A High Thermal Conductivity of MgO-H2O Nanofluid Prepared by Two-Step Technique
Abstract
:1. Introduction
2. Experimental Details
2.1. Materials and Method
2.2. Preparation of MgO Nanofluid
2.3. The Characterization Techniques
2.4. The Stability and Particle Size Analysis
2.5. Measurements of Thermophysical Properties
3. Results and Discussion
3.1. The Structural Studies
3.2. Stability Measurement of MgO-DW Nanofluid
3.3. Thermophysical Properties Measurements
3.3.1. Thermal Conductivity
3.3.2. Dynamic Viscosity
4. Conclusions
- -
- The co-precipitation method was followed to make crystalline and pure MgO nanopowder with an average particle size of 33 nm.
- -
- SEM images revealed unique feathery or fluffy-like nanostructures of the prepared MgO nanopowder.
- -
- MgO-DW nanofluid was synthesized with volume concentrations ranging from 0.05 to 0.25 vol.%, and ultrasonication treatment times ranging from 45 to 180 min, at room temperature.
- -
- Zeta potential results showed that good stability was obtained with nano MgO content of 0.15 vol.% and a higher ultrasonication time of 180 min.
- -
- The addition of MgO nanoparticles to traditional fluid as DW improved its thermal conductivity, where the highest value of thermal conductivity enhancement of 25.08% was found at 0.25 vol.% concentration and 180 min ultrasonication time.
- -
- The effect of ultrasonication time on thermal conductivity improvement was similar to the impact of the nanoparticles volume concentration. However, this enhancement in the conductivity became limited after an ultrasonication time of 135 min.
- -
- The dynamic viscosity measurements were revealed as directly proportional to the volume concentration of MgO-DW nanofluids, until recording the highest value of 0.0052 (Pa·Sec) at a higher solid content of 0.25 vol.% MgO-DW nanofluid. On the contrary, an increase in ultrasonication time resulted in a sharp decrease in the viscosity of the nanofluid samples.
- -
- An MgO-DW nanofluid with good dispersion stability, high thermal conductivity, and low viscosity was created by controlling ultrasonication time and/or volume concentration.
- -
- The produced MgO-DW nanofluid has the potential for exploitation in various implementations such as working fluid in cooling systems and heat exchangers. Therefore, it can be used as a working fluid in a hybrid solar collector, to study the effect of different flow rates on electrical and thermal efficiency.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
MgO | Magnesium oxide |
DW | Deionized water |
SSA | Specific surface area |
CuO | Copper oxide |
Al2O3 | Aluminum oxide |
ZnO | Zinc oxide |
TiO2 | Titanium oxide |
Fe2O3 | Iron oxide |
EG | Ethylene glycol |
LiNO3 | Lithium nitrate |
NaNO3 | Sodium nitrate |
KNO3 | Potassium nitrate |
CTAB | Cetyl trimethylammonium bromide |
ϕ | Volume concentration ratio |
VP | Volume of nanopowder |
VT | Total volume of nanofluid |
ρP | Nanopowder density |
ρbf | Base fluid density |
mp | Mass of nanopowder |
mbf | Mass of base fluid |
TCE | Thermal conductivity enhancement |
Knf | Thermal conductivity of nanofluid |
Kbf | Thermal conductivity of base fluid |
JCPDS | Joint committee of powder diffraction standards |
D | Crystallite size |
V | Volume of unit cell |
θ | Diffraction Angle of X-ray |
dhkl | Interplaner crystalline distance |
hkl | Miller indices |
a | Lattice constant |
