The Association of Gender and Body Mass Index on the Values of Static and Dynamic Balance of University Students (A Cross-Sectional Design Study)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. The Statistical Analysis of Data
3. Results
4. Discussion
5. Conclusions
Limits of the Study and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Clark, K.N. Balance and Strength Training for Obese Individuals. ACSM’s Health Fit. J. 2004, 8, 14–20. [Google Scholar] [CrossRef]
- Fujinaga, H. Static Standing Balance as a Component of Motor Fitness among the 5-Year-Old Children. Int. J. Fit. 2008, 4, 67–74. [Google Scholar]
- Zerf, M.; Kherfane, M.H. Balance as a Postural Key Component (Core) for Establishing Physical State in School Program Reports. Qual. Sport 2020, 6, 28–33. [Google Scholar] [CrossRef] [Green Version]
- Park, D.; Lee, Y.; Yun, M. Understanding Balance Control in the Context of Riding a Personal Mobility Device. Appl. Sci. 2021, 11, 4173. [Google Scholar] [CrossRef]
- Barton, K.S. Colorado’s Millennial Generation: Youth Perceptions and Experiences of Nature. J. Geogr. 2012, 111, 213–223. [Google Scholar] [CrossRef]
- Bronikowski, M.; Laudańska-Krzemińska, I.; Bronikowska, M.; Morina, B. How Is Classmate and PE Teacher Support Associated with the Level of Physical Activity in Young Adolescents from Kosovo? The Role of Gender and Age. Cent. Eur. J. Public Health 2015, 23, 252–257. [Google Scholar] [CrossRef] [Green Version]
- Bronikowski, M.; Bronikowska, M.; Laudańska-Krzemińska, I.; Kantanista, A.; Morina, B.; Vehapi, S. PE Teacher and Classmate Support in Level of Physical Activity: The Role of Sex and BMI Status in Adolescents from Kosovo. BioMed Res. Int. 2015, 2015, e290349. [Google Scholar] [CrossRef] [Green Version]
- Nurwulan, N.R.; Jiang, B.C.; Iridiastadi, H. Posture and Texting: Effect on Balance in Young Adults. PLoS ONE 2015, 10, e0134230. [Google Scholar] [CrossRef]
- Bukowska, J.M.; Jekiełek, M.; Kruczkowski, D.; Ambroży, T.; Rydzik, Ł.; Spieszny, M.; Jaszczur-Nowicki, J. Podiatric and Stabilographic Examinations of the Effects of School Bag Carrying in Children Aged 11 to 15 Years. Appl. Sci. 2021, 11, 9357. [Google Scholar] [CrossRef]
- Bronikowski, M.; Gonzales-Gross, M.; Kleiner, K.; Knisel, E.; Martinkova, I.; Stache, A.; Kantanista, A.; Lòpez, D.C.; Konlechner, A. Physical Activity, Obesity and Health Programs in Selected European Countries. Stud. Phys. Cult. Tour. 2008, 15, 9–17. [Google Scholar]
- Maciaszek, J.; Honsová, Š.; Knisel, E.; Epping, R.; Ołpińska-Lischka, M.; Michał, B.; Pospieszna, B. Physical Activity Rates of Male and Female Students from Selected European Physical Education Universities. Trends Sport Sci. 2020, 27, 63–69. [Google Scholar] [CrossRef]
- Yamamoto, N.; Yanagi, H.; Ito, Y.; Inoue, Y.; Tanaka, K.; Wada, T.; Ishii, T. Dynamic and Static Ability of Balance and Postural Control in Japanese Obese Children. In Proceedings of the 6th World Congress of Biomechanics (WCB 2010), Singapore, 1–6 August 2010; Lim, C.T., Goh, J.C.H., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 258–261. [Google Scholar]
- Cancela Carral, J.M.; Ayán, C.; Sturzinger, L.; Gonzalez, G. Relationships Between Body Mass Index and Static and Dynamic Balance in Active and Inactive Older Adults. J. Geriatr. Phys. Ther. 2019, 42, E85. [Google Scholar] [CrossRef] [PubMed]
- Aloui, G.; Hermassi, S.; Hayes, L.D.; Bouhafs, E.G.; Chelly, M.S.; Schwesig, R. Loaded Plyometrics and Short Sprints with Change-of-Direction Training Enhance Jumping, Sprinting, Agility, and Balance Performance of Male Soccer Players. Appl. Sci. 2021, 11, 5587. [Google Scholar] [CrossRef]
