7 | 38.200 | 23.500 | 33 | 4.5 | 4 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaviris, G.; Kapetanidis, V.; Spingos, I.; Sakellariou, N.; Karakonstantis, A.; Kouskouna, V.; Elias, P.; Karavias, A.; Sakkas, V.; Gatsios, T.; et al. Investigation of the Thiva 2020–2021 Earthquake Sequence Using Seismological Data and Space Techniques. Appl. Sci. 2022, 12, 2630. https://doi.org/10.3390/app12052630
Kaviris G, Kapetanidis V, Spingos I, Sakellariou N, Karakonstantis A, Kouskouna V, Elias P, Karavias A, Sakkas V, Gatsios T, et al. Investigation of the Thiva 2020–2021 Earthquake Sequence Using Seismological Data and Space Techniques. Applied Sciences. 2022; 12(5):2630. https://doi.org/10.3390/app12052630
Chicago/Turabian StyleKaviris, George, Vasilis Kapetanidis, Ioannis Spingos, Nikolaos Sakellariou, Andreas Karakonstantis, Vasiliki Kouskouna, Panagiotis Elias, Andreas Karavias, Vassilis Sakkas, Theodoros Gatsios, and et al. 2022. "Investigation of the Thiva 2020–2021 Earthquake Sequence Using Seismological Data and Space Techniques" Applied Sciences 12, no. 5: 2630. https://doi.org/10.3390/app12052630
APA StyleKaviris, G., Kapetanidis, V., Spingos, I., Sakellariou, N., Karakonstantis, A., Kouskouna, V., Elias, P., Karavias, A., Sakkas, V., Gatsios, T., Kassaras, I., Alexopoulos, J. D., Papadimitriou, P., Voulgaris, N., & Parcharidis, I. (2022). Investigation of the Thiva 2020–2021 Earthquake Sequence Using Seismological Data and Space Techniques. Applied Sciences, 12(5), 2630. https://doi.org/10.3390/app12052630