Impact of Natural Weathering on Stabilization of Heavy Metals (Cu, Zn, and Pb) in MSWI Bottom Ash
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. BA Sampling and Characterization
2.2. Natural Weathering Experiments
3. Results and Discussion
3.1. Fractional Composition and Moisture Content of BA
3.2. Chemical Composition of BA
3.3. Leaching of Untreated MSWI Bottom Ash
3.4. Effect of the BA Natural Weathering
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nørgaard, K.P.; Hyks, J.; Mulvad, J.K.; Frederiksen, J.O.; Hjelmar, O. Optimizing large-scale ageing of municipal solid waste incinerator bottom ash prior to the advanced metal recovery: Phase I: Monitoring of temperature, moisture content, and CO2 level. Waste Manag. 2019, 85, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Schafer, M.L.; Clavier, K.A.; Townsend, T.G.; Kari, R.; Worobel, R.F. Assessment of the total content and leaching behavior of blends of incinerator bottom ash and natural aggregates in view of their utilization as road base construction material. Waste Manag. 2019, 98, 92–101. [Google Scholar] [CrossRef]
- Zhou, H.; Long, Y.Q.; Meng, A.H.; Li, Q.H.; Zhang, Y.G. Classification of municipal solid waste components for thermal conversion in waste to energy research. Fuel 2015, 145, 151–157. [Google Scholar] [CrossRef]
- Inkaew, K.; Saffarzadeh, A.; Shimaoka, T. Modeling the formation of the quench product in municipal solid waste incineration (MSWI) bottom ash. Waste Manag. 2016, 52, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Tang, P.; Florea, M.V.A.; Spiesz, P.; Brouwers, H.J.H. Characteristics and application potential of municipal solid waste incineration (MSWI) bottom ashes from two waste-to-energy plants. Constr. Build. Mater. 2015, 83, 77–94. [Google Scholar] [CrossRef]
- Di Gianfilippo, M.; Costa, G.; Pantini, S.; Allegrini, E.; Lombardi, F.; Astrup, T.F. LCA of management strategies for RDF incineration and gasification bottom ash based on experimental leaching data. Waste Manag. 2016, 47, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Holm, O.; Simon, F.G. Innovative treatment trains of bottom ash (BA) from municipal solid waste incineration (MSWI) in Germany. Waste Manag. 2017, 59, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Shimaoka, T.; Saffarzadeh, A.; Takahashi, F. Mineralogical characterization of municipal solid waste incineration bottom ash with an emphasis on heavy metal-bearing phases. J. Hazard. Mater. 2011, 187, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Di Gianfilippo, M.; Hyks, J.; Verginelli, I.; Costa, G.; Hjelmar, O.; Lombardi, F. Leaching behaviour of incineration bottom ash in a reuse scenario: 12years-field data vs. lab test results. Waste Manag. 2018, 73, 367–380. [Google Scholar] [CrossRef] [PubMed]
- Schabbach, L.M.; Bolelli, G.; Andreola, F.; Lancellotti, T.; Barbieri, L. Valorization of MSWI bottom ash through ceramic glazing process: A new technology. J. Clean. Prod. 2012, 23, 147–157. [Google Scholar] [CrossRef]
- Um, N.; Ahn, J. Effects of two different accelerated carbonation processes on MSWI bottom ash. Process Saf. Environ. Prot. 2017, 3, 560–568. [Google Scholar] [CrossRef]
- Allegrini, E.; Maresca, A.; Olsson, M.E.; Holtze, M.S.; Boldrin, A.; Astrup, T.F. Quantification of the resource recovery potential of municipal solid waste incinera-tion bottom ashes. Waste Manag. 2014, 34, 1627–1636. [Google Scholar] [CrossRef] [PubMed]
- Nakic, D.; Vouk, D.; Siljeg, M.; Bubalo, A. LCA of heavy metals leaching from landfilled sewage sludge ash. J. Environ. Eng. Landsc. Manag. 2021, 29, 359–367. [Google Scholar] [CrossRef]
- Sivula, L. Characterisation and Treatment of Waste Incineration Bottom Ash and Leachate; Jyväskylä University Printing House: Jyväskylä, Finland, 2012; pp. 12–13. [Google Scholar]
- 2000/532/EC; Commission Decision of 3 May 2000 Replacing Decision 94/3/EC Establishing a List of Wastes Pursuant to Article 1(a) of Council Directive 75/442/EEC on waste and Council Decision 94/904/EC Establishing a List of Hazardous Waste Pursuant to Article 1(4) of Council Directive 91/689/EEC on Hazardous Waste, 15. 005. European Union: Maastricht, The Netherlands, 2000; pp. 151–172.
