Application of Enzyme-Assisted Extraction for the Recovery of Natural Bioactive Compounds for Nutraceutical and Pharmaceutical Applications
Abstract
:1. Introduction
2. The Principles and Enzymes Used in EAE
2.1. Components of Plant and Fungal Cell Wall
2.2. Types and Activity of Hydrolytic Enzymes
2.2.1. Cellulases
2.2.2. Pectinases
2.2.3. Hemicellulases
2.2.4. Proteolytic Enzymes
2.2.5. Commercial Mixtures of Enzymes
3. Studies on Enzyme-Assisted Extraction of Metabolites from Natural Materials
Natural Material | Target 1 | Optimized Conditions of Enzymolysis and Extraction | Extraction Effects and Yields in Optimal Conditions | Ref. |
---|---|---|---|---|
Polyphenols and phenols | ||||
Annona squamosa L. (Annonaceae) fruits | Yield and quality of juice; total phenolic content | Pectinase Enzyme concentration 2.21% Temp. 47 °C Time 4.47 h pH 4.9–4.36 | Yield 88% (w/w) Total polyphenols 93.95 ± 0.51 μg of GAE/mL | [58] |
Coriandrum sativum L. (Apiaceae) residue from the seed distillation process | Total phenolic (TPC) and total flavonoid (TFC) contents antioxidant activity | Enzymolysis: Cellulase (10 mg/100 g) Time 1 h Temp. 40 °C Hydrodistillation in Clevenger-type apparatus Time 2 h | Increased release of phenolic compounds improved antioxidant activity | [13] |
Crocus sativus L. (Iridaceae) tepals | Total phenolic content and total anthocyanin content | Enzymolysis: Mixture of cellulolytic and hemicellulolytic preparations (1:1) Enzyme concentration: 0.12–0.15% Solvent–to–sample ratio 10:1 (v/w) Time 145–185 min Stage 1—rehydration: Time 1 h pH 4.0 Temp. 25 °C Stage 2—enzymolysis: Temp. 50 °C Time ≥ 20 min pH 4 | Yield of total polyphenols 30.9 g GAE/kg and yield of total anthocyanins was 2.0 g CGE/kg (extraction yield increased 45% and 38% in comparison with the control sample) | [63] |
Helianthus annuus L. (Compositae) florets and petals | Total phenolic content | Enzymolysis: Viscozyme® L enzyme concentration 0.5% Sample–to–liquid ratio 0.15:10 (w/v) Solvent: d,l-menthol: d,l-lactic acid (M:HLac) (1:2) Solvent–to–water ratio 0.6 Time 2 h Temp. 40 °C | Polyphenol yield 2.98 mg/100 g | [65] |
Juglans regia L. (Juglandaceae) seeds | Total phenolic content and iodine value | Enzymolysis: 2% Cellulase Time 47.37 min Temp. 45 ± 5 °C pH 5 Incubation with shaking: n-hexane Sample–to–liquid ratio 1:4 Time 110.91 min Temp. 56 °C | Total phenolic contents 478.34 mg GAE/kg and Iodine value 150.35 g I2/100 g oil | [61] |
Malpighia emarginata DC. (Malpighiaceae) fruits | Phenolic compounds and antioxidant activity | Enzymolysis: Celluclast 1.5 L enzyme concentration of 8.1 NCU/g (0.9% v/w) 1:2 (w/w) acerola mash/water ratio; Temp. 50 °C; Time 2 h | Lower phenolics content (9.0%); lower antioxidant activity in comparison with ultrasound-assisted extraction | [78] |
Mangifera indica L. (Anacardiaceae) peels | Total phenolic content | Enzyme-assisted ultrasound extraction: Alcalase Enzyme concentration 3.3% pH 5.5 Temp. 63 °C Time 110 min Ultrasonic power 90 W | Yield 33.56 ± 1.04 mg GAE/g fresh weight | [79] |
Medicago sativa L. (Leguminosae) leaves | Total phenolic content content of phenolic acids and flavonoids antioxidant activity | Enzymolysis: Kemzyme (mixture of xylanase, β-glucanase, cellulase, amylase, and protease) Enzyme concentration 2.96% Temp. 38.96 °C pH 6.0 Time 58.92 min Extraction: Temp. 50 °C Pressure 216 bar 19.4% ethanol | Yield 546 ± 21 μg/g Increased elution of phenolic acids and flavonoids; enhanced antioxidant activity | [11] |
Punica granatum L. (Lythraceae) peels | Total phenolic content (TPC) | Enzymolysis: Viscozyme 0.6% (v/w), Time 1 h pH 4.5 Temp. 40 °C sample–to–solvent ratio 1:20 Microwave-assisted extraction: Power 420 W 30% ethanol Time 140–150 min; Solvent–to–sample ratio 30:1 | Increased TPC (>309.3 mg GAE/g) | [80] |
Pinus koraiensis Siebold and Zucc. (Pinaceae) Pinus koraiensis nut-coated film | Flavonoids | Enzymolysis: Cellulase 90 U/g Solvent–to–sample ratio 20:1 (mL/g) Time 2 h pH 5 Temp. 25 °C 50% acetone | Yield 3.37% | [81] |
Raphanus sativus L. (Brassicaceae) roots | Total phenolic contents, Trolox equivalent antioxidant capacity and radical scavenging activity | Enzymolysis: Enzyme cocktail including β-xylosidase, xyloglucanase, pectinases, xylanase, α-amylases, β-glucosidase, and protease Enzyme concentration 3.5% (w/w) Time 66 min Temp. 46 °C pH 6.1 Extraction: 80% ethanol | Extract yield 19.2 g/100 total phenolic content 48.9 mg GAE/g Trolox equivalent antioxidant capacity 270.7 mg TE/g radical scavenging activity 14.13 mg/mL reducing power 0.486 mg/mL | [26] |
Rosmarinus officinalis L. (Lamiaceae) leaves | Total phenolic content (TPC) | Enzymolysis: Alcalase 2.4 L FG, Bioprep 3000 L (Cellic CTec2, Viscozyme L and Cellic HTec2 were also tested) 2.5 g enzyme/100 g raw material Time 1 h Temp. 50 °C Solid–liquid conventional extraction: Solvent–to–sample ratio 20:1 (v/w) 50% ethanol Time 24 h Room temperature | TPC 15.2 ± 0.3 mgGAE/g (extraction efficiency increased by >30% and higher DPPH radical scavenging ability) | [64] |