- Ricotti, L. Static and Dynamic Balance in Young Athletes. J. Hum. Sport Exerc. 2011, 6, 616–628. [Google Scholar] [CrossRef] [Green Version]
- Olchowik, G.; Czwalik, A. Effects of Soccer Training on Body Balance in Young Female Athletes Assessed Using Computerized Dynamic Posturography. Appl. Sci. 2020, 10, 1003. [Google Scholar] [CrossRef] [Green Version]
- Alexe, D.I. Implicaţiile Psihomotricităţii În Manifestarea Echilibrului La Pubertate; Performantica: Iasi, Romania, 2012; ISBN 978-973-730-968-6. [Google Scholar]
- Alexe, D.I. Echilibrul La Pubertate. Relaţia Dominanţă Emisferică—Performanţă; Performantica: Iasi, Romania, 2013; ISBN 978-606-685-004-9. [Google Scholar]
- Shyamal, K.; Gupta, B. Correlations of Static Balance and Anthropometric Characteristics in Indian Elite Male Shooters. Int. J. Appl. Sports Sci. 2012, 24, 65–72. [Google Scholar] [CrossRef]
- Moein, E.; Movaseghi, F. Relationship between Some Anthropometric Indices with Dynamic and Static Balance in Sedentary Female College Students. Turk. J. Sport Exerc. 2016, 18, 45–49. [Google Scholar] [CrossRef] [Green Version]
- Lipowicz, A.; Bugdol, M.N.; Szurmik, T.; Bibrowicz, K.; Kurzeja, P.; Mitas, A.W. Body Balance Analysis of Children and Youth with Intellectual Disabilities. J. Intellect. Disabil. Res. 2019, 63, 1312–1323. [Google Scholar] [CrossRef]
- De Maio, M.; Cortis, C.; Iannaccone, A.; da Silva, R.A.; Fusco, A. Association between Anthropometric Variables, Sex, and Visual Biofeedback in Dynamic Postural Control Assessed on a Computerized Wobble Board. Appl. Sci. 2021, 11, 8370. [Google Scholar] [CrossRef]
- Hyun, S.-J.; Lee, J.; Lee, B.-H. The Effects of Sit-to-Stand Training Combined with Real-Time Visual Feedback on Strength, Balance, Gait Ability, and Quality of Life in Patients with Stroke: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2021, 18, 12229. [Google Scholar] [CrossRef]
- Porcelli, P.; Ungar, M.; Liebenberg, L.; Trépanier, N. (Micro)Mobility, Disability and Resilience: Exploring Well-Being among Youth with Physical Disabilities. Disabil. Soc. 2014, 29, 863–876. [Google Scholar] [CrossRef]
- Fronczek–Wojciechowska, M.; Padula, G.; Kowalska, J.; Galli, M.; Livatino, S.; Kopacz, K. Static Balance and Dynamic Balance Related to Rotational Movement in Ballet Dance Students. Int. J. Perform. Anal. Sport 2016, 16, 801–816. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Anson, J.; Waddington, G.; Adams, R.; Liu, Y. The Role of Ankle Proprioception for Balance Control in Relation to Sports Performance and Injury. BioMed Res. Int. 2015, 2015, e842804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majcen Rosker, Z.; Vodicar, M. Sport-Specific Habitual Adaptations in Neck Kinesthetic Functions Are Related to Balance Controlling Mechanisms. Appl. Sci. 2020, 10, 8965. [Google Scholar] [CrossRef]
- Dutil, M.; Handrigan, G.A.; Corbeil, P.; Cantin, V.; Simoneau, M.; Teasdale, N.; Hue, O. The Impact of Obesity on Balance Control in Community-Dwelling Older Women. AGE 2013, 35, 883–890. [Google Scholar] [CrossRef] [Green Version]
- Villareal, D.T.; Banks, M.; Siener, C.; Sinacore, D.R.; Klein, S. Physical Frailty and Body Composition in Obese Elderly Men and Women. Obes. Res. 2004, 12, 913–920. [Google Scholar] [CrossRef]
- Menegoni, F.; Galli, M.; Tacchini, E.; Vismara, L.; Cavigioli, M.; Capodaglio, P. Gender-Specific Effect of Obesity on Balance. Obesity 2009, 17, 1951–1956. [Google Scholar] [CrossRef]