FWHM | Full width at half maximum of the X-ray diffraction peak. |
ZP | Zeta potential |
MWCT | Multi-walled carbon nanotubes |
vol.% | Volume percentage |
µnf | Viscosity of nanofluid |
µbf | Viscosity of base fluid |
References
- Hashim, A.A. (Ed.) Smart Nanoparticles Technology; IntechOpen: Rijeka, Croatia, 2012. [Google Scholar]
- Das, S.K.; Choi, S.U.; Yu, W.; Pradeep, T. Nanofluids, Science and Technology; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Waqas, H.; Farooq, U.; Muhammad, T.; Manzoor, U. Importance of shape factor in Sisko nanofluid flow considering gold nanoparticles. Alex. Eng. J. 2022, 61, 3665–3672. [Google Scholar] [CrossRef]
- Bharat, B.; Baral, D. Nanofluids for Heat and Mass Transfer (Fundamentals, Sustainable Manufacturing and Applications), 1st ed.; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Esfe, M.H.; Arani, A.A.A.; Rezaie, M.; Yan, W.-M.; Karimipour, A. Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int. Commun. Heat Mass Transf. 2015, 66, 189–195. [Google Scholar] [CrossRef]
- Gonçalves, I.; Souza, R.; Coutinho, G.; Miranda, J.; Moita, A.; Pereira, J.E.; Moreira, A.; Lima, R. Thermal Conductivity of Nanofluids: A Review on Prediction Models, Controversies and Challenges. Appl. Sci. 2021, 11, 2525. [Google Scholar] [CrossRef]
- Ali, N.; Teixeira, J.A.; Addali, A. A Review on Nanofluids: Fabrication, Stability, and Thermophysical Properties. J. Nanomater. 2018, 2018, 6978130. [Google Scholar] [CrossRef]
- Ali, N.; Bahman, A.M.; Aljuwayhel, N.F.; Ebrahim, S.A.; Mukherjee, S.; Alsayegh, A. Carbon-Based Nanofluids and Their Advances towards Heat Transfer Applications—A Review. Nanomaterials 2021, 11, 1628. [Google Scholar] [CrossRef] [PubMed]
- Chamsa-ard, W.; Brundavanam, S.; Fung, C.C.; Fawcett, D.; Poinern, G. Nanofluid Types, Their Synthesis, Properties and Incorporation in Direct Solar Thermal Collectors: A Review. Nanomaterials 2017, 7, 131. [Google Scholar] [CrossRef]
- Maxwell, J.C. Electricity and Magnetism; Clarendon Press: Oxford, UK, 1873. [Google Scholar]
- Maxwell, J.C. A Treatise on Electricity and Magnetism; Clarendon Press: Oxford, UK, 2010; Volume 1. [Google Scholar]
- Choi, S.U.S. Enhancing Thermal Conductivity of Fluids with Nanoparticles; ASME: New York, NY, USA, 1995; Volume 66, pp. 99–105. [Google Scholar]
- Judran, H.K. Preparation and Investigation Study on (CuO/H2O) Nanofluid for Improving the Performance of (PV/T) Hybrid System. Ph.D. Thesis, University of Technology, Baghdad, Iraq, 2016. [Google Scholar]
- Keblinski, P.; Eastman, J.A.; Cahill, D.G. Nanofluids for thermal transport (review). Annu. Rev. Mater. Res. 2005, 8, 36–44. [Google Scholar]
- Terekhov, V.I.; Kalinina, S.V.; Lemanov, V.V. The mechanism of heat transfer in nanofluids: State of the art (review). Part1. Synthesis and properties of nanofluids. Thermophys. Aeromechanics 2010, 17, 1–14. [Google Scholar] [CrossRef]
- Tarafdar, A.; Negi, T.; Badgujar, P.C.; Shahi, N.C.; Kumar, S.; Sim, S.; Pandey, A. Nanofluid research advances: Preparation, characteristics and applications in food processing. Food Res. Int. 2021, 150, 110751. [Google Scholar] [CrossRef]
- Babar, H.; Ali, H.M. Towards hybrid nanofluids: Preparation, thermophysical properties, applications and challenges. J. Mol. Liq. 2019, 281, 598–633. [Google Scholar] [CrossRef]