Rubus idaeus L. (Rosaceae) seeds/pomace | Total phenolic content antioxidant activity | Enzymolysis: 1.2 units of alkaline protease/100 g Time 2 h Temp. 60 °C pH 9 | Yield of polyphenols 3.7 g/100 g total ellagic acid 1.46 g/100 g antioxidant activity (by 25–48%) | [67] |
Scutellaria baicalensis Georgi (Lamiaceae) plant | Baicalin | Enzymolysis: Endophytic cellulase; enzyme dose 20 U/mL Time 24 h pH 7.0 Temp. 37 °C Extraction: reflux extraction Time 3 h sample–to–solvent ratio 1:9 80% ethanol | Yield 1.56 ± 0.01 g/5 g (extraction yield increased by 79.31% in comparison with the traditional extraction method) | [82] |
Solanum lycopersicum L. (Solanaceae) industrial tomato waste (peel and seed) | Total phenolic content; antioxidant activity | Enzymolysis: Celluclast:Pectinex 1:1 Enzyme: substrate ratio 0.2 mL/g Time 5 h Temp. 40 °C pH = 4.5 Extraction: Ethyl acetate extraction Solvent–to–substrate ratio 5 mL/g Time 1 h | Higher phenolic concentration; improved antioxidant properties | [71] |
Ziziphus jujuba Mill. (Rhamnaceae) peel | Content of polyphenols and flavonoids Colour measurement | Enzymolysis: Mixtue of cellulase, pectinase, and protease 6000 U:2900 U:3300 U ratio per sample gram 16 mL buffer liquid volume; pH 7.0 Temp. 43 °C; Time 97 min | Yield of total polyphenols 9.02 ± 0.63 mg/g yield of total flavonoids 11.14 ± 0.45 mg/g pigment 8.93 ± 0.43 | [83] |
Oils and fatty acids | ||||
Arthrospira platensis (Microcoleaceae) | Oil content | Enzymolysis: 2% v/w Vinoflow® (β-glucanase (exo-1,3-) preparation) Time 24 h Temp. 40 °C pH 6.5 Alcalase® | Highest oil recovery 8.10 ± 0.20% (w/w) and increased amount of unsaturated fatty acids The most effective destruction of cell integrity and the highest extraction yield of hydrophilic biocomponents | [54] |
Camellia oleifera Abel (Theaceae) seed | Oil yield and physicochemical properties | Enzymolysis: 1% (v/w) protease and 1% (v/w) cellulase) Sample–to–liquid ratio 1:6 Time 6 h Temp. 50 °C pH 5.0 Demulsification: 20% ethanol (v/v) | Free oil yield 91.38% Higher vitamin E and squalene content | [59] |
Rubus idaeus L. (Rosaceae) seed/pomace | Lipophilic compounds and oil recovery | Enzymolysis: 1.2 units alkaline protease/100 g in aqueous medium Time 2 h Temp. 60 °C pH = 9 | Yield 2.2% (lower than obtained with the organic solvent extraction) | [67] |
Sesamum indicum L. (Pedaliaceae) seeds | Total oil content | Enzymolysis: Pectinase, protease, and a mixture of α-amylase and amylo-glucosidase (1:1 ratio) 5% of each of the three enzymes (by seed weight) pH 4.0, 6.8 or 6.8 Temp. 40 °C Time 60 min Three-phase partitioning: 40% ammonium sulphate Slurry/t-butanol ratio 1:1 pH 5.0 | Highest oil recovery 86.12% | [66] |
Strobilanthes crispus L. [Sericocalyx crispus (L.) Bremek]2 (Acanthaceae) leaves | Compounds with anti-hypercholesteromic activity: hexadecanoic acid, octadecanoic acid, squalene extract yield % | Enzymolysis: Cellulase 70 mg/g Time 2 h pH 4–6 Solvent–to–sample ratio 20:1 (v/w) Ultrasound-assisted extraction: 50% ethanol Time 1 h Temp. 30 °C | Yield 48.63% | [84] |
Sugars and polysaccharides | ||||
Annona squamosa L. (Annonaceae) fruit | Total reducing sugar | Enzymolysis: Pectinase Enzyme concentration 2.21% Temp. 47 °C Time 4.47 h pH 4.9–4.36 | Total reducing sugars 32.16 ± 0.77 mg GE/mL | [58] |
Daucus carota L. (Apiaceae) roots | Total carbohydrates | Enzymolysis: Hemicellulase Time 5 h Temp. 40 °C pH 5.2 High power ultrasound-pretreatment: Ultrasonic power 12.27 W/cm2 20 kHz, 80% amplitude, Time 20 min pH 5.2 | Total carbohydrate content 97.0 ± 3.0% (w/w) | [85] |
Hedyotis corymbosa L. [Oldenlandia corymbosa L.] 2 (Rubiaceae) | Polysaccharides | Enzymolysis: Cellulase, Enzyme concentration 3% Solvent–to–sample ratio 30:1 Time 10 min pH 5 Temp. 56 °C Ultrasonic power 200 W | Yield 4.10 ± 0.16% | [86] |
Helianthus annuus L. (Compositae) florets and petals | Total amount of reducing sugars | Enzymolysis: Viscozyme® L enzyme concentration 0.5% Sample–to–liquid ratio 0.15:10 (w/v) Solvent: d,l-menthol:d,l-lactic acid (M:HLac) (1:2) Solvent–to–water ratio 0.6 Time 2 h Temp. 40 °C | Yield of reducing sugars 20.92 mg/100 g | [65] |
Lycium barbarum L. (Solanaceae) fruit | Polysaccharides | Enzymolysis: 2.15% Cellulase Time 20 min Temp. 56 °C pH 4.6 Ultrasonic power 80 W | Yield 6.31 ± 0.03% | [87] |
Morinda officinalis F.C.How (Rubiaceae) radix | Polysaccharides and radical scavenging activity | Enzymolysis: 1.0% cellulase, 1.5% pectinase, 1.0% papain Solvent–to–sample ratio 21 mL/g pH 5.3 Temp. 50 °C Time 60 min Ultrasonic power 280 W | Yield 23.68% ± 0.52% and DPPH radical scavenging activity 117.26 mg vitamin C equivalents/100 g | [69] |
