Improving Image Quality Assessment Based on the Combination of the Power Spectrum of Fingerprint Images and Prewitt Filter
Abstract
:1. Introduction
2. Methods
2.1. Development of FIQA Based on the Power Spectrum
2.2. The Prewitt Edge Method
2.3. Calculation of the 2-D Image Power Spectrum
2.4. Conversion of the 2-D Image Power Spectrum to 1-D
2.5. Normalization of Image Pixel Size
2.6. Frequency Weightings of the Image Power Spectrum
2.7. Fingerprint Image Quality Metrics
3. Experiments and Results
3.1. Database
3.2. Experiment 1: Sharpness Assessment
3.3. Experiment 2: Good/Faulty Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FIQA | fingerprint image quality assessment |
FIQMs | fingerprint image quality metrics |
G | gradient magnitude |
Gx | gradient component in the X-axis |
Gy | gradient component in the Y-axis |
FFT | fast Fourier transformation |
M × M | dimensions of image pixels |
h | the gray level |
x, y | rectangular spatial coordinates x, and y ranging from 0 to M − 1 |
H | the value of corresponding discrete Fourier transformation |
u, v | rectangular spatial coordinates u and v ranging from −M/2 to M/2 |
ρ | frequency in units of cycles per pixel |
P | frequency weighting and pixel size normalized power spectrum |
References
- Abate, A.F.; Nappi, M.; Riccio, D.; Sabatino, G. 2D and 3D face recognition: A survey. Pattern Recognit. Lett. 2007, 28, 1885–1906. [Google Scholar] [CrossRef]
- Maltoni, D.; Maio, D.; Jain, A.K.; Prabhakar, S. Handbook of Fingerprint Recognition; Springer: New York, NY, USA, 2009. [Google Scholar]
- Ratha, N.K.; Karu, K.; Chen, S.; Jain, A.K. A real-time matching system for large fingerprint databases. IEEE Trans. Pattern Anal. Mach. Intell. 1996, 18, 799–813. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.K.; Ross, A.; Prabhakar, S. An introduction to biometric recognition. IEEE Trans. Circuits Syst. Video Technol. 2004, 14, 4–20. [Google Scholar] [CrossRef] [Green Version]
- Alqadi, Z.; Abuzalata, M.; Eltous, Y.; Qaryouti, G.M. Analysis of fingerprint minutiae to form fingerprint identifier. Int. J. Inform. Vis. 2020, 4, 10–15. [Google Scholar]
- Ravi, J.; Raja, K.B.; Venugopal, K.R. Fingerprint Recognition Using Minutia Score Matching. Int. J. Eng. Sci. Technol. 2009, 1, 35–42. [Google Scholar]
- Berry, J.; Stoney, D.A. The history and development of fingerprinting. In Advances in Fingerprint Technology; Lee, H.C., Gaensslen, R.E., Eds.; CRC Press: Boca Raton, FL, USA, 2001; pp. 1–40. [Google Scholar]
- Newham, E. The Biometric Report; SJB Services: New York, NY, USA, 1995. [Google Scholar]
- Federal Bureau of Investigation. The Science of Fingerprints: Classification and Uses; U.S. Government Printing Office: Washington, DC, USA, 1984.
- Jain, A.K.; Ross, A.; Prabhakar, S. Fingerprint Matching Using Minutiae and Texture Features. In Proceedings of the 2001 International Conference on Image Processing, Thessaloniki, Greece, 7–10 October 2001. [Google Scholar]
- McMahon, D.H.; Johnson, G.L.; Teeter, S.L.; Whitney, C.G. A hybrid optical computer processing technique for fingerprint identification. IEEE Trans. Comput. 1975, 24, 358–369. [Google Scholar] [CrossRef]
- Altarawneh, M.S.; Khor, L.C.; Woo, W.L.; Dlay, S.S. A NON Reference Fingerprint Image Validity via Statistical Weight Calculation. J. Digit. Inf. Manag. 2007, 5, 220–224. [Google Scholar]
- Bansal, R.; Sehgal, P.; Bedi, P. Minutiae Extraction from Fingerprint Images—A Review. Int. J. Comput. Sci. Issues 2011, 8, 74–85. [Google Scholar]
- Neumann, C.; Champod, C.; Puch-Solis, R.; Egli, N.; Anthonioz, A.; Meuwly, D. Computation of likelihood ratios in fingerprint identification for configurations of three minutiae. J. Forensic Sci. 2007, 52, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Nill, N.B.; Bouzas, B. Objective image quality measure derived from digital image power spectra. Opt. Eng. 1992, 31, 813–825. [Google Scholar] [CrossRef]
- Moorthy, A.K.; Bovik, A.C. Visual Importance Pooling for Image Quality Assessment. IEEE J. Sel. Top. Signal Process. 2009, 3, 193–201. [Google Scholar] [CrossRef]
- Ratha, N.K.; Bolle, R. Fingerprint Image Quality Estimation; IBM TJ Watson Research Center: Yorktown Heights, NY, USA, 1999. [Google Scholar]