- Tabrizi, H.B.; Abbasi, A.; Sarvestani, H.J. Comparing the Static and Dynamic Balances and Their Relationship with the Anthropometrical Characteristics in the Athletes of Selected Sports. MEJSR 2013, 15, 7. [Google Scholar] [CrossRef]
- Molnár, C.; Pálya, Z.; Kiss, R.M. Static Balancing Ability and Lower Body Kinematics Examination of Hungarian Folk Dancers: A Pilot Study Investigating the “Kalocsai Mars” Dance Sequence. Appl. Sci. 2021, 11, 8789. [Google Scholar] [CrossRef]
- Schneiders, A.G.; Sullivan, S.J.; Handcock, P.; Gray, A.; McCrory, P.R. Sports Concussion Assessment: The Effect of Exercise on Dynamic and Static Balance. Scand. J. Med. Sci. Sports 2012, 22, 85–90. [Google Scholar] [CrossRef]
- Steinberg, N.; Nemet, D.; Pantanowitz, M.; Eliakim, A. Gait Pattern, Impact to the Skeleton and Postural Balance in Overweight and Obese Children: A Review. Sports 2018, 6, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matla, J.; Filar-Mierzwa, K.; Ścisłowska-Czarnecka, A.; Jankowicz-Szymańska, A.; Bac, A. The Influence of the Physiotherapeutic Program on Selected Static and Dynamic Foot Indicators and the Balance of Elderly Women Depending on the Ground Stability. Int. J. Environ. Res. Public Health 2021, 18, 4660. [Google Scholar] [CrossRef] [PubMed]
- Sebastia-Amat, S.; Ardigò, L.P.; Jimenez-Olmedo, J.M.; Pueo, B.; Penichet-Tomas, A. The Effect of Balance and Sand Training on Postural Control in Elite Beach Volleyball Players. Int. J. Environ. Res. Public Health 2020, 17, 8981. [Google Scholar] [CrossRef] [PubMed]
- Jorrakate, C.; Kongsuk, J.; Pongduang, C.; Sadsee, B.; Chanthorn, P. Effect of Yoga Training on One Leg Standing and Functional Reach Tests in Obese Individuals with Poor Postural Control. J. Phys. Ther. Sci. 2015, 27, 59–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radhakrishnan, D.G. Effect of Static Asanas Practices on Core Strength and Balance among College Students. Int. J. Yogic Hum. Mov. Sports Sci. 2019, 4, 3. [Google Scholar]
- Rojhani-Shirazi, Z.; Azadeh Mansoriyan, S.; Hosseini, S.V. The Effect of Balance Training on Clinical Balance Performance in Obese Patients Aged 20–50 Years Old Undergoing Sleeve Gastrectomy. Eur. Surg. 2016, 48, 105–109. [Google Scholar] [CrossRef]
- Chang, N.-J.; Tsai, I.-H.; Lee, C.-L.; Liang, C.-H. Effect of a Six-Week Core Conditioning as a Warm-Up Exercise in Physical Education Classes on Physical Fitness, Movement Capability, and Balance in School-Aged Children. Int. J. Environ. Res. Public Health 2020, 17, 5517. [Google Scholar] [CrossRef]
- Jung, J.-Y.; Yang, C.-M.; Kim, J.-J. Effectiveness of Combined Stretching and Strengthening Exercise Using Rehabilitation Exercise System with a Linear Actuator and MR Damper on Static and Dynamic Sitting Postural Balance: A Feasibility Study. Appl. Sci. 2021, 11, 7329. [Google Scholar] [CrossRef]
- Özer, Ö.; Soslu, R. Comparison of the Static Balance, Strength and Flexibility Characteristics of the University Students Who Taken Artistic Gymnastic Lesson. Turk. J. Sport Exerc. 2019, 21, 229–233. [Google Scholar] [CrossRef]
- Davoodeh, S.; Sheikh, M.; Houminiyan Sharifabadi, D.; Bagherzadeh, F. The Effect of Wii Fit Exergames on Static Balance and Motor Competence in Obese and Non-Obese College Women. Acta Gymnica 2020, 50, 61–67. [Google Scholar] [CrossRef]
- Balance Fitness Tests. Available online: https://www.topendsports.com/testing/balance.htm (accessed on 27 January 2022).
- Functional Reach Test (FRT). Available online: https://www.physio-pedia.com/Functional_Reach_Test_(FRT) (accessed on 27 January 2022).