Mytilus coruscus (Mytilidae) mussel meat | Polysaccharide | Enzymolysis: Acid protease Enzyme concentration 3.2% Solvent–to–sample ratio 30:1 (mL/g) Time 36 min Temperature 64 °C pH 3.0 Ultrasonic power 60 W | Yield 12.86 ± 0.12% | [6] |
Rosa roxburghii Tratt. (Rosaceae) fruits | Yield of polysaccharides | Enzymolysis: Solvent–to–sample ratio 13.5:1 mL/g Cellulase concentration 6.5 g/mL Microwave power 575 W Time 18 min | Yield of 36.21 ± 0.62% | [88] |
Schisandra chinensis (Turcz.) Baill. (Schisandraceae) fruit | Polysaccharides | Enzymolysis: Enzyme complex papain/pectinase/cellulase 1:1:1 enzyme concentration 1.5% Microwave irradiation time 10 min Time 3 h Temp. 48 °C pH 4.2 | Yield 7.38 ± 0.21% | [74] |
Tuber aestivum Vittad. (Tuberaceae) fruiting body | Polysaccharides | Enzymolysis: Mixture of 1% trypsin, 1% papain, and 2% pectinase Time 90 min Temp. 50 °C pH 6.0 | Yield 46.93% of total polysaccharide and 46.5 ± 2.29 mg/g of uronic acids | [56] |
Viscum coloratum (Kom.) Nakai (Santalaceae) leaves | Yield of polysaccharides, free radical scavenging and hydroxyl radical scavenging activity | Enzymolysis: Rehydration (1:20, w/v; 30 min; 45 °C) Cellulase concentration 2.5% Sample–to–solvent ratio 1:40 Time 40 min Temp. 50 °C pH of 5.0 | Yield 21.83 ± 0.45%, DPPH Radical scavenging 80.01 ± 2.31% and the hydroxyl radical scavenging 38.26 ± 1.79% | [68] |
Proteins | ||||
Olea europaea L. (Oleaceae) leaves | Total protein amount | Enzymolysis: Cellulase (Celluclast 1.5 L) Enzyme concentration 5% (v/v) pH 5.0 Temp. 55 °C Time 15 min 30% acetonitrile | Total protein amount 1.87–6.64 mg/g. These contents were higher (ca. 2–3 times) than those found using other extraction protocols | [12] |
Sesamum indicum L. (Pedaliaceae) | Protein | Enzymolysis: Alcalase 1.94 AU/100 g enzyme concentration microwave extractor Temp. 49 °C Time 98 min pH 9.8 Alkaline extraction: pH 9.5 Temp. 45 °C Time 30 min | Protein yield 76.6% (higher than without enzyme pretreatment) | [52] |
Soy pulp (okara, a byproduct from soymilk processing) | Protein | Viscozyme 4% Temp. 53 °C pH 6.2, Time 2 h | Yield of protein 56% (dry weight basis), recovery of 28% (increased in comparison to the sample with no enzymatic pretreatment) | [10] |
Essential oil | ||||
Citrus sinensis L. Osbeck (Rutaceae) peel | Essential oil | Enzymolysis: Viscozyme L 3.9 mL/100 g Solvent–to–sample ratio 4.0 (mL/g) Time 3.8 h Temp. 55 °C pH 5.5 | Yield 46.31 ± 0.32 mL/kg | [89] |
Forsythia suspensa (Thunb.) Vahl (Oleaceae) fruit | Essential oil | Enzymolysis: Cellulase concentration 0.5% (w/w) Sample–to–liquid ratio 1:10 Time 25 min Temp. 40 °C pH 5.0 Irradiation power 500 W | Yield 3.27% (increased by 39.15–45.33%) | [60] |
Coriandrum sativum L. (Apiaceae) seeds | Total lipid content, fatty acid profiles, and lipid quality | Enzymolysis: Cellulase (10 mg/100 g) Time 1 h Temp. 40 °C Hydrodistillation in Clevenger-type apparatus; Time 2 h | Improved essential oil yield (by 33.3–44.2%) and its main component linalool increased amount of oxygenated terpenes | [13] |
Diterpenes and triterpenes | ||||
Glycyrrhiza glabra L. (Leguminosae) root | Glycyrrhizic acid Total liquorice extraction yield | Enzymolysis: Cellulase or hemicellulase (2% w/v) or Multizyme® Cellulase CEP concentrate (3% w/v) pH 5.0 Temp. 45 °C Time 1 h; Reflux or ultrasound - assisted extraction | Increased total liquorice (by 42.77–44.95%) and glycyrrhizic acid extraction yield | [62] |
Pseuderanthemum palatiferum (Nees) Radlk. [Pseuderanthemum latifolium B. Hansen] 2 (Acanthaceae) leaf | Triterpenoid saponins | Enzymolysis: Viscozyme 7.5 μL/g, Water–to–material ratio of 12.5 mL/g Temp. 54.9 °C Time 80.8 min | Yield of 64.19%, (significantly higher than that in Soxhlet extraction) | [14] |
Stevia rebaudiana (Bertoni) Bertoni (Compositae) leaves | Stevioside (diterpene glycoside) | Enzymolysis: Hemicellulase at 60 °C or Cellulase at 50 °C pH 5.0 Time 45–60 min | High stevioside yield (369.23 ± 0.11 μg) | [70] |
Carotenoids | ||||
Daucus carota L. (Apiaceae) | Carotenoids | Enzymolysis: Fructozym® MA concentration 0.3 mL/100 g Time 24 h Temp. 37 °C pH 7.4 | Yield 393.4 μg/mL | [90] |
Daucus carota subsp. sativus (Hoffm.) Arcang (Apiaceae) carrot pomace powder | β-carotene | Enzymolysis: Endozym Pectofruit (commercial pectinase) 61 U/mL 5 mL of enzyme/100 mg of plant material Time 60 min Temp. 45 °C pH = 5.5 | Yield 0.85 ± 0.11 mg/g (improved extraction efficiency up to 90%) | [15] |
Haematococcus pluvialis (Haematococcaceae) | Astaxanthin | Enzymolysis: Pectinase enzyme content 0.08% Time 3 h Temp. 55 °C pH = 4.5 | Extract yield 75.30% | [53] |
Helianthus annuus L. (Compositae) florets and petals | Total amount of carotenoids | Enzymolysis: Viscozyme® L enzyme concentration 0.5% Sample–to–liquid ratio 0.15:10 (w/v) Solvent: d,l-menthol:d,l-lactic acid (M:HLac) (1:2) Solvent–to–water ratio 0.6 Time 2 h Temp. 40 °C | Yield of carotenoids 1449 mg/100 g | [65] |