- Panetta, K.; Kamath, S.K.M.; Rajeev, S.; Agaian, S.S. LQM: Localized quality measure for fingerprint image enhancement. IEEE Access 2019, 7, 104567–104576. [Google Scholar] [CrossRef]
- Andrezza, I.L.P.; Primo, J.J.B.; de Lima Borges, E.V.C.; e Silva, A.G.D.A.; Batista, L.V.; Gomes, H.M. A Novel Fingerprint Quality Assessment Based on Gabor Filters. In Proceedings of the 31st Conference on Graphics, Patterns and Images, Parana, Brazil, 29–30 October 2018. [Google Scholar]
- Lee, B.; Moon, J.; Kim, H. A novel measure of fingerprint image quality using the Fourier spectrum. Biometr. Technol. Hum. Identif. II 2005, 5779, 105–112. [Google Scholar]
- Bazen, A.M.; Gerez, S.H. Segmentation of fingerprint images. In Proceedings of the 2001 Workshop on Circuits, Systems and Signal Processing, Veldhoven, The Netherlands, 29 November 2001. [Google Scholar]
- Ballan, M.; Sakarya, F.A.; Evans, B.L. A fingerprint classification technique using directional images. In Proceedings of the Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2–5 November 1997; Volume 1, pp. 101–104. [Google Scholar]
- Shen, L.; Kot, A.; Koo, W. Quality measures of fingerprint images. In Proceedings of the International Conference on Audio-and Video-Based Biometric Person Authentication, Berlin/Heidelberg, Germany, 6–8 June 2001. [Google Scholar]
- Bolle, R.M.; Pankanti, S.U.; Yao, Y.S. System and Method for Determining the Quality of Fingerprint Images. U.S. Patent 5,963,656, 5 October 1999. [Google Scholar]
- Tabassi, E.; Wilson, C.; Watson, C. NIST-7151; Fingerprint Image Quality; NIST Interagency/Internal Report (NISTIR): Gaithersburg, MD, USA, 2004.
- Varga, D. No-Reference Image Quality Assessment with Convolutional Neural Networks and Decision Fusion. Appl. Sci. 2022, 12, 101. [Google Scholar] [CrossRef]
- Shrivakshan, G.T.; Chandrasekar, C. A comparison of various edge detection techniques used in image processing. Int. J. Comput. Sci. Issues 2012, 9, 269–276. [Google Scholar]
- Gircys, M.; Ross, B.J. Image evolution using 2d power spectra. Complexity 2019, 2019, 7293193. [Google Scholar] [CrossRef]
Power Spectrum + Prewitt Filter | Power Spectrum | SSIM | |||||||
---|---|---|---|---|---|---|---|---|---|
Kernel | 3 × 3 | 5 × 5 | 7 × 7 | 3 × 3 | 5 × 5 | 7 × 7 | 3 × 3 | 5 × 5 | 7 × 7 |
FIQMs(median) | 0.521 | 0.319 | 0.12 | 0.49 | 0.374 | 0.241 | 0.97 | 0.796 | 0.329 |
Average Difference in FIQMs | 0.20 | 0.124 | 0.32 |
Power Spectrum + Prewitt Filter | Power Spectrum | SSIM | |
---|---|---|---|
Advantage | Average difference in FIQMs increases up to 61%. | A classic approach commonly utilized in the FIQA field. | Good performance in sharpness assessment of FIQA. |
Disadvantage | Higher computational demand. | Lower resolution in FIQMs and could not identify good or faulty samples. | Requires reference images and failed in good or faulty assessment. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, T.-W.; Li, C.-C.; Lin, W.-F.; Tseng, Y.-H.; Wu, W.-F.; Wu, S.; Tseng, Z.-L.; Hsu, M.-H. Improving Image Quality Assessment Based on the Combination of the Power Spectrum of Fingerprint Images and Prewitt Filter. Appl. Sci. 2022, 12, 3320. https://doi.org/10.3390/app12073320
Shen T-W, Li C-C, Lin W-F, Tseng Y-H, Wu W-F, Wu S, Tseng Z-L, Hsu M-H. Improving Image Quality Assessment Based on the Combination of the Power Spectrum of Fingerprint Images and Prewitt Filter. Applied Sciences. 2022; 12(7):3320. https://doi.org/10.3390/app12073320
Chicago/Turabian StyleShen, Ting-Wei, Ching-Chuan Li, Wan-Fu Lin, Yu-Hao Tseng, Wen-Fang Wu, Sean Wu, Zong-Liang Tseng, and Mao-Hsiu Hsu. 2022. "Improving Image Quality Assessment Based on the Combination of the Power Spectrum of Fingerprint Images and Prewitt Filter" Applied Sciences 12, no. 7: 3320. https://doi.org/10.3390/app12073320
APA StyleShen, T. -W., Li, C. -C., Lin, W. -F., Tseng, Y. -H., Wu, W. -F., Wu, S., Tseng, Z. -L., & Hsu, M. -H. (2022). Improving Image Quality Assessment Based on the Combination of the Power Spectrum of Fingerprint Images and Prewitt Filter. Applied Sciences, 12(7), 3320. https://doi.org/10.3390/app12073320