- Curnow, D.; Cobbin, D.; Wyndham, J. Reliability of the Stork Test: Is Starting Stance Important? Chiropr. J. Aust. 2010, 40, 137–141. [Google Scholar] [CrossRef]
- Muehlbauer, T.; Roth, R.; Mueller, S.; Granacher, U. Intra and Intersession Reliability of Balance Measures During One-Leg Standing in Young Adults. J. Strength Cond. Res. 2011, 25, 2228–2234. [Google Scholar] [CrossRef] [PubMed]
- Panta, K. A Study to Associate the Flamingo Test and the Stork Test in Measuring Static Balance on Healthy Adults. Foot Ankle Online J. 2015, 8, 4. [Google Scholar]
- Springer, B.A.; Marin, R.; Cyhan, T.; Roberts, H.; Gill, N.W. Normative Values for the Unipedal Stance Test with Eyes Open and Closed. J. Geriatr. Phys. 2007, 30, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Tsigilis, N.; Douda, H.; Tokmakidis, S.P. Test-Retest Reliability of the Eurofit Test Battery Administered to University Students. Percept. Mot. Ski. 2002, 95, 1295–1300. [Google Scholar] [CrossRef]
- Walden, T. Standardized Field Sobriety Testing: Learning from Our Mistakes. Available online: https://citeseerx.ist.psu.edu (accessed on 27 January 2022).
- Zhang, Y.B.; Wang, W.Q. Reliability of the Fukuda Stepping Test to Determine the Side of Vestibular Dysfunction. J. Int. Med. Res. 2011, 39, 1432–1437. [Google Scholar] [CrossRef] [Green Version]
- Amir, D.; Amir, H.S.; Saeed, G.; Amir, G.R. The Effect of Diurnal Rhythms on Static and -ProQuest. Biomed. Hum. Kinet. 2021, 13, 205–211. [Google Scholar] [CrossRef]
- Karagul, O.; Nalcakan, G.R.; Dogru, Y.; Tas, M. Effects of Circadian Rhythm on Balance Performance. Pol. J. Sport Tour. 2017, 24, 155–161. [Google Scholar] [CrossRef] [Green Version]
- Zouabi, A.; Quarck, G.; Martin, T.; Grespinet, M.; Gauthier, A. Is There a Circadian Rhythm of Postural Control and Perception of the Vertical? Chronobiol. Int. 2016, 33, 1320–1330. [Google Scholar] [CrossRef]
- Di Cagno, A.; Fiorilli, G.; Iuliano, E.; Aquino, G.; Giombini, A.; Battaglia, C.; Piazza, M.; Tsopani, D.; Calcagno, G. Time-of-Day Effects on Static and Dynamic Balance in Elite Junior Athletes and Untrained Adolescents. Int. J. Sports Sci. Coach. 2014, 9, 615–625. [Google Scholar] [CrossRef]
- Sandu, A.S. Etica Si Deontologie Profesionala; Lumen: Iasi, Romania, 2012; ISBN 978-973-166-302-9. [Google Scholar]
- World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. JAMA 2013, 310, 2191. [CrossRef] [PubMed] [Green Version]
- Sarma, K.V.S.; Vardhan, R.V. Multivariate Statistics Made Simple: A Practical Approach; CRC Press: Boca Raton, FL, USA, 2018; ISBN 978-0-429-87787-2. [Google Scholar]
- Grice, J.W.; Iwasaki, M. A Truly Multivariate Approach to MANOVA. Appl. Multivar. Res. 2008, 12, 199–226. [Google Scholar] [CrossRef]
- Armstrong, R.A. When to Use the Bonferroni Correction. Ophthalmic Physiol. Opt. 2014, 34, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Murariu, G. Fizică Statistică Și Computațională—Aspecte Contemporane Si Aplicații; Galați University Press: Galati, Romania, 2018. [Google Scholar]
- Murariu, G.; Munteanu, D. Lucrări Practice de Identificare, Modelare Şi Simulare a Proceselor Fizice; Galați University Press: Galati, Romania, 2018. [Google Scholar]
- Opariuc-Dan, C. Statistică Aplicată În Științele Socio-Umane. Analiza Asocierilor Și a Diferențelor Statistice; Editura ASCR: Constanța, Romania, 2011. [Google Scholar]
- Alhusaini, A.A.; Melam, G.; Buragadda, S. The Role of Body Mass Index on Dynamic Balance and Muscle Strength in Saudi Schoolchildren. Sci. Sports 2020, 35, 395.e1–395.e9. [Google Scholar] [CrossRef]