Solanum lycopersicum L. (Solanaceae) industrial tomato waste (peel and seeds) | Lycopene | Enzymolysis: Celluclast:Pectinex 1:1 Enzyme: substrate ratio 0.2 mL/g Time 5 h Temp. 40 °C pH = 4.5 Extraction: Ethyl acetate extraction Solvent–substrate ratio 5 mL/g Time 1 h | Higher lycopene recovery | [71] |
Others | ||||
Beta vulgaris L. (Amaranthaceae) beetroot | Betalains betacyanin, and betaxanthin | Enzymolysis: Enzymatic mix 25 U/g containing cellulase (37%), xylanase (35%), pectinase (28%) Temp. 25 °C Time 240 min pH 5.5 ± 0.1 | Yield (mg/mL U) betaxanthin 11.37 ± 0.45, betacyanin 14.67 ± 0.67 | [72] |
Malpighia emarginata DC. (Malpighiaceae) fruit | Ascorbic acid | Enzymolysis: Celluclast 1.5 L enzyme concentration of 8.1 NCU/g (0.9% v/w) 1:2 (w/w) acerola mash/water ratio Temp. 50 °C Time 2 h | Lower content of vitamin C (35.7%) in comparison with ultrasound-assisted extraction | [78] |
Piper nigrum L. (Piperaceae) | Piperine | Enzymolysis: 0.08% cellulase, 0.1% neutral protease, 0.4% surfactant (sodium stearoyl lactylate) (w/w) Sample–to–liquid ratio 1:5 (g/mL) Temp. 60 °C Time 4 h; Granularity less than 10 mesh | Content of piperine spectrophotometric method 4.54%, HPLC 4.42% | [51] |
Zingiber officinale Roscoe (Cochin variety) (Zingiberaceae) rhizome | Oleoresin yield and 6-gingerol content | Enzymolysis: Cellulase, pectinase, α-amylase, and Viscozyme concentration 0.5% (mL/w) pH 4.5–5.0 Temp. 50 °C Time 30–120 min Protease concentration 0.5 g/g pH 6.0; Temp. 55 °C Extraction: multistage extraction with ethanol and acetone in glass columns | Improved yield of resin (20–21%) and content of gingerol in resins (10.1–12.2%) | [16] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sofowora, A.; Ogunbodede, E.; Onayade, A. The Role and Place of Medicinal Plants in the Strategies for Disease Prevention. Afr. J. Tradit. Complementary Altern. Med. 2013, 10, 210. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, H.; Nazir, J.; Sadiqa Firdous, S.; Khalid, A.-U.-R.; Muzaffarabad, K.; Jammu, A. Cosmetic ethnobotany practiced by tribal women of Kashmir Himalayas. Avicenna J. Phytomed. 2014, 4, 239. [Google Scholar] [PubMed]
- Jost, X.; Ansel, J.L.; Lecellier, G.; Raharivelomanana, P.; Butaud, J.F. Ethnobotanical survey of cosmetic plants used in Marquesas Islands (French Polynesia). J. Ethnobiol. Ethnomed. 2016, 12, 55. [Google Scholar] [CrossRef]
- Kumar, M.; Dahuja, A.; Tiwari, S.; Punia, S.; Tak, Y.; Amarowicz, R.; Bhoite, A.G.; Singh, S.; Joshi, S.; Panesar, P.S.; et al. Recent trends in extraction of plant bioactives using green technologies: A review. Food Chem. 2021, 353, 129431. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.W.; Lin, L.G.; Ye, W.C. Techniques for extraction and isolation of natural products: A comprehensive review. Chin. Med. 2018, 13, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Jia, Z.; Zhu, J.; Zou, Y.; Huang, G.; Hong, Y. Optimization of ultrasonic-assisted enzymatic extraction of polysaccharides from thick-shell mussel (Mytilus coruscus) and their antioxidant activities. Int. J. Biol. Macromol. 2019, 140, 1116–1125. [Google Scholar] [CrossRef]
- Rodríguez De Luna, S.L.; Ramírez-Garza, R.E.; Serna Saldívar, S.O. Environmentally Friendly Methods for Flavonoid Extraction from Plant Material: Impact of Their Operating Conditions on Yield and Antioxidant Properties. Sci. World J. 2020, 2020, 6792069. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.; Yuan, H.; Cao, H.; Yazdani, M.; Tadmor, Y.; Li, L. Carotenoid Metabolism in Plants: The Role of Plastids. Mol. Plant 2018, 11, 58–74. [Google Scholar] [CrossRef] [Green Version]
- De Brito Francisco, R.; Martinoia, E. The vacuolar transportome of plant specialized metabolites. Plant Cell Physiol. 2018, 59, 1326–1336. [Google Scholar] [CrossRef] [Green Version]
- de Figueiredo, V.R.G.; Yamashita, F.; Vanzela, A.L.L.; Ida, E.I.; Kurozawa, L.E. Action of multi-enzyme complex on protein extraction to obtain a protein concentrate from okara. J. Food Sci. Technol. 2018, 55, 1508–1517. [Google Scholar] [CrossRef]
- Krakowska-Sieprawska, A.; Rafińska, K.; Walczak-Skierska, J.; Kiełbasa, A.; Buszewski, B. Promising Green Technology in Obtaining Functional Plant Preparations: Combined Enzyme-Assisted Supercritical Fluid Extraction of Flavonoids Isolation from Medicago Sativa Leaves. Materials 2021, 14, 2724. [Google Scholar] [CrossRef]
- Vergara-Barberán, M.; Lerma-García, M.J.; Herrero-Martínez, J.M.; Simó-Alfonso, E.F. Use of an enzyme-assisted method to improve protein extraction from olive leaves. Food Chem. 2015, 169, 28–33. [Google Scholar] [CrossRef]
- Abbassi, A.; Mahmoudi, H.; Zaouali, W.; M’Rabet, Y.; Casabianca, H.; Hosni, K. Enzyme-aided release of bioactive compounds from coriander (Coriandrum sativum L.) seeds and their residue by-products and evaluation of their antioxidant activity. J. Food Sci. Technol. 2018, 55, 3065–3076. [Google Scholar] [CrossRef]
