Detection of Logos of Moving Vehicles under Complex Lighting Conditions
Abstract
:1. Introduction
2. Background
3. Methodology
3.1. Adaptive Image Enhancement
3.2. Improved YoloF Algorithm
4. Experiment and Analysis
4.1. Data
4.2. Results and Analysis
4.2.1. Image Enhancement
4.2.2. Vehicle Logo Detection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Psyllos, A.P.; Anagnostopoulos, C.N.E.; Kayafas, E. Vehicle logo recognition using a sift-based enhanced matching scheme. IEEE Trans. Intell. Transp. Syst. 2010, 11, 322–328. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Xiao, F. A fast coarse-to-fine vehicle logo detection and recognition method. In Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics, ROBIO, Sanya, China, 15–18 December 2007; pp. 691–696. [Google Scholar]
- Su, H.; Zhu, X.; Gong, S. Open logo detection challenge. In Proceedings of the British Machine Vision Conference 2018, BMVC 2018, Newcastle, UK, 3–6 September 2018. [Google Scholar]
- Zhou, L.; Min, W.; Lin, D.; Han, Q.; Liu, R. Detecting Motion Blurred Vehicle Logo in IoV Using Filter-DeblurGAN and VL-YOLO. IEEE Trans. Veh. Technol. 2020, 69, 3604–3614. [Google Scholar] [CrossRef]
- Choi, J.; Chun, D.; Kim, H.; Lee, H.J. Gaussian YOLOv3: An accurate and fast object detector using localization uncertainty for autonomous driving. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 502–511. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Ju, M.; Li, Z. A license plate image enhancement algorithm under complicated illumination. Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/J. Comput. Aided Des. Comput. Graph. 2016, 28, 976–985. [Google Scholar]
- Kumari, A.; Thomas, P.J.; Sahoo, S.K. Single image fog removal using gamma transformation and median filtering. In Proceedings of the 2014 Annual IEEE India Conference (INDICON), Pune, India, 11–13 December 2014; pp. 1–5. [Google Scholar]
- Jobson, D.J.; Rahman, Z.U.; Woodell, G.A. Properties and performance of a center/surround retinex. IEEE Trans. Image Process. 1997, 6, 451–462. [Google Scholar] [CrossRef]
- Jobson, D.J.; Rahman, Z.U.; Woodell, G.A. A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 1997, 6, 965–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Li, H.; Wang, J.; Min, H.; Jia, W.; Yu, J.; Chen, C. A multilayer pyramid network based on learning for vehicle logo recognition. IEEE Trans. Intell. Transp. Syst. 2021, 22, 3123–3134. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot Multibox Detector. In Proceedings of the 14th European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Cham, Switzerland, 2016; Volume 9905, pp. 21–37. [Google Scholar] [CrossRef] [Green Version]
- Nasrollahi, K.; Distante, C.; Hua, G.; Cavallaro, A.; Moeslund, T.; Battiato, S.; Ji, Q. Video Analytics. Face and Facial Expression Recognition and Audience Measurement; Revised Selected Papers; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 978-3-319-56686-3.
- Den Hollander, R.J.M.; Hanjalic, A. Logo recognition in video stills by string matching. In Proceedings of the IEEE International Conference on Image Processing, Barcelona, Spain, 14–17 September 2003; Volume 3, pp. 517–520. [Google Scholar]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, San Diego, CA, USA, 20–25 June 2005; pp. 886–893. [Google Scholar] [CrossRef] [Green Version]
- Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-Up Robust Features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359. [Google Scholar] [CrossRef]
- Mazzeo, P.L.; Leo, M.; Spagnolo, P.; Del Coco, M.; Carcagnì, P.; Distante, C. Robust Probabilistic Logo Detection in Broadcast Videos for Audience Measurement. In Proceedings of the Third International Workshop, VAAM 2016, and Second International Workshop, FFER 2016, Cancun, Mexico, 4 December 2016; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Yu, J.; Kim, Y.; Lee, N.; SunTchoi, Y.; Hahn, H. An Effective Color Correction Method employing the HSV Color Model. J. Meas. Sci. Instrum. 2011, 3, 1–7. [Google Scholar] [CrossRef]
- Celik, T.; Tjahjadi, T. Automatic image equalization and contrast enhancement using Gaussian mixture modeling. IEEE Trans. Image Process. 2012, 21, 145–156. [Google Scholar] [CrossRef] [Green Version]
- Arifin, A.Z.; Syuhada, F.; Ni’mah, A.T.; Suryaningrum, D.A.; Indraswari, R.; Navastara, D.A. Teeth Segmentation Using Gamma Adjustment and Transition Region Filter Based on Wavelet Method. In Proceedings of the 2019 4th International Conference on Informatics and Computing, ICIC, Semarang, Indonesia, 16–17 October 2019. [Google Scholar]
- Qian, W.; Clarke, L.P. Wavelet-Based Neural Network with Fuzzy-Logic Adaptivity for Nuclear Image Restoration; IEEE: Piscataway, NJ, USA, 1996. [Google Scholar] [CrossRef]