- Teasdale, N.; Simoneau, M.; Corbeil, P.; Handrigan, G.; Tremblay, A.; Hue, O. Obesity Alters Balance and Movement Control. Curr. Obes. Rep. 2013, 2, 235–240. [Google Scholar] [CrossRef] [Green Version]
- Deforche, B.I.; Hills, A.P.; Worringham, C.J.; Davies, P.S.W.; Murphy, A.J.; Bouckaert, J.J.; De Bourdeaudhuij, I.M. Balance and Postural Skills in Normal-Weight and Overweight Prepubertal Boys. Int. J. Pediatric Obes. 2009, 4, 175–182. [Google Scholar] [CrossRef]
- Handrigan, G.; Hue, O.; Simoneau, M.; Corbeil, P.; Marceau, P.; Marceau, S.; Tremblay, A.; Teasdale, N. Weight Loss and Muscular Strength Affect Static Balance Control. Int. J. Obes. 2010, 34, 936–942. [Google Scholar] [CrossRef] [Green Version]
- Goulding, A.; Jones, I.E.; Taylor, R.W.; Piggot, J.M.; Taylor, D. Dynamic and Static Tests of Balance and Postural Sway in Boys: Effects of Previous Wrist Bone Fractures and High Adiposity. Gait Posture 2003, 17, 136–141. [Google Scholar] [CrossRef]
- Berisha, M.; Cilli, M. Comparison of Eurofit Test Results of 11–17-Year-Old Male and Female Students in Kosovo. ESJ 2017, 13, 138. [Google Scholar] [CrossRef] [Green Version]
- Morina, B.; Miftari, F.; Badau, D. Fitness Level Differences between Students in Kosovo and Montenegro. Educ. Sci. 2021, 11, 140. [Google Scholar] [CrossRef]
- Acar, H.; Eler, N. The Effect of Balance Exercises on Speed and Agility in Physical Education Lessons. Univers. J. Educ. Res. 2019, 7, 74–79. [Google Scholar] [CrossRef] [Green Version]
- Mi, H.U.; Jinjing, W.; Xu, S.; Yang, Z. Influence of obesity and gender on the dynamic and static balance in children aged 8–10 years. zgxxws 2021, 42, 1064–1067, 1072. [Google Scholar] [CrossRef]
- Sharma, P.; Metgud, D. Assessment of Static and Dynamic Balance in Overweight and Obese Children with and without Flatfoot: A Cross-Sectional Study. Indian J. Health Sci. Biomed. Res. 2017, 10, 173. [Google Scholar] [CrossRef]
- Ferri-Marini, C.; Lucertini, F.; Valentini, M.; Federici, A. The Effect of Slackline Training on Balance Performance in Healthy Male Children. JHSE 2020, 15, 411–418. [Google Scholar] [CrossRef]
- Latorre Román, P.Á.; Mora López, D.; Robles Fuentes, A.; García Pinillos, F. Reference Values of Static Balance in Spanish Preschool Children. Percept. Mot. Ski. 2017, 124, 740–753. [Google Scholar] [CrossRef]
- Krzysztoszek, J.; Maciaszek, J.; Bronikowski, M.; Karasiewicz, M.; Laudańska-Krzemińska, I. Comparison of Fitness and Physical Activity Levels of Obese People with Hypertension. Appl. Sci. 2021, 11, 10330. [Google Scholar] [CrossRef]
- do Nascimento, J.A.; Silva, C.C.; dos Santos, H.H.; de Almeida Ferreira, J.J.; de Andrade, P.R. A Preliminary Study of Static and Dynamic Balance in Sedentary Obese Young Adults: The Relationship between BMI, Posture and Postural Balance. Clin. Obes. 2017, 7, 377–383. [Google Scholar] [CrossRef]
- Porto, H.D.; Pechak, C.; Smith, D.; Reed-Jones, R. Biomechanical Effects of Obesity on Balance. Int. J. Exerc. Sci. 2012, 20, 301–320. [Google Scholar]
- Pagnotti, G.M.; Haider, A.; Yang, A.; Cottell, K.E.; Tuppo, C.M.; Tong, K.-Y.; Pryor, A.D.; Rubin, C.T.; Chan, M.E. Postural Stability in Obese Preoperative Bariatric Patients Using Static and Dynamic Evaluation. OFA 2020, 13, 499–513. [Google Scholar] [CrossRef]
- Golshaei, B. Dynamic and Static Balance Differences Based on Gender and Sport Participation. Master’s Thesis, Middle East Technical University, Ankara, Turkey, 2013. [Google Scholar]