- Santos, R.M.; Mertens, G.; Salman, M.; Cizer, Ö.; Gerven, T. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching. J. Environ. Manag. 2013, 128, 807–821. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.Y.; Heng, K.S.; Sun, X.; Wang, J.Y. Accelerated carbonation of different size fractions of MSW IBA and the effect on leaching. Waste Manag. 2015, 41, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Steenari, B.M. Leaching optimization of municipal solid waste incineration ash for resource recovery: A case study of Cu, Zn, Pb and Cd. Waste Manag. 2016, 48, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Kuo, W.T.; Liu, C.C.; Su, D.S. Use of washed municipal solid waste incinerator bottom ash in pervious concrete. Cem. Concr. Compos. 2013, 37, 328–335. [Google Scholar] [CrossRef]
- Olsson, S.; Gustafsson, J.P.; Berggren Kleja, D.; Bendz, D.; Persson, I. Metal leaching from MSWI bottom ash as affected by salt or dissolved organic matter. Waste Manag. 2009, 29, 506–512. [Google Scholar] [CrossRef]
- Toraldo, E.; Saponaro, S.; Careghini, A.; Mariani, E. Use of stabilized bottom ash for bound layers of road pavements. J. Environ. Manag. 2013, 121, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Ferraris, M.; Salvo, M.; Ventrella, A.; Buzzi, L.; Veglia, M. Use of vitrified MSWI bottom ashes for concrete production. Waste Manag. 2009, 29, 1041–1047. [Google Scholar] [CrossRef] [PubMed]
- Arickx, S.; Van Gerven, T.; Vandecasteele, C. 2006, Accelerated carbonation for treatment of MSWI bottom ash. J. Hazard. Mater. 2006, B137, 235–243. [Google Scholar] [CrossRef]
- Del Valle-Zermeño, R.; Formosa, J.; Chimenos, J.M.; Martínez, M.; Fernández, A.I. Aggregate material formulated with MSWI bottom ash and APC fly ash for use as secondary building material. Waste Manag. 2013, 33, 621–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Valle-Zermeño, R.; Romero-Güiza, M.S.; Chimenos, J.M.; Formosa, J.; Mata-Alvarez, J.; Astals, S. Biogas upgrading using MSWI bottom ash: An integrated municipal solid waste management. Renew. Energy 2015, 80, 184–189. [Google Scholar] [CrossRef]
- Hyks, J.; Astrup, T. Influence of operational conditions, waste input and ageing on contaminant leaching from waste incinerator bottom ash: A full-scale study. Chemosphere 2009, 76, 1178–1184. [Google Scholar] [CrossRef]
- Bayuseno, A.P.; Schmahl, W.W. Understanding the chemical and mineralogical properties of the inorganic portion of MSWI bottom ash. Waste Manag. 2010, 30, 1509–1520. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.P.; Ren, F.; Dou, X.; Yin, K.; Chang, V.W.C. A large-scale field trial experiment to derive effective release of heavy metals from incineration bottom ashes during construction in land reclamation. Sci. Total Environ. Vol. 2018, 637-638, 182–190. [Google Scholar] [CrossRef]
- Piantonea, P.; Bodenan, F.; Chatelet-Snidaro, L. Mineralogical study of secondary mineral phases from weathered MSWI bottom ash: Implication for the modeling and trapping of heavy metals. Appl. Geochem. 2004, 19, 1891–1904. [Google Scholar] [CrossRef]
- Polettini, A.; Pomi, R. 2004, The leaching behavior of incinerator bottom ash as affected by accelerated ageing. J. Hazard. Mater. 2004, B113, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Perez-Martínez, S.; Giro-Paloma, J.; Maldonado-Alameda, A.; Formosa, J.; Queralt, I.; Chimenos, J.M. Characterisation and partition of valuable metals from WEEE in weathered municipal solid waste incineration bottom ash, with a view to recovering. J. Clean. Prod. 2019, 218, 61–68. [Google Scholar] [CrossRef]
- Xuan, D.; Tang, P.; Poon, C.S. Limitations and quality upgrading techniques for utilization of MSW incineration bottom ash in engineering applications—A review. Constr. Build. Mater. 2018, 190, 1091–1102. [Google Scholar] [CrossRef]
- Maldonado-Alameda, A.; Giro-Paloma, J.; Andreola, F.; Barbieri, L.; Chimenos, J.M.; Lancellotti, I. Weathered bottom ash from municipal solid waste incineration: Alkaline activation for sustainable binders. Constr. Build. Mater. 2022, 327, 126983. [Google Scholar] [CrossRef]
- LST EN 933-2:2001; Tests for Geometrical Properties of Aggregates-Part 2: Determination of Particle Size Distribution-Test Sieves, Nominal Size of Apertures. Lithuanian Standards Board: Vilnius, Lithuania, 2001.