- Esfe, M.H.; Saedodin, S.; Asadi, A.; Karimipour, A.; Ali, H.M. Thermal conductivity and viscosity of Mg(OH)2-ethylene glycol nanofluids. Finding a critical temperature. J. Therm. Anal. Calorim. 2015, 120, 1145–1149. [Google Scholar] [CrossRef]
- Safaei, M.R.; Hajizadeh, A.; Afrand, M.; Qi, C.; Yarmand, H.; Zulkifli, N.W.B. Evaluating the effect of temperature and concentration on the thermal conductivity of ZnO-TiO2/EG hybrid nanofluid using artificial neural network and curve fitting on experimental data. Phys. A Stat. Mech. Appl. 2019, 519, 209–216. [Google Scholar] [CrossRef]
- Asadi, A.; Pourfattah, F. Heat transfer performance of two oil-based nanofluids containing ZnO and MgO nanoparticles; a comparative experimental investigation. Powder Technol. 2019, 343, 296–308. [Google Scholar] [CrossRef]
- Shahsavar, A.; Khanmohammadi, S.; Karimipour, A.; Goodarzi, M. A novel comprehensive experimental study concerned synthesizes and prepare liquid paraffin-Fe3O4 mixture to develop models for both thermal conductivity & viscosity: A new approach of GMDH type of neural network. Int. J. Heat Mass Transf. 2019, 131, 432–441. [Google Scholar]
- Goodarzi, M.; Toghraie, D.; Reiszadeh, M.; Afrand, M. Experimental evaluation of dynamic viscosity of ZnO–MWCNTs/engine oil hybrid nanolubricant based on changes in temperature and concentration. J. Therm. Anal. Calorim. 2019, 136, 513–525. [Google Scholar] [CrossRef]
- Bioucas, F.E.B.; Rausch, M.H.; Schmidt, J.; Bück, A.; Kolle, T.M.; Fröba, A.P. Effective Thermal Conductivity of Nanofluids: Measurement and Prediction. Int. J. Thermophys. 2020, 41, 55. [Google Scholar] [CrossRef] [Green Version]
- Mahbubul, I.M. Preparation, Characterization, Properties, and Application of Nanofluid, 1st ed.; William Andrew: Norwich, NY, USA, 2018. [Google Scholar]
- Pourpasha, H.; Farshad, P.; Heris, S.Z. Modeling and optimization the effective parameters of nanofluid heat transfer performance using artificial neural network and genetic algorithm method. Energy Rep. 2021, 7, 8447–8464. [Google Scholar] [CrossRef]
- Puneeth, V.; Baby, A.K.; Manjunatha, S. The analogy of nanoparticle shapes on the theory of convective heat transfer of Au-Fe3O4 Casson hybrid nanofluid. Heat Transf. 2021, 3, 1–18. [Google Scholar]
- Junankar, A.A.; Parate, S.R.; Dethe, P.K.; Dhote, N.R.; Gadkar, D.G.; Gadkar, D.D.; Gajbhiye, S.A. A Review: Enhancement of turning process performance by effective utilization of hybrid nanofluid and MQL. Mater. Today Proc. 2021, 38, 44–47. [Google Scholar] [CrossRef]
- Jawad, M.; Saeed, A.; Gul, T.; Shah, Z.; Kumam, P. Unsteady thermal Maxwell power law nanofluid flow subject to forced thermal Marangoni Convection. Sci. Rep. 2021, 11, 7521. [Google Scholar]
- Waqas, H.; Manzoor, U.; Shah, Z.; Arif, M.; Shutaywi, M. Magneto-Burgers Nanofluid Stratified Flow with Swimming Motile Microorganisms and Dual Variables Conductivity Configured by a Stretching Cylinder/Plate. Math. Probl. Eng. 2021, 2021, 8817435. [Google Scholar] [CrossRef]
- Acharya, N.; Mabood, F.; Shahzad, S.A.; Badruddin, I.A. Hydrothermal variations of radiative nanofluid flow by the influence of nanoparticles diameter and nanolayer. Int. Commun. Heat Mass Transf. 2022, 130, 105781. [Google Scholar] [CrossRef]
- Suganthi, K.S.; Rajan, K.S. Metal oxide nanofluids: Review of formulation, thermo-physical properties, mechanisms, and heat transfer performance. Renew. Sustain. Energy Rev. 2017, 76, 226–255. [Google Scholar] [CrossRef]