- Zhu, W.; Li, Y.; Wang, B.; Zhao, C.; Wu, T.; Liu, T.; Sun, F. Objectively Measured Physical Activity Is Associated with Static Balance in Young Adults. Int. J. Environ. Res. Public Health 2021, 18, 10787. [Google Scholar] [CrossRef]
- Katz-Leurer, M.; Fisher, I.; Neeb, M.; Schwartz, I.; Carmeli, E. Reliability and Validity of the Modified Functional Reach Test at the Sub-Acute Stage Post-Stroke. Disabil. Rehabil. 2009, 31, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Donahoe, B.; Turner, D.; Worrell, T. The Use of Functional Reach as a Measurement of Balance in Boys and Girls Without Disabilities Ages 5 to 15 Years. Pediatric Phys. Ther. 1994, 6, 189–193. [Google Scholar] [CrossRef]
- Sarkar, A.; Singh, M.; Bansal, N.; Kapoor, S. Effects of obesity on balance and gait alterations in young adults. Indian J. Physiol. Pharm. 2011, 55, 7. [Google Scholar]
- Cardoso, L.d.P.; Pereira, K.; Bertoncello, D.; Castro, S.S.D.; Fonseca, L.L.M.; Walsh, I.A.P.D. Overweight and balance in schoolchildren: a case-control study. J. Phys. Educ. 2017, 28, 7. [Google Scholar] [CrossRef] [Green Version]
- Şimşek, E.; Arslan, H. The Examination of Relationship Between Balance Performances and Some Anthropometric Characteristics of Athletes in Different Branches. Int. J. Appl. Exerc. Physiol. 2019, 8, 88–94. [Google Scholar]
- Verbecque, E.; Coetzee, D.; Ferguson, G.; Smits-Engelsman, B. High BMI and Low Muscular Fitness Predict Low Motor Competence in School-Aged Children Living in Low-Resourced Areas. Int. J. Environ. Res. Public Health 2021, 18, 7878. [Google Scholar] [CrossRef]
- Ku, P.X.; Abu Osman, N.A.; Yusof, A.; Wan Abas, W.A.B. Biomechanical Evaluation of the Relationship between Postural Control and Body Mass Index. J. Biomech. 2012, 45, 1638–1642. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Negro, J.; Huertas-Delgado, F.J.; Yanci, J. Motor Skills Differences by Gender in Early Elementary Education Students. Early Child Dev. Care 2021, 191, 281–291. [Google Scholar] [CrossRef]
- Taylan Cebi, I.; Karatas, A. The Assessment of Fukuda Stepping Test Results in Prognosis of Benign Paroxysmal Postural Vertigo. Braz. J. Otorhinolaryngol. 2021, in press. [CrossRef]
- Turkeri, C.; Ozturk, B.; Buyuktas, B.; Ozturk, D. Comparison of Balance, Reaction Time, Attention and BMI Values in Individual and Team Sports. J. Educ. Learn. 2019, 8, 119–128. [Google Scholar] [CrossRef]
- Iverson, G.L.; Koehle, M.S. Normative Data for the Balance Error Scoring System in Adults. Rehabil. Res. Pract. 2013, 2013, e846418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrin, P.; Deviterne, D.; Hugel, F.; Perrot, C. Judo, Better than Dance, Develops Sensorimotor Adaptabilities Involved in Balance Control. Gait Posture 2002, 15, 187–194. [Google Scholar] [CrossRef]
- Hrysomallis, C. Balance Ability and Athletic Performance. Sports Med. 2011, 41, 221–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bressel, E.; Yonker, J.C.; Kras, J.; Heath, E.M. Comparison of Static and Dynamic Balance in Female Collegiate Soccer, Basketball, and Gymnastics Athletes. J. Athl. Train 2007, 42, 42–46. [Google Scholar]
- Wasiluk, A.; Saczuk, J. Changes in the Somatic Build and Physical Fitness of Physical Education Students in the Years 2004 and 2014. Bibl. Akad. Wych. Fiz. W Pozn. 2020, 27, 29–34. [Google Scholar]
- Bernetti, A.; Agostini, F.; Cacchio, A.; Santilli, V.; Ruiu, P.; Paolucci, T.; Paoloni, M.; Mangone, M. Postural Evaluation in Sports and Sedentary Subjects by Rasterstereographic Back Shape Analysis. Appl. Sci. 2020, 10, 8838. [Google Scholar] [CrossRef]