- Huy, T.B.; Lien Phuong, N.T.; Nga, B.K.; Oanh, H.N.; Hieu, N.H. Enzyme-Assisted Extraction of Triterpenoid Saponins from Pseuderanthemum palatiferum (Nees) Radlk. Dry Leaf Powder and Bioactivities Examination of Extracts. ChemistrySelect 2019, 4, 8129–8134. [Google Scholar] [CrossRef]
- Jalali-Jivan, M.; Fathi-Achachlouei, B.; Ahmadi-Gavlighi, H.; Jafari, S.M. Improving the extraction efficiency and stability of β-carotene from carrot by enzyme-assisted green nanoemulsification. Innov. Food Sci. Emerg. Technol. 2021, 74, 102836. [Google Scholar] [CrossRef]
- Nagendra Chari, K.L.; Manasa, D.; Srinivas, P.; Sowbhagya, H.B. Enzyme-assisted extraction of bioactive compounds from ginger (Zingiber officinale Roscoe). Food Chem. 2013, 139, 509–514. [Google Scholar] [CrossRef]
- Hernández Becerra, E.; De Jesús Pérez López, E.; Zartha Sossa, J.W. Recovery of Biomolecules from Agroindustry by Solid-Liquid Enzyme-Assisted Extraction: A Review. Food Anal. Methods 2021, 14, 1744–1777. [Google Scholar] [CrossRef]
- Zhang, B.; Gao, Y.; Zhang, L.; Zhou, Y. The plant cell wall: Biosynthesis, construction, and functions. J. Integr. Plant Biol. 2021, 63, 251–272. [Google Scholar] [CrossRef]
- Höfte, H.; Voxeur, A. Plant cell walls. Curr. Biol. 2017, 27, R865–R870. [Google Scholar] [CrossRef] [Green Version]
- Houston, K.; Tucker, M.R.; Chowdhury, J.; Shirley, N.; Little, A. The plant cell wall: A complex and dynamic structure as revealed by the responses of genes under stress conditions. Front. Plant Sci. 2016, 7, 984. [Google Scholar] [CrossRef] [Green Version]
- Mota, T.R.; de Oliveira, D.M.; Marchiosi, R.; Ferrarese-Filho, O.; dos Santos, W.D.; Mota, T.R.; de Oliveira, D.M.; Marchiosi, R.; Ferrarese-Filho, O.; Santos, W.D. Plant cell wall composition and enzymatic deconstruction. AIMS Bioeng. 2018, 5, 63–77. [Google Scholar] [CrossRef]
- Geng, W.; Narron, R.; Jiang, X.; Pawlak, J.J.; Chang, H.M.; Park, S.; Jameel, H.; Venditti, R.A. The influence of lignin content and structure on hemicellulose alkaline extraction for non-wood and hardwood lignocellulosic biomass. Cellulose 2019, 26, 3219–3230. [Google Scholar] [CrossRef]
- Gow, N.A.R.; Latge, J.-P.; Munro, C.A. The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiol. Spectr. 2017, 5, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Free, S.J. Fungal Cell Wall Organization and Biosynthesis. In Advances in Genetics; Elsevier: Amsterdam, The Netherlands, 2013; Volume 81. [Google Scholar]
- Ibe, C.; Munro, C.A. Fungal cell wall proteins and signaling pathways form a cytoprotective network to combat stresses. J. Fungi 2021, 7, 739. [Google Scholar] [CrossRef]
- Rani, A.; Arfat, Y.; Aziz, R.S.; Ali, L.; Ahmed, H.; Asim, S.; Rashid, M.; Hocart, C.H. Enzymatically assisted extraction of antioxidant and anti-mutagenic compounds from radish (Raphanus sativus). Environ. Technol. Innov. 2021, 23, 101620. [Google Scholar] [CrossRef]
- Parada, M.; Rodríguez-Blanco, A.; Fernández de Ana Magán, F.; Domínguez, H. Sequential extraction of Hericium erinaceus using green solvents. LWT-Food Sci. Technol. 2015, 64, 397–404. [Google Scholar] [CrossRef]
- Wesołowska-Trojanowska, M.; Targoński, Z. Celulazy-właściwości, otrzymywanie i zastosowanie (Cellulases-properties, application and production). Nauk. Inżynierskie I Technol. 2014, 2, 104–121. [Google Scholar]
- Gao, W.; Chung, C.H.; Li, J.; Lee, J.W. Enhanced production of cellobiase by marine bacterium Cellulophaga lytica LBH-14 from rice bran under optimized conditions involved in dissolved oxygen. Biotechnol. Bioprocess Eng. 2015, 1, 131–138. [Google Scholar] [CrossRef]
- de Souza, T.S.P.; Kawaguti, H.Y. Cellulases, Hemicellulases, and Pectinases: Applications in the Food and Beverage Industry. Food Bioprocess Technol. 2021, 14, 1446–1477. [Google Scholar] [CrossRef]
- Oszust, K.; Pawlik, A.; Janusz, G.; Ziemiński, K.; Cyran, M.; Siczek, A.; Gryta, A.; Bilinska-Wielgus, N.; Frac, M. Characterization and influence of a multi-enzymatic biopreparation for biogas yield enhancement. BioResources 2017, 12, 6187–6206. [Google Scholar] [CrossRef] [Green Version]
- Ariffin, H.; Abdullah, N.; Umi Kalsom, M.S.; Shirai, Y.; Hassan, M. Production and characterization of cellulase by Bacillus pumilus EB3. Int. J. Eng. Technol. 2006, 3, 47–53. [Google Scholar]
- Camassola, M.; Ramos De Bittencourt, L.; Shenem, N.T.; Andreaus, J.; Pinheiro Dillon, A.J. Characterization of the Cellulase Complex of Penicillium echinulatum. Biocatal. Biotransform. 2004, 22, 391–396. [Google Scholar] [CrossRef]
- Akiba, S.; Kimura, Y.; Yamamoto, K.; Kumagai, H. Purification and characterization of a protease-resistant cellulase from Aspergillus niger. J. Ferment. Bioeng. 1995, 79, 125–130. [Google Scholar] [CrossRef]