- Porgar, S.; Rahmanian, N. Investigation of Effect of Aluminium Oxide Nanoparticles on the Thermal Properties of Water-Based Fluids in a Double Tube Heat Exchanger; University of Bradford: Bradford, UK, 2022; Volume 12, pp. 2618–2628. [Google Scholar]
- Dahkaee, K.P.; Sadeghi, M.T.; Khroueian, Z.F.; Esmaeilzadeh, P. Effect of NiO/SiO2 nanofluids on the ultra-interfacial tension reduction between heavy oil and aqueous solution and their use for wettability alteration of carbonate rocks. J. Pet. Sci. Eng. 2019, 176, 11–26. [Google Scholar] [CrossRef]
- Yang, L.; Hu, Y. Toward TiO2 Nanofluids Part1: Preparation and Properties. Nanoscale Res. Lett. 2017, 12, 417. [Google Scholar]
- Maseer, M.M.; Alnaimi, F.B.I.; Hannun, R.M.; Al-Gburi, K.A.H.; Mezan, S.O. A review of the characters of nanofluids used in the cooling of a photovoltaic -thermal collector. Mater. Today Proc. 2021, 1–9. [Google Scholar] [CrossRef]
- Sone, B.T.; Diallo, A.; Fuku, X.G.; Gurib-Fakim, A.; Maaza, M. Biosynthesized CuO nano-platelets: Physical properties and enhanced thermal conductivity nanofluidics. Arab. J. Chem. 2018, 13, 160–170. [Google Scholar] [CrossRef]
- Abbas, F.; Ali, H.M.; Shaban, M.; Janjua, M.M.; Doranehgard, M.H.; Ahmadlouydarab, M.; Farukh, F. Towards convective heat transfer optimization in aluminum tube automotive radiators: Potential assessment of novel Fe2O3-TiO2/water hybrid nanofluid. J. Taiwan Inst. Chem. Eng. 2021, 14, 424–436. [Google Scholar] [CrossRef]
- Lai, Y.F.; Chaudouët, P.; Charlot, F.; Matko, I.; Dubourdieu, C. Magnesium oxide nanowires synthesized by pulsed liquid-injection metal organic chemical vapor deposition. Appl. Phys. Lett. 2009, 94, 022904. [Google Scholar] [CrossRef]
- Hornak, J. Synthesis, Properties, and Selected Technical Applications of Magnesium Oxide Nanoparticles: A Review. Int. J. Mol. Sci. 2021, 22, 12752. [Google Scholar] [CrossRef]
- Rane; Kanny, A.V.; Abitha, K.; Thomas, V.K. Chapter 5-Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites. In Synthesis of Inorganic Nanomaterials; Micro and Nano Technologies; Wood Head Publishing: Cambridge, UK, 2018; pp. 121–139. [Google Scholar]
- Mehta, M.; Mukhopadhyay, M.; Christian, R.; Mistry, N. Synthesis and characterization of MgO nanocrystals using strong and weak bases. Powder Technol. 2012, 226, 213–221. [Google Scholar] [CrossRef]
- Thamilvanan, D.; Jeevanandam, J.; Hii, Y.S.; Chan, Y.S. Sol-gel coupled ultrasound synthesis of photo-activated magnesium oxide nanoparticles: Optimization and antibacterial studies. Can. J. Chem. Eng. 2021, 99, 502–518. [Google Scholar] [CrossRef]
- Niu, F.; Meier, A.L.; Wessels, B.W. Epitaxial growth and strain relaxation of MgO thin films on Si grown by molecular beam epitaxy. J. Vac. Sci. Technol. B 2006, 24, 2586–2591. [Google Scholar] [CrossRef]
- Pradita, T.; Shih, S.J.; Aji, B.B.; Sudiby. Synthesis of MgO powder from magnesium nitrate using spray pyrolysis. In International Conference on Chemistry; Chemical Process and Engineering (IC3PE), AIP Conf. Proc. 1823, (020016-1)-(020016-5); AIP Publishing: New York, NY, USA, 2017. [Google Scholar]
- Alavi, M.A.; Morsali, A. Syntheses and characterization of Mg(OH)2 and MgO nanostructures by ultrasonic method. Ultrason. Sonochem. 2010, 17, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Gajengi, A.L.; Sasaki, T.; Bhanage, B.M. Mechanistic aspects of formation of MgO nanoparticles under microwave irradiation and its catalytic application. Adv. Powder Technol. 2017, 28, 1185–1192. [Google Scholar] [CrossRef]