- Sung, J.-L.; Guo, L.-Y.; Liu, C.-H.; Lee, P.; Yen, C.-W.; Liaw, L.-J. Assessing Postural Stability Using Coupling Strengths between Center of Pressure and Its Ground Reaction Force Components. Appl. Sci. 2020, 10, 8077. [Google Scholar] [CrossRef]
- Wu, T.-Y.; Liou, C.-T. Analogy Study of Center-Of-Pressure and Acceleration Measurement for Evaluating Human Body Balance via Segmentalized Principal Component Analysis. Appl. Sci. 2019, 9, 4779. [Google Scholar] [CrossRef] [Green Version]
- Badau, A.; Badau, D.; Enoiu, R.S. Evaluation of Stable Balance Capacity by Using Bosu Ball Surfaces on Different Pressure Levels. Mat. Plast. 2019, 56, 216–219. [Google Scholar] [CrossRef]
- Rizzato, A.; Paoli, A.; Marcolin, G. Different Gymnastic Balls Affect Postural Balance Rather Than Core-Muscle Activation: A Preliminary Study. Appl. Sci. 2021, 11, 1337. [Google Scholar] [CrossRef]
Gender | Participants | Underweight BMI (Below 18.5) | Normal Weight BMI (18.5–24.9) | Overweight/Obesity BMI (25–30)/BMI (above30) |
---|---|---|---|---|
Male | 99 (50.76%) | 6 (3.07%) | 51 (26.15%) | 42 (21.54%) |
Female | 96 (49.23%) | 15 (7.69%) | 60 (30.76%) | 21 (10.76%) |
Total lot | 195 (100%) | 21 (10.77%) | 111 (56.92%) | 63 (32.30%) |
Effect | λ | F | Hypothesis df | Error df | Sig. | ηp | Observed Power |
---|---|---|---|---|---|---|---|
Gender | 0.675 | 12.572 b | 7.000 | 183.000 | 0.000 | 0.325 | 1.000 |
BMI framing steps | 0.686 | 5.425 b | 14.000 | 366.000 | 0.000 | 0.172 | 1.000 |
Gender * BMI framing steps | 0.850 | 2.219 b | 14.000 | 366.000 | 0.007 | 0.078 | 0.970 |
Dependent Variable | Sum of Squares | Mean Square | F (1, 193) | Sig. | Partial Eta Squared | Noncent Parameter | Observed Power |
---|---|---|---|---|---|---|---|
One standing balance test | 498.941 | 498.941 | 14.185 | 0.000 | 0.068 | 14.185 | 0.963 |
Functional reach test | 157.890 | 157.890 | 4.017 | 0.046 | 0.020 | 4.017 | 0.514 |
Stork test | 30.826 | 30.826 | 2.738 | 0.100 | 0.014 | 2.738 | 0.377 |
Flamingo test | 659.669 | 659.669 | 43.920 | 0.000 | 0.185 | 43.920 | 1.000 |
Bass test | 412.554 | 412.554 | 2.164 | 0.143 | 0.011 | 2.164 | 0.310 |
Walk and turn field sobriety test | 0.640 | 0.640 | 1.979 | 0.161 | 0.010 | 1.979 | 0.288 |
Fukuda test | 0.344 | 0.344 | 0.000 | 0.982 | 0.000 | 0.000 | 0.050 |
Dependent Variable | Sum of Squares | Mean Square | F (2, 192) | Sig. | Partial Eta Squared | Noncent Parameter | Observed Power |
---|---|---|---|---|---|---|---|
One Standing balance test | 617.602 | 308.801 | 8.889 | 0.000 | 0.085 | 17.779 | 0.971 |
Functional reach test | 33.781 | 16.891 | 0.421 | 0.657 | 0.004 | 0.841 | 0.118 |
Stork test | 108.109 | 54.055 | 4.953 | 0.008 | 0.049 | 9.906 | 0.805 |
Flamingo test | 975.599 | 487.800 | 36.261 | 0.000 | 0.274 | 72.522 | 1.000 |
Bass test | 5455.519 | 2727.760 | 16.499 | 0.000 | 0.147 | 32.998 | 1.000 |
Walk and turn field sobriety test | 8.537 | 4.268 | 15.034 | 0.000 | 0.135 | 30.068 | 0.999 |
Fukuda test | 5778.505 | 2889.252 | 4.371 | 0.014 | 0.044 | 8.741 | 0.751 |
Test/Dependent Variables | Group | Mean | Std. Deviation | Std. Error | a-b | Sig. b |
---|---|---|---|---|---|---|
One standing balance test | Male | 5.148 | 3.457 | 0.596 | −3.200 * | 0.000 |
Female | 8.348 | 7.689 | 0.605 | |||
Functional reach test | Male | 40.762 | 6.957 | 0.630 | −1.800 * | 0.046 |
Female | 42.562 | 5.469 | 0.640 | |||