- LST EN 933-1:2012; Tests for Geometrical Properties of Aggregates-Part 1: Determination of Particle Size Distribution-Sieving Method. Lithuanian Standards Board: Vilnius, Lithuania, 2012.
- Willits, C.O. Methods for Determination of Moisture-Oven Drying. Anal. Chem. 1951, 23, 1058–1062. [Google Scholar] [CrossRef]
- LST EN 12457-2:2003; Characterization of Waste-Leaching-Compliance Test for Leaching of Granular Waste Materials and Sludges-Part 2: One Stage Batch Test at a Liquid to Solid Ratio of 10 L/kg for Materials with Particle Size below 4 mm (without or with Size Reduction). Lithuanian Standards Board: Vilnius, Lithuania, 2003.
- LST EN ISO 15586:2004; Water Quality-Determination of Trace Elements Using Atomic Absorption Spectrometry with Graphite; Furnace. Lithuanian Standards Board: Vilnius, Lithuania, 2004.
- Meima, J.A.; van der Weijden, R.D.; Eighmy, T.T.; Comans, R.N.J. Carbonation processes in municipal solid waste incinerator bottom ash and their effect on the leaching of copper and molybdenum. Appl. Geochem. 2002, 17, 1503–1513. [Google Scholar] [CrossRef]
- Rendek, E.; Ducom, G.; Germain, P. Carbon dioxide sequestration in municipal solid waste incinerator (MSWI) bottom ash. J. Hazard. Mater. 2006, 128, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Lapkričio 25 d, Įsakymas Nr, D1-805; Dėl Atliekų Deginimo Įrenginiuose ir Bendro Atliekų Deginimo Įrenginiuose Susidariusių Pelenų ir Šlako Tvarkymo Reikalavimų Patvirtinimo. Lietuvos Respublikos Aplinkos Ministro: Vilnius, Lithuania, 2016. (In Lithuanian)
Element | Fraction of MSWI BA (mm) | ||||
---|---|---|---|---|---|
<5.6 | 5.6–11.2 | 11.2–24.2 | 22.4–40.0 | <40.0 | |
Na | 2.890 ± 0.627 | 2.179 ± 0.113 | 2.194 ± 0.544 | 2.027 ± 0.339 | 2.603 ± 0.154 |
Mg | 1.844 ± 0.400 | 1.390 ± 0.072 | 1.400 ± 0.348 | 1.293 ± 0.216 | 1.661 ± 0.098 |
Al | 2.708 ± 0.075 | 2.597 ± 0.072 | 2.963 ± 0.070 | 4.028 ± 0.185 | 3.047 ± 0.225 |
Si | 12.982 ± 0.088 | 19.947 ± 0.120 | 22.098 ± 0.127 | 21.925 ± 0.275 | 17.520 ± 0.295 |
P | 0.876 ± 0.016 | 0.537 ± 0.014 | 0.391 ± 0.013 | 0.454 ± 0.032 | 0.632 ± 0.043 |
S | 2.727 ± 0.019 | 1.422 ± 0.012 | 0.843 ± 0.009 | 0.779 ± 0.020 | 1.946 ± 0.041 |
K | 0.792 + 0.007 | 0.735 ± 0.007 | 0.899 ± 0.008 | 1.260 ± 0.022 | 0.809 ± 0.021 |