- Sirota, V.; Selemenev, V.; Kovaleva, M.; Pavlenko, I.; Mamunin, K.; Dokalov, V.; Prozorova, M. Synthesis of Magnesium Oxide Nanopowder by Thermal Plasma Using Magnesium Nitrate Hexahydr. Phys. Res. Int. 2016, 2016, 6853405. [Google Scholar] [CrossRef]
- Ouraipryvan, P.; Sreethawong, T.; Chavadej, S. Synthesis of crystalline MgO nanoparticle with mesoporous-assembled structure via a surfactant-modified sol-gel process. Mater. Lett. 2009, 63, 1862–1865. [Google Scholar] [CrossRef]
- Stojanovic, B.D.; Dzunuzovic, A.S.; Ilic, N.I. 17-Review of methods for the preparation of magnetic metal oxides. In Magnetic, Ferroelectric, and Multiferroic Metal Oxides (Metal Oxides); Elsevier: Amsterdam, The Netherlands, 2018; pp. 333–359. [Google Scholar]
- Feng, S.-H.; Li, G.-H. Hydrothermal and Solvothermal Syntheses. In Modern Inorganic Synthetic Chemistry, 2nd ed.; Xu, R., Xu, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 73–104. [Google Scholar]
- Yang, Q.; Sha, J.; Wang, L.; Wang, J.; Yang, D. MgO nanostructures synthesized by thermal evaporation. Mater. Sci. Eng. C 2006, 26, 1097–1101. [Google Scholar] [CrossRef]
- Ngo, C.; Voorde, C.; van de Voorde, M.H. Nanotechnology in a Nutshell: From Simple to Complex Systems; Atlantis Press: Paris, France, 2014. [Google Scholar]
- Saied, E.; Eid, A.M.; Hassan, S.E.D.; Salem, S.S.; Radwan, A.A.; Halawa, M.; Saleh, F.M.; Saied, E.M.; Fouda, A. The Catalytic Activity of Biosynthesized Magnesium Oxide Nanoparticles (MgO-NPs) for Inhibiting the Growth of Pathogenic Microbes, Tanning Effluent Treatment and Chromium Ion Removal. Catalysts 2021, 11, 821. [Google Scholar] [CrossRef]
- Faisal, F.S.; AslamKhan, M.; Rizwan, M.; Hussain, Z.; Zaman, N.; Afsheen, Z.; Uddin, M.N.; Bibi, N. Exploring the therapeutic potential of Hibiscus rosa sinensis synthesized cobalt oxide (Co3O4-NPs) and magnesium oxide nanoparticles (MgO-NPs). Saudi J. Biol. Sci. 2021, 28, 5157–5167. [Google Scholar]
- Pal, G.; Rai, P.; Pandey, A. Chapter 1-Green synthesis of nanoparticles: A greener approach for a cleaner future. In Green Synthesis, Characterization and Applications of Nanoparticles (Micro and Nano Technologies); Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–26. [Google Scholar]
- Singh, J.P.; Singh, V.; Sharma, A.; Pandey, G.; Chae, K.H.; Lee, S. Approaches to synthesize MgO nanostructures for diverse applications. Heliyon 2020, 6, e04882. [Google Scholar] [CrossRef] [PubMed]
- Manikandan, S.; Rajan, K.S. Rapid synthesis of MgO nanoparticles & their utilization for formulation of a propylene glycol based nanofluid with superior transport properties. RSC Adv. 2014, 4, 1830–51837. [Google Scholar]
- Esfe, M.H.; Afrand, M.; Karimipour, A.; Yan, W.-M.; Sina, N. An experimental study on thermal conductivity of MgO nanoparticles suspended in a binary mixture of water and ethylene glycol. Int. Commun. Heat Mass Transf. 2015, 67, 173–175. [Google Scholar] [CrossRef]
- Yapici, K.; Osturk, O.; Uludag, Y. Dependency of nanofluid rheology on particle size and concentration of various metal oxide nanoparticles. Braz. J. Chem. Eng. 2018, 35, 575–586. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Zhang, Z.; Wang, W.; Ding, J. Effects of MgO Nanoparticles on Thermo-Physical Properties of LiNO3-NaNO3-KNO3 for Thermal Energy Storage. Energies 2021, 14, 677. [Google Scholar] [CrossRef]