- Sulyman, A.O.; Igunnu, A.; Malomo, S.O. Isolation, purification and characterization of cellulase produced by Aspergillus niger cultured on Arachis hypogaea shells. Heliyon 2020, 6, e05668. [Google Scholar] [CrossRef]
- Ejaz, U.; Sohail, M.; Ghanemi, A. Cellulases: From Bioactivity to a Variety of Industrial Applications. Biomimetics 2021, 6, 44. [Google Scholar] [CrossRef]
- Pedrolli, D.B.; Monteiro, A.C.; Gomes, E.; Carmona, E.C. Pectin and Pectinases: Production, Characterization and Industrial Application of Microbial Pectinolytic Enzymes. Open Biotechnol. J. 2009, 3, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Beg, Q.K.; Bhushan, B.; Kapoor, M.; Hoondal, G.S. Production and characterization of thermostable xylanase and pectinase from Streptomyces sp. QG-11-3. J. Ind. Microbiol. Biotechnol. 2000, 24, 396–402. [Google Scholar] [CrossRef]
- Rasheedha Banu, A.; Kalpana Devi, M.; Gnanaprabhal, G.R.; Pradeep, B.V.; Palaniswamy, M. Production and characterization of pectinase enzyme from Penicillium chrysogenum. Indian J. Sci. Technol. 2010, 3, 377–381. [Google Scholar] [CrossRef]
- Ma, Y.; Sun, S.; Hao, H.; Xu, C. Production, purification and characterization of an exo-polygalacturonase from Penicillium janthinellum sw09. An. Acad. Bras. Cienc. 2016, 88 (Suppl. S1), 479–487. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.; Li, K.; Ma, R.; Shi, P.; Huang, H.; Yang, P.; Meng, K.; Yao, B. Biochemical characterization of three distinct polygalacturonases from Neosartorya fischeri P1. Food Chem. 2015, 188, 569–575. [Google Scholar] [CrossRef]
- Wesołowska-Trojanowska, M.; Targoński, Z. Hemicelulazy-właściwości, otrzymywanie i zastosowanie. Nauk. Inżynierskie I Technol. 2015, 2, 79–94. [Google Scholar] [CrossRef]
- Ryabova, O.; Vršanská, M.; Kaneko, S.; van Zyl, W.H.; Biely, P. A novel family of hemicellulolytic alpha-glucuronidase. FEBS Lett. 2009, 583, 1457–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hettiarachchi, S.A.; Kwon, Y.K.; Lee, Y.; Jo, E.; Eom, T.Y.; Kang, Y.H.; Kang, D.H.; De Zoysa, M.; Marasinghe, S.D.; Oh, C. Characterization of an acetyl xylan esterase from the marine bacterium Ochrovirga pacifica and its synergism with xylanase on beechwood xylan. Microb. Cell Fact. 2019, 18, 122. [Google Scholar] [CrossRef] [Green Version]
- Thomas, L.; Joseph, A.; Singhania, R.R.; Patel, A.K.; Pandey, A. Industrial Enzymes: Xylanases. In Current Developments in Biotechnology and Bioengineering: Production, Isolation and Purification of Industrial Products; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Polizeli, M.L.T.M.; Rizzatti, A.C.S.; Monti, R.; Terenzi, H.F.; Jorge, J.A.; Amorim, D.S. Xylanases from fungi: Properties and industrial applications. Appl. Microbiol. Biotechnol. 2005, 67, 577–591. [Google Scholar] [CrossRef]
- da Silva, R.R. Bacterial and Fungal Proteolytic Enzymes: Production, Catalysis and Potential Applications. Appl. Biochem. Biotechnol. 2017, 183, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kieliszek, M.; Pobiega, K.; Piwowarek, K.; Kot, A.M. Characteristics of the proteolytic enzymes produced by lactic acid bacteria. Molecules 2021, 26, 1858. [Google Scholar] [CrossRef]
- González-Rábade, N.; Badillo-Corona, J.A.; Aranda-Barradas, J.S.; del Carmen Oliver-Salvador, M. Production of plant proteases in vivo and in vitro—A review. Biotechnol. Adv. 2011, 29, 983–996. [Google Scholar] [CrossRef]
- Yin, X.; You, Q.; Jiang, Z. Optimization of enzyme assisted extraction of polysaccharides from Tricholoma matsutake by response surface methodology. Carbohydr. Polym. 2011, 86, 1358–1364. [Google Scholar] [CrossRef]
- Yu, Y.; Hu, S.; Fu, D.; Zhang, X.; Liu, H.; Xu, B.; Huang, M. Surfactant-assisted enzymatic extraction of piperine from Piper nigrum L. Int. J. Food Prop. 2020, 23, 52–62. [Google Scholar] [CrossRef] [Green Version]
- Görgüç, A.; Özer, P.; Yılmaz, F.M. Microwave-assisted enzymatic extraction of plant protein with antioxidant compounds from the food waste sesame bran: Comparative optimization study and identification of metabolomics using LC/Q-TOF/MS. J. Food Process. Preserv. 2020, 44, e14304. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, X.; Liu, H.; Zhu, H.; Zhu, Y. Enzyme-assisted extraction of astaxanthin from Haematococcus pluvialis and its stability and antioxidant activity. Food Sci. Biotechnol. 2019, 28, 1637–1647. [Google Scholar] [CrossRef] [PubMed]
- Verdasco-Martín, C.M.; Díaz-Lozano, A.; Otero, C. Advantageous enzyme selective extraction process of essential spirulina oil. Catal. Today 2020, 346, 121–131. [Google Scholar] [CrossRef]
- Dave, D.; Liu, Y.; Pohling, J.; Trenholm, S.; Murphy, W. Astaxanthin recovery from Atlantic shrimp (Pandalus borealis) processing materials. Bioresour. Technol. Rep. 2020, 11, 100535. [Google Scholar] [CrossRef]