Stork test | Male | 4.334 | 4.008 | 0.337 | 0.795 | 0.100 |
Female | 3.538 | 2.508 | 0.342 | |||
Flamingo test | Male | 8.272 | 4.597 | 0.390 | 3.679 * | 0.000 |
Female | 4.593 | 2.950 | 0.396 | |||
Bass test | Male | 70.565 | 12.900 | 1.388 | 2.909 | 0.143 |
Female | 67.656 | 14.681 | 1.409 | |||
Walk and turn field sobriety test | Male | 0.333 | 0.589 | 0.057 | 0.115 | 0.161 |
Female | 0.218 | 0.546 | 0.058 | |||
Fukuda test | Male | 22.353 | 25.112 | 2.635 | −0.084 | 0.982 |
Female | 22.437 | 27.317 | 2.676 |
Test | Group | Mean | Std. Deviation | Std. Error | a-b | Sig.b | a-c | Sig. b | b-c | Sig. b |
---|---|---|---|---|---|---|---|---|---|---|
One standing Balance test | a. underweight | 11.557 | 9.936 | 1.286 | 4.947 * | 0.002 | 6.245 * | 0.000 | 1.298 | 0.492 |
b. normal weight | 6.610 | 6.135 | 0.559 | |||||||
c. overweight | 5.312 | 2.990 | 0.743 | |||||||
Functional reach test | a. underweight | 41.857 | 4.855 | 1.383 | −0.093 | 1.000 | 0.810 | 1.000 | 0.903 | 1.000 |
b. normal weight | 41.950 | 5.630 | 0.601 | |||||||
c. overweight | 41.047 | 7.778 | 0.798 | |||||||
Stork test | a. underweight | 4.213 | 4.347 | 0.721 | −0.285 | 1.000 | 1.342 | 0.326 | 1.627 * | 0.006 |
b. normal weight | 4.498 | 3.838 | 0.314 | |||||||
c. overweight | 2.871 | 1.245 | 0.416 | |||||||
Flamingo test | a. underweight | 4.047 | 3.556 | 0.800 | −1.051 | 0.689 | −5.619 * | 0.000 | −4.568 * | 0.000 |
b. normal weight | 5.099 | 2.954 | 0.348 | |||||||
c. overweight | 9.666 | 4.700 | 0.462 | |||||||
Bass test | a. underweight | 66.000 | 14.679 | 2.806 | −7.640 * | 0.040 | 3.762 | 0.741 | 11.402 * | 0.000 |
b. normal weight | 73.639 | 12.584 | 1.220 | |||||||
c. overweight | 62.238 | 12.708 | 1.620 | |||||||
Walk and turn field sobriety test | a. underweight | 0.000 | 0.000 | 0.116 | −0.162 | 0.607 | −0.571 * | 0.000 | −0.409 * | 0.000 |
b. normal weight | 0.162 | 0.437 | 0.051 | |||||||
c. overweight | 0.571 | 0.734 | 0.067 | |||||||
Fukuda test | a. underweight | 17.190 | 21.671 | 5.611 | −1.737 | 1.000 | −13.048 | 0.136 | −11.310 * | 0.017 |
b. normal weight | 18.927 | 23.760 | 2.440 | |||||||
c. overweight | 30.238 | 29.899 | 3.239 |
BMI | One Leg Standing | Functional Reach | Stork | Flamingo | Bass | Walk and Turn | Fukuda | ||
---|---|---|---|---|---|---|---|---|---|
BMI | ρ (rho) | 1.000 | −0.106 | −0.067 | −0.197 * | 0.468 * | −0.212 ** | 0.414 * | 0.261 * |
Sig. | . | 0.139 | 0.352 | 0.006 | 0.000 | 0.003 | 0.000 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mocanu, G.D.; Murariu, G. The Association of Gender and Body Mass Index on the Values of Static and Dynamic Balance of University Students (A Cross-Sectional Design Study). Appl. Sci. 2022, 12, 3770. https://doi.org/10.3390/app12083770
Mocanu GD, Murariu G. The Association of Gender and Body Mass Index on the Values of Static and Dynamic Balance of University Students (A Cross-Sectional Design Study). Applied Sciences. 2022; 12(8):3770. https://doi.org/10.3390/app12083770
Chicago/Turabian StyleMocanu, George Danut, and Gabriel Murariu. 2022. "The Association of Gender and Body Mass Index on the Values of Static and Dynamic Balance of University Students (A Cross-Sectional Design Study)" Applied Sciences 12, no. 8: 3770. https://doi.org/10.3390/app12083770
APA StyleMocanu, G. D., & Murariu, G. (2022). The Association of Gender and Body Mass Index on the Values of Static and Dynamic Balance of University Students (A Cross-Sectional Design Study). Applied Sciences, 12(8), 3770. https://doi.org/10.3390/app12083770