- Nfawa, S.R.; Talib, A.R.A.; Basri, A.A.; Masuri, S.U. Novel use of MgO nanoparticle additive for enhancing the thermal conductivity of CuO/water nanofluid. Case Stud. Therm. Eng. 2021, 27, 101279. [Google Scholar] [CrossRef]
- Saufi, M.A.B.; Mamat, H.B. A Review on Thermophysical Properties for Heat Transfer Enhancement of Carbon-Based Nanolubricant. Adv. Eng. Mater. 2021, 23, 2100403. [Google Scholar] [CrossRef]
- Vafaei, M.; Afrand, M.; Sina, N.; Teimouri, H. Evaluation of thermal conductivity of MgO-MWCNTs/EG hybrid nanofluids based on experimental data by selecting optimal artificial neural networks. Phys. E Low-Dimens. Syst. Nanostruct. 2017, 85, 90–96. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Esmaeilzadeh, F.; Wang, X.P. Effects of temperature and particles volume concentration on the thermophysical properties and the rheological behavior of CuO/MgO/TiO2, aqueous ternary hybrid nanofluid: Experimental investigation. J. Anal. Calorim. 2019, 137, 879–901. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Esmaeilzadeh, F.; Wang, X.P. A detailed investigation on the thermo-physical and rheological behavior of MgO/TiO2 aqueous dual hybrid nanofluid. J. Mol. Liq. 2019, 282, 323–339. [Google Scholar] [CrossRef]
- Bhattad, A.; Sarkar, J.; Ghosh, P. Hydrothermal performance of different alumina hybrid nanofluid types in plate heat exchanger: Experimental study. J. Therm. Anal. Calorim. 2020, 139, 3777–3787. [Google Scholar] [CrossRef]
- Hussein, M.A.; Sharma, K.V.; Bakar, R.A.; Kadirgama, K. The Effect of Nanofluid Volume Concentration on Heat Transfer and Friction Factor inside a Horizontal Tube. J. Nanomater. 2013, 2013, 1–12. [Google Scholar] [CrossRef]
- Hunter, R.J. Zeta Potential in Colloid Science, Principles and Applications, 1st ed.; Academic Press: Cambridge, MA, USA, 1988. [Google Scholar]
- Zainon, S.N.M.; Azmi, W.H. Recent Progress on Stability and Thermo-Physical Properties of Mono and Hybrid towards Green Nanofluids. Micromachines 2021, 12, 176. [Google Scholar] [CrossRef]
- Washington, C. Particle Size Analysis in Pharmaceutics and other Industries: Theory and Practice; Ellis Horwood Limited: Chichester, UK, 1992. [Google Scholar]
- Bianco, V.; Manca, O.; Nardini, S.; Vafai, K. Heat Transfer Enhancement with Nanofluids. Routledge (Taylor & Francis Group), 1st ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Sabeeh, S.H.; Hussein, H.A.; Judran, H.K. Synthesis of a complex nanostructure of CuO via a coupled chemical route. Mater. Res. Express 2016, 3, 125025. [Google Scholar] [CrossRef]
- Wahhab, H.A.A.; Al-Maliki, W.A.K. Application of a Solar Chimney Power Plant to Electrical Generation in Covered Agricultural Fields. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Kerbala, Iraq, 2020; p. 012137. [Google Scholar]
- Ammulu, M.A.; Viswanath, K.V.; Giduturi, A.K.; Vemuri, P.K.; Mangamuri, U.; Poda, S. Phytoassisted synthesis of magnesium oxide nanoparticles from Pterocarpus marsupium rox.b heartwood extract and its biomedical applications. J. Genet. Eng. Biotechnol. 2021, 19, 21. [Google Scholar] [CrossRef] [PubMed]
- Cullity, B.D. Elements of X-ray Diffraction, 3rd ed.; Wesley Publishing Company: Boston, MA, USA, 1967. [Google Scholar]