- Bhotmange, D.U.; Wallenius, J.H.; Singhal, R.S.; Shamekh, S.S. Enzymatic extraction and characterization of polysaccharide from Tuber aestivum. Bioact. Carbohydrates Diet. Fibre 2017, 10, 1–9. [Google Scholar] [CrossRef]
- Panda, G.; Vivek, K.; Mishra, S.; Pradhan, R.C. Characterization and Optimization of Process Parameters for Enzyme Assisted Extraction of Kendu (Diospyros Melanoxylon Roxb.) Fruit Juice. Int. J. Fruit Sci. 2021, 21, 299–311. [Google Scholar] [CrossRef]
- Bhatkar, N.S.; Dhar, R.; Chakraborty, S. Multi-objective optimization of enzyme-assisted juice extraction from custard apple: An integrated approach using RSM and ANN coupled with sensory acceptance. J. Food Process. Preserv. 2021, 45, e15256. [Google Scholar] [CrossRef]
- Fang, X.; Fei, X.; Sun, H.; Jin, Y. Aqueous enzymatic extraction and demulsification of camellia seed oil (Camellia oleifera Abel.) and the oil’s physicochemical properties. Eur. J. Lipid Sci. Technol. 2016, 118, 244–251. [Google Scholar] [CrossRef]
- Jiao, J.; Fu, Y.J.; Zu, Y.G.; Luo, M.; Wang, W.; Zhang, L.; Li, J. Enzyme-assisted microwave hydro-distillation essential oil from Fructus forsythia, chemical constituents, and its antimicrobial and antioxidant activities. Food Chem. 2012, 134, 235–243. [Google Scholar] [CrossRef]
- Ghasemi, Y.Z.; Taghian Dinani, S. Optimization of ultrasound-assisted enzymatic extraction of walnut kernel oil using response surface methodology. J. Food Process Eng. 2018, 41, e12696. [Google Scholar] [CrossRef]
- Giahi, E.; Jahadi, M.; Khosravi-Darani, K. Enzyme-assisted extraction of glycyrrhizic acid from licorice roots using heat reflux and ultrasound methods. Biocatal. Agric. Biotechnol. 2021, 33, 101953. [Google Scholar] [CrossRef]
- Vardakas, A.T.; Shikov, V.T.; Dinkova, R.H.; Mihalev, K.M. Optimisation of the enzyme-assisted extraction of polyphenols from saffron (Crocus sativus L.) tepals. Acta Sci. Pol. Technol. Aliment 2021, 20, 359–367. [Google Scholar]
- Pontillo, A.R.N.; Papakosta-Tsigkri, L.; Lymperopoulou, T.; Mamma, D.; Kekos, D.; Detsi, A. Conventional and Enzyme-Assisted Extraction of Rosemary Leaves (Rosmarinus officinalis L.): Toward a Greener Approach to High Added-Value Extracts. Appl. Sci. 2021, 11, 3724. [Google Scholar] [CrossRef]
- Ricarte, G.N.; Coelho, M.A.Z.; Marrucho, I.M.; Ribeiro, B.D. Enzyme-assisted extraction of carotenoids and phenolic compounds from sunflower wastes using green solvents. 3 Biotech 2020, 10, 405. [Google Scholar] [CrossRef]
- Juvvi, P.; Debnath, S. Enzyme-assisted three-phase partitioning: An efficient alternative for oil extraction from sesame (Sesamum indicum L.). Grasas Y Aceites 2020, 71, e346. [Google Scholar] [CrossRef]
- Saad, N.; Louvet, F.; Tarrade, S.; Meudec, E.; Grenier, K.; Landolt, C.; Ouk, T.S.; Bressollier, P. Enzyme-Assisted Extraction of Bioactive Compounds from Raspberry (Rubus idaeus L.) Pomace. J. Food Sci. 2019, 84, 1371–1381. [Google Scholar] [CrossRef]
- Chai, Y.; Kan, L.; Zhao, M. Enzymatic extraction optimization, anti-HBV and antioxidant activities of polysaccharides from Viscum coloratum (Kom.) Nakai. Int. J. Biol. Macromol. 2019, 134, 588–594. [Google Scholar] [CrossRef]
- Shen, J.; Mei, Z.; Xu, Z.; Zhao, Z.; Yang, D.; Xu, X. Optimization of ultrasound-assisted enzymatic extraction and antioxidant activity of polysaccharide from radix Morindae officinalis by response surface methodology. Pharmacogn. Mag. 2020, 16, 662. [Google Scholar]
- Puri, M.; Sharma, D.; Barrow, C.J.; Tiwary, A.K. Optimisation of novel method for the extraction of steviosides from Stevia rebaudiana leaves. Food Chem. 2012, 132, 1113–1120. [Google Scholar] [CrossRef]
- Catalkaya, G.; Kahveci, D. Optimization of enzyme assisted extraction of lycopene from industrial tomato waste. Sep. Purif. Technol. 2019, 219, 55–63. [Google Scholar] [CrossRef]
- Lombardelli, C.; Benucci, I.; Mazzocchi, C.; Esti, M. A novel process for the recovery of betalains from unsold red beets by low-temperature enzyme-assisted extraction. Foods 2021, 10, 236. [Google Scholar] [CrossRef]
- Taktak, O.; Ben Youssef, S.; Abert Vian, M.; Chemat, F.; Allouche, N. Physical and Chemical Influences of Different Extraction Techniques for Essential Oil Recovery from Citrus sinensis Peels. J. Essent. Oil Bear. Plants 2021, 24, 290–303. [Google Scholar] [CrossRef]
- Cheng, Z.; Song, H.; Yang, Y.; Liu, Y.; Liu, Z.; Hu, H.; Zhang, Y. Optimization of microwave-assisted enzymatic extraction of polysaccharides from the fruit of Schisandra chinensis Baill. Int. J. Biol. Macromol. 2015, 76, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Ximenes, E.; Kim, Y.; Mosier, N.; Dien, B.; Ladisch, M. Inhibition of cellulases by phenols. Enzyme Microb. Technol. 2010, 46, 170–176. [Google Scholar] [CrossRef]
- Author, C.; Ramadan, K.M.; El-Meneisy, Z.; Bendary, E.S.; Abdel Azeiz, A.Z. Different Inhibitors of the Extracellular Pectinolytic Enzymes of Fusarium oxysporum and Rhizoctonia solani. World J. Agric. Sci. 2019, 15, 173–179. [Google Scholar]