Ca | 19.050 ± 0.115 | 14.453 ± 0.085 | 12.880 ± 0.073 | 12.965 ± 0.155 | 16.268 ± 0.245 |
Ti | 0.826 ± 0.022 | 0.595 ± 0.019 | 0.478 ± 0.018 | 0.442 ± 0.044 | 0.610 ± 0.065 |
Fe | 4.690 ± 0.032 | 4.272 ± 0.029 | 3.917 ± 0.026 | 4.510 ± 0.068 | 4.398 ± 0.085 |
Fraction (mm) | Element | |||||||
---|---|---|---|---|---|---|---|---|
SiO2 | CaO | Fe2O3 | Al2O3 | K2O | TiO2 | P2O5 | SO2 | |
5.6 mm | ||||||||
Untreated | 27.700 ± 0.189 | 26.655 ± 0.161 | 6.506 ± 0.046 | 5.117 ± 0.142 | 1.093 ± 0.010 | 1.375 ± 0.037 | 2.007 ± 0.036 | 6.818 ± 0.048 |
3 months | 27.424 ± 0.517 | 26.834 ± 0.424 | 6.222 ± 0.141 | 5.454 ± 0.409 | 1.029 ± 0.028 | 1.348 ± 0.125 | 1.740 ± 0.100 | 5.967 ± 0.120 |
6 months | 26.376 ± 0.517 | 26.104 ± 0.433 | 6.293 ± 0.129 | 5.407 ± 0.413 | 0.910 ± 0.026 | 1.315 ± 0.117 | 1.844 ± 0.101 | 4.368 ± 0.098 |
5.6–11.2 mm | ||||||||
Untreated | 42.670 ± 0.257 | 20.223 ± 0.119 | 6.108 ± 0.041 | 5.587 ± 0.135 | 1.014 ± 0.009 | 0.992 ± 0.032 | 1.231 ± 0.033 | 3.555 ± 0.031 |
3 months | 34.441 ± 0.603 | 23.054 ± 0.375 | 6.388 ± 0.124 | 5.483 ± 0.413 | 0.906 ± 0.026 | 1.128 ± 0.111 | 1.534 ± 0.098 | 3.528 ± 0.085 |
6 months | 32.526 ± 0.592 | 22.634 ± 0.357 | 6.372 ± 0.126 | 5.121 ± 0.397 | 0.836 ± 0.025 | 1.184 ± 0.114 | 1.731 ± 0.102 | 3.321 ± 0.079 |
11.2–24.4 mm | ||||||||
Untreated | 47.272 ± 0.271 | 18.022 ± 0.103 | 5.601 ± 0.037 | 5.599 ± 0.132 | 1.241 ± 0.011 | 0.797 ± 0.029 | 0.896 ± 0.031 | 2.108 ± 0.022 |
3 months | 44.377 ± 0.752 | 18.057 ± 0.285 | 5.428 ± 0.110 | 5.476 ± 0.403 | 1.134 ± 0.031 | 0.786 ± 0.097 | 0.790 ± 0.087 | 2.101 ± 0.069 |
6 months | 42.474 ± 0.699 | 16.891 ± 0.275 | 5.288 ± 0.114 | 5.372 ± 0.406 | 0.988 ± 0.028 | 0.773 ± 0.100 | 0.708 ± 0.084 | 2.049 ± 0.064 |
24.4–40.0 mm | ||||||||
Untreated | 46.902 ± 0.588 | 18.141 ± 0.2682 | 6.748 ± 0.097 | 7.612 ± 0.350 | 1.739 ± 0.030 | 0.737 ± 0.074 | 1.041 ± 0.073 | 1.949 ± 0.050 |
3 months | 43.536 ± 0.752 | 16.359 ± 0.268 | 6.519 ± 0.100 | 7.404 ± 0.457 | 1.657 ± 0.040 | 0.731 ± 0.072 | 1.042 ± 0.091 | 1.652 ± 0.056 |
6 months | 36.081 ± 0.620 | 16.753 ± 0.252 | 6.067 ± 0.122 | 7.958 ± 0.441 | 1.247 ± 0.031 | 0.715 ± 0.071 | 0.657 ± 0.089 | 1.470 ± 0.056 |
<40.0 mm natural weathering | ||||||||
Untreated | 37.479 ± 0.631 | 22.763 ± 0.343 | 6.288 ± 0.122 | 5.757 ± 0.425 | 1.116 ± 0.029 | 1.018 ± 0.108 | 1.449 ± 0.100 | 4.865 ± 0.103 |