- Sabeeh, S.H.; Hussein, H.A.; Judran, H.K. Effect of Cu Salt Molarity on the Nanostructure of CuO Prolate Spheroid. Int. J. Nanosci. 2016, 15, 1650034. [Google Scholar] [CrossRef]
- Wong, C.W.; Chan, Y.S.; Jeevanandam, J.; Pal, K.; Bechelany, M.; Elkodous, M.A.; El-Sayyad, G.S. Response Surface Methodology Optimization of Mono-dispersed MgO Nanoparticles Fabricated by Ultrasonic-Assisted Sol–Gel Method for Outstanding Antimicrobial and Antibiofilm Activities. J. Clust. Sci. 2019, 31, 367–389. [Google Scholar] [CrossRef]
- Chang, M.-H.; Liu, H.-S.; Tai, C.Y. Preparation of copper oxide nanoparticles and its application in nanofluid. Powder Technol. J. 2011, 207, 378–386. [Google Scholar] [CrossRef]
- Al-Maliki, W.; Mahmoud, N.; Al-Khafaji, H.; Alobaid, F.; Epple, B. Design and Implementation of the Solar Field and Thermal Storage System Controllers for a Parabolic Trough Solar Power Plant. Appl. Sci. 2021, 11, 6155. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Zhang, H.; Lin, Y.X.; Li, Z.; Wang, W.; Wu, Q.; Qian, Y.; Hong, H.; Zhi, C. Enhancement of thermal conductivity in water-based nanofluids employing TiO2/reduced graphene oxide composites. J. Mater. Sci. 2016, 51, 10104–10115. [Google Scholar] [CrossRef]
- Moradikazerouni, A.; Hajizadeh, A.; Safaei, M.R.; Afrand, M.; Yarmand, H.; Zulkifli, N.W.B.M. Assessment of thermal conductivity enhancement of nano-antifreeze containing single-walled carbon nanotubes: Optimal artificial neural network and curve-fitting. Phys. A Stat. Mech. Appl. 2019, 521, 138–145. [Google Scholar] [CrossRef]
- Asadi, A.; Alarifi, I.M.; Ali, V.; Nguyen, H.M. An experimental investigation on the effects of ultrasonication time on stability and thermal conductivity of MWCNT-water nanofluid: Finding the optimum ultrasonication time. Ultrason. Sonochem. 2019, 58, 104639. [Google Scholar] [CrossRef] [PubMed]
- Shahsavar, A.; Salimpour, M.R.; Saghafian, M.; Shafii, M.B. An experimental study on the effect of ultrasonication on thermal conductivity of ferrofluid loaded with carbon nanotubes. Thermochim. Acta 2015, 617, 102–110. [Google Scholar] [CrossRef]
- Mahbubul, I.M.; Elcioglu, E.B.; Saidur, R.; Amalina, M.A. Optimization of ultrasonication period for better dispersion and stability of TiO2-water nanofluid. Ultrason. Sonochem. 2017, 37, 360–367. [Google Scholar] [CrossRef]
- Sadri, R.; Ahmadi, G.; Togun, H.; Dahari, M.; Kazi, S.N.; Sadeghinezhad, E.; Zubir, N. An experimental study on thermal conductivity and viscosity of nanofluids containing carbon nanotubes. Nanoscale Res. Lett. 2014, 9, 151. [Google Scholar] [CrossRef] [Green Version]
- Michael, M.; Zagabathuni, A.; Sikdar, S.; Pabi, S.K.; Ghosh, S. Effect of dispersion behavior on the heat transfer characteristics of alumina nanofluid: An experimental investigation and development of a new correlation function. Int. Nano Lett. 2020, 10, 207–217. [Google Scholar] [CrossRef]
- Peñas, J.R.V.; Zárate, J.M.; Khayet, M. Measurement of the thermal conductivity of nanofluids by the multi current hot-wire method. J. Appl. Phys. 2008, 104, 044314. [Google Scholar] [CrossRef] [Green Version]
- Amin, A.-T.M.; Hamzah, W.A.W.; Oumer, A.N. Thermal conductivity and dynamic viscosity of mono and hybrid organic- and synthetic-based nanofluids: A critical review. Nanotechnol. Rev. 2021, 10, 1624–1661. [Google Scholar] [CrossRef]