- Dudai, N.; Weinberg, Z.G.; Larkov, O.; Ravid, U.; Ashbell, G.; Putievsky, E. Changes in Essential Oil during Enzyme-Assisted Ensiling of Lemongrass (Cymbopogon citratus Stapf.) and Lemon Eucalyptus (Eucalyptus citriodora Hook). J. Agric. Food Chem. 2001, 49, 2262–2266. [Google Scholar] [CrossRef]
- Van Le, H.; Le, V.V.M. Comparison of enzyme-assisted and ultrasound-assisted extraction of vitamin C and phenolic compounds from acerola (Malpighia emarginata DC.) fruit. Int. J. Food Sci. Technol. 2012, 47, 1206–1214. [Google Scholar]
- Sharif, T.; Bhatti, H.N.; Bull, I.D.; Bilal, M. Recovery of high-value bioactive phytochemicals from agro-waste of mango (Mangifera indica L.) using enzyme-assisted ultrasound pretreated extraction. Biomass Convers. Biorefin. 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Kumar, M.; Tomar, M.; Punia, S.; Amarowicz, R.; Kaur, C. Evaluation of Cellulolytic Enzyme-Assisted Microwave Extraction of Punica granatum Peel Phenolics and Antioxidant Activity. Plant Foods Hum. Nutr. 2020, 75, 614–620. [Google Scholar] [CrossRef]
- Zhang, M.; Ma, W.; Wang, C.; Yang, X.; Lou, Y.; Xia, X.; Xu, H. Optimization of Enzyme-Assisted Extraction and Purification of Flavonoids from Pinus koraiensis Nut-Coated Film and Antioxidant Activity Evaluation. Molecules 2021, 26, 1950. [Google Scholar] [CrossRef]
- Ma, X.D.; Zhang, X.G.; Guo, S.J.; Ma, G.Y.; Liu, W.J.; Wang, N.; Feng, M.; Su, Y. Application of enzyme-assisted extraction of baicalin from Scutellaria baicalensis Georgi. Prep. Biochem. Biotechnol. 2021, 51, 241–251. [Google Scholar] [CrossRef]
- Shen, D.; Kou, X.; Wu, C.; Fan, G.; Li, T.; Dou, J.; Wang, H.; Zhu, J. Cocktail enzyme-assisted alkaline extraction and identification of jujube peel pigments. Food Chem. 2021, 357, 129747. [Google Scholar] [CrossRef]
- Angelina; Yumna, M.; Abdullah; Arbianti, R.; Utami, T.S.; Hermansyah, H. The usage of enzyme in ultrasound-assisted enzymatic extraction method and its effect on yield extract from Keji Beling (Strobilanthes crispus.) leaves. E3S Web Conf. 2018, 67, 03002. [Google Scholar] [CrossRef] [Green Version]
- Encalada, A.M.I.; Pérez, C.D.; Flores, S.K.; Rossetti, L.; Fissore, E.N.; Rojas, A.M. Antioxidant pectin enriched fractions obtained from discarded carrots (Daucus carota L.) by ultrasound-enzyme assisted extraction. Food Chem. 2019, 289, 453–460. [Google Scholar] [CrossRef]
- Lin, L.M.; Xiong, S.H.; Zhao, L.J.; Tang, J.; Zhang, Z.M.; Li, Y.M.; Zheng, T.; Xia, B.H. Extraction, Characterization, Antioxidant, and Immunostimulatory Activities of Polysaccharides from Hedyotis corymbosa. Evid. -Based Complement. Altern. Med. 2018, 2018, 8617070. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, G.; Zhang, J.; Jia, S.; Li, F.; Wang, Y.; Wu, S. Response surface optimization of ultrasound-assisted enzymatic extraction polysaccharides from Lycium barbarum. Carbohydr. Polym. 2014, 110, 278–284. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Ren, Z.; Cong, Z.; Chen, M.; Shi, L.; Han, X.; Pei, J. Optimization of the microwave-assisted enzymatic extraction of Rosa roxburghii Tratt. polysaccharides using response surface methodology and its antioxidant and α-d-glucosidase inhibitory activity. Int. J. Biol. Macromol. 2018, 112, 473–482. [Google Scholar] [CrossRef]
- Waheed, A.; Akram, S.; Ashraf, R.; Mushtaq, M.; Adnan, A. Kinetic model and optimization for enzyme-assisted hydrodistillation of d-limonene-rich essential oil from orange peel. Flavour Fragr. J. 2020, 35, 561–569. [Google Scholar] [CrossRef]
- Adadi, P.; Barakova, N.V.; Adadi, P. Application of surface response methodology for an enzyme-assisted extraction of carotenoids. J. Microbiol. Biotechnol. Food Sci. 2019, 9, 195–203. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łubek-Nguyen, A.; Ziemichód, W.; Olech, M. Application of Enzyme-Assisted Extraction for the Recovery of Natural Bioactive Compounds for Nutraceutical and Pharmaceutical Applications. Appl. Sci. 2022, 12, 3232. https://doi.org/10.3390/app12073232
Łubek-Nguyen A, Ziemichód W, Olech M. Application of Enzyme-Assisted Extraction for the Recovery of Natural Bioactive Compounds for Nutraceutical and Pharmaceutical Applications. Applied Sciences. 2022; 12(7):3232. https://doi.org/10.3390/app12073232
Chicago/Turabian StyleŁubek-Nguyen, Agnieszka, Wojciech Ziemichód, and Marta Olech. 2022. "Application of Enzyme-Assisted Extraction for the Recovery of Natural Bioactive Compounds for Nutraceutical and Pharmaceutical Applications" Applied Sciences 12, no. 7: 3232. https://doi.org/10.3390/app12073232
APA StyleŁubek-Nguyen, A., Ziemichód, W., & Olech, M. (2022). Application of Enzyme-Assisted Extraction for the Recovery of Natural Bioactive Compounds for Nutraceutical and Pharmaceutical Applications. Applied Sciences, 12(7), 3232. https://doi.org/10.3390/app12073232