3 months | 33.703 ± 0.617 | 22.947 ± 0.366 | 6.384 ± 0.136 | 5.508 ± 0.419 | 0.928 ± 0.027 | 1.123 ± 0.111 | 1.558 ± 0.101 | 4.418 ± 0.099 |
6 months | 31.850 ± 0.503 | 22.947 ± 0.366 | 6.193 ± 0.124 | 5.404 ± 0.394 | 0.832 ± 0.024 | 1.594 ± 0.102 | 1.558 ± 0.101 | 4.677 ± 0.099 |
<40.0 mm laboratory ageing | ||||||||
Untreated | 37.479 ± 0.631 | 22.763 ± 0.343 | 6.288 ± 0.122 | 5.757 ± 0.425 | 1.116 ± 0.029 | 1.018 ± 0.108 | 1.449 ± 0.100 | 4.865 ± 0.103 |
3 months | 34.279 ± 0.623 | 24.263 ± 0.160 | 6.252 ± 0.128 | 5.487 ± 0.406 | 1.083 ± 0.028 | 0.101 ± 0.106 | 1.496 ± 0.101 | 4.800 ± 0.103 |
6 months | 33.569 ± 0.616 | 24.641 ± 0.163 | 6.176 ± 0.123 | 5.418 ± 0.395 | 1.059 ± 0.027 | 0.980 ± 0.101 | 1.615 ± 0.104 | 4.847 ± 0.103 |
Mineral | Chemical Formula | Untreated Sample | Laboratory Ageing | |
---|---|---|---|---|
3 Months | 6 Months | |||
Carbonates | ||||
Calcite | CaCO3 | XXXX | XXXX | XXXX |
Oxide | ||||
Quartz | SiO2 | XXXX | XXXX | XXXX |
Hematite | Fe2O3 | X | X | X |
Magnetite | Fe + 2Fe + 3O4 | XX | XX | XX |
Silicates | ||||
Diopside | CaMgSi2O6 | X | XX | XX |
Gehlenite | Ca2Al2SiO7 | XX | XX | XX |
Akermanite | Ca2Mg(Si2O7) | X | X | X |
Microcline | K(AlSi3)O8 | X | X | X |
Phosphates | ||||
Hydroxylapatite | Ca5(PO4)3(OH) | X | X | XX |
Sulfates | ||||
Anhydrite | Ca(SO4) | X | X | X |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasarevičius, S.; Seniūnaitė, J.; Vaišis, V. Impact of Natural Weathering on Stabilization of Heavy Metals (Cu, Zn, and Pb) in MSWI Bottom Ash. Appl. Sci. 2022, 12, 3419. https://doi.org/10.3390/app12073419
Vasarevičius S, Seniūnaitė J, Vaišis V. Impact of Natural Weathering on Stabilization of Heavy Metals (Cu, Zn, and Pb) in MSWI Bottom Ash. Applied Sciences. 2022; 12(7):3419. https://doi.org/10.3390/app12073419
Chicago/Turabian StyleVasarevičius, Saulius, Jurgita Seniūnaitė, and Vaidotas Vaišis. 2022. "Impact of Natural Weathering on Stabilization of Heavy Metals (Cu, Zn, and Pb) in MSWI Bottom Ash" Applied Sciences 12, no. 7: 3419. https://doi.org/10.3390/app12073419
APA StyleVasarevičius, S., Seniūnaitė, J., & Vaišis, V. (2022). Impact of Natural Weathering on Stabilization of Heavy Metals (Cu, Zn, and Pb) in MSWI Bottom Ash. Applied Sciences, 12(7), 3419. https://doi.org/10.3390/app12073419