- Asadi, A.; Pourfattah, F.; Szilágyi, I.M.; Afrandf, M.; Żyła, G.; Ahn, H.S.; Wongwisesi, S.; Nguyen, H.M.; Arabkoohsa, A.; Mahian, O. Effect of sonication characteristics on stability, thermophysical properties, and heat transfer of nanofluids: A comprehensive review. Ultrason. Sonochem. 2019, 58, 104701. [Google Scholar] [CrossRef]
- Mahbubul, I.M.; Chong, T.H.; Khaleduzzaman, S.S.; Shahrul, I.M.; Saidur, R.; Long, B.D.; Amalina, M.A. Effect of Ultrasonication Duration on Colloidal Structure and Viscosity of Alumina-Water Nanofluid. American Chemical Society. Ind. Eng. Chem. Res. 2014, 53, 6677–6684. [Google Scholar] [CrossRef]
Volume Concentrations Ratio | Weights of MgO Nanopowder (g) |
---|---|
0.05 vol.% | 0.1433 |
0.1 vol.% | 0.2867 |
0.15 vol.% | 0.4326 |
0.2 vol.% | 0.5772 |
0.25 vol.% | 0.7178 |
Zeta Potential Range (mV) | Stability Behavior |
---|---|
<±5 | Rapid coagulation or flocculation |
±10 to ±30 | Incipient instability |
±30 to ±40 | Moderate stability |
±40 to ±60 | Good stability |
>±61 | Excellent stability |
Crystalline Planes (hkl) | C (111) | C (200) | C (220) | C (311) | C (222) |
---|---|---|---|---|---|
Measured (XRD) 2θ (deg.) | 36.9271 | 42.8937 | 62.2626 | 74.6169 | 78.5795 |
Standard 2θ (deg.) (JCPD S card no. 45-0946) | 36.9360 | 42.9160 | 62.3020 | 74.6890 | 78.6280 |
The Value | Crystal Structure and (hkl) | dhkl-Spacing (Å) | Lattice Constant (Å) | Unit Cell Volume (Å3) |
---|---|---|---|---|
Measured (XRD) | Cubic (200) | 2.1067 | 4.2135 | 74.8047 |
Standard (JCPDS card no. 45-0946) | Cubic (200) | 2.1056 | 4.2112 | 74.6823 |
A | B | ||||
---|---|---|---|---|---|
Volume Ratios ϕ (vol.%) | Zeta Potential (mV) | The State | Ultrasonication Time (min) | Zeta Potential (mV) | The State |
0.05 | −41.0 | Good stability | 45 | −38.9 | Moderate stability |
0.1 | −38.2 | Moderate stability | 90 | −45.0 | Good stability |
0.15 | −45.0 | Good stability | 135 | −54.7 | Good stability |
0.2 | −35.7 | Moderate stability | 180 | −62.1 | Good stability |
0.25 | −30.3 | Moderate stability |
Concentration Ratios ϕ (vol.%) | Thermal Conductivity Enhancement (TCE%) |
---|---|
0.05 | 5.685 |
0.1 | 8.361 |
0.15 | 15.217 |
0.2 | 20.401 |
0.25 | 25.084 |
Concentration Ratios ϕ (vol.%) | Improvement of Thermal Conductivity (Knf%) |
---|---|
45 | 13.71 |
90 | 25.08 |
135 | 31.10 |
180 | 32.61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Judran, H.K.; Al-Hasnawi, A.G.T.; Al Zubaidi, F.N.; Al-Maliki, W.A.K.; Alobaid, F.; Epple, B. A High Thermal Conductivity of MgO-H2O Nanofluid Prepared by Two-Step Technique. Appl. Sci. 2022, 12, 2655. https://doi.org/10.3390/app12052655
Judran HK, Al-Hasnawi AGT, Al Zubaidi FN, Al-Maliki WAK, Alobaid F, Epple B. A High Thermal Conductivity of MgO-H2O Nanofluid Prepared by Two-Step Technique. Applied Sciences. 2022; 12(5):2655. https://doi.org/10.3390/app12052655
Chicago/Turabian StyleJudran, Hadia Kadhim, Adnan G. Tuaamah Al-Hasnawi, Faten N. Al Zubaidi, Wisam Abed Kattea Al-Maliki, Falah Alobaid, and Bernd Epple. 2022. "A High Thermal Conductivity of MgO-H2O Nanofluid Prepared by Two-Step Technique" Applied Sciences 12, no. 5: 2655. https://doi.org/10.3390/app12052655
APA StyleJudran, H. K., Al-Hasnawi, A. G. T., Al Zubaidi, F. N., Al-Maliki, W. A. K., Alobaid, F., & Epple, B. (2022). A High Thermal Conductivity of MgO-H2O Nanofluid Prepared by Two-Step Technique. Applied Sciences, 12(5), 2655. https://doi.org/10.3390/app12052655