- Thubsaeng, W.; Kawewong, A.; Patanukhom, K. Vehicle logo detection using convolutional neural network and pyramid of histogram of oriented gradients. In Proceedings of the 2014 11th International Joint Conference on Computer Science and Software Engineering: “Human Factors in Computer Science and Software Engineering”—E-Science and High Performance Computing: eHPC, JCSSE, Chon Buri, Thailand, 14–16 May 2014; pp. 34–39. [Google Scholar]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. [Google Scholar] [CrossRef] [Green Version]
- Uijlings, J.R.R.; Van De Sande, K.E.A.; Gevers, T.; Smeulders, A.W.M. Selective search for object recognition. Int. J. Comput. Vis. 2013, 104, 154–171. [Google Scholar] [CrossRef] [Green Version]
- Mudumbi, T.; Bian, N.; Zhang, Y.; Hazoume, F. An Approach Combined the Faster RCNN and Mobilenet for Logo Detection. J. Phys. Conf. Ser. 2019, 1284, 12072. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howard, A.; Sandler, M.; Chen, B.; Wang, W.; Chen, L.C.; Tan, M.; Chu, G.; Vasudevan, V.; Zhu, Y.; Pang, R.; et al. Searching for mobileNetV3. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar] [CrossRef]
- Oliveira, G.; Frazão, X.; Pimentel, A.; Ribeiro, B. Automatic graphic logo detection via Fast Region-based Convolutional Networks. In Proceedings of the International Joint Conference on Neural Networks, Vancouver, BC, Canada, 24–29 July 2016; pp. 985–991. [Google Scholar] [CrossRef] [Green Version]
- Bianco, S.; Buzzelli, M.; Mazzini, D.; Schettini, R. Logo Recognition Using CNN Features. In Proceedings of the 18th International Conference on Image Analysis and Processing, Genoa, Italy, 7–11 September 2015; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Iandola, F.N.; Shen, A.; Gao, P.; Keutzer, K. DeepLogo: Hitting Logo Recognition with the Deep Neural Network Hammer. arXiv 2015, arXiv:1510.02131. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Chen, Q.; Wang, Y.; Yang, T.; Zhang, X.; Cheng, J.; Sun, J. You Only Look One-level Feature. arXiv 2021, arXiv:2103.09460. [Google Scholar] [CrossRef]
- Zhao, K.; Liu, L.; Meng, Y.; Sun, R.C. Traffic signs detection and recognition under low-illumination conditions. Gongcheng Kexue Xuebao/Chin. J. Eng. 2020, 42, 1074–1084. [Google Scholar] [CrossRef]
- Bochkovskiy, A.; Wang, C.-Y.; Liao, H.-Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollar, P. Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 318–327. [Google Scholar] [CrossRef] [Green Version]
- Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. YOLACT++ Better Real-Time Instance Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 1108–1121. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, M.; Jin, X.; Li, X. A Real-Time Chinese Traffic Sign Detection Algorithm Based on Modified YOLOv2. Algorithms 2017, 10, 127. [Google Scholar] [CrossRef] [Green Version]
- Shahlaei, D.; Blanz, V. Hierarchical Bayesian Inverse Lighting of Portraits with a Virtual Light Stage. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 865–879. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Zhao, W.; Wang, Z. Improved visual/infrared colour fusion method with double-opponency colour constancy mechanism. IET Image Process. 2018, 12, 1550–1556. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, Z.; Sun, J.; Zou, X.; Wang, J. A Cascaded R-CNN with Multiscale Attention and Imbalanced Samples for Traffic Sign Detection. IEEE Access 2020, 8, 29742–29754. [Google Scholar] [CrossRef]
- Chen, K.; Wang, J.; Pang, J.; Cao, Y.; Xiong, Y.; Li, X.; Sun, S.; Feng, W.; Liu, Z.; Xu, J.; et al. MMDetection: Open MMLab Detection Toolbox and Benchmark. arXiv 2019, arXiv:1906.07155. [Google Scholar]
- Yu, Y.; Guan, H.; Li, D.; Yu, C. A Cascaded Deep Convolutional Network for Vehicle Logo Recognition from Frontal and Rear Images of Vehicles. IEEE Trans. Intell. Transp. Syst. 2021, 22, 758–771. [Google Scholar] [CrossRef]
Contrast Category | Intensity Mean (λ) | Image Category |
---|---|---|
IL | ≥0.5 | Low contrast and high brightness |
<0.5 | Low contrast and low brightness | |
IH | ≥0.5 | High contrast and high brightness |
<0.5 | High contrast and low brightness |
Data | Algorithm | Number of Pictures | FPS | AP(%) |
---|---|---|---|---|
Original data | Faster R-CNN | 3067 | 38.3 | 80.2 |
Original YOLOF | 40.5 | 89.27 | ||
Improved YOLOF | 45.05 | 92.43 | ||
Corrected data | Faster R-CNN | 3067 | 38.4 | 83.5 |
Original YOLOF | 40.5 | 93.7 | ||
Improved YOLOF | 45.07 | 95.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Q.; Guo, W. Detection of Logos of Moving Vehicles under Complex Lighting Conditions. Appl. Sci. 2022, 12, 3835. https://doi.org/10.3390/app12083835
Zhao Q, Guo W. Detection of Logos of Moving Vehicles under Complex Lighting Conditions. Applied Sciences. 2022; 12(8):3835. https://doi.org/10.3390/app12083835
Chicago/Turabian StyleZhao, Qiang, and Wenhao Guo. 2022. "Detection of Logos of Moving Vehicles under Complex Lighting Conditions" Applied Sciences 12, no. 8: 3835. https://doi.org/10.3390/app12083835
APA StyleZhao, Q., & Guo, W. (2022). Detection of Logos of Moving Vehicles under Complex Lighting Conditions. Applied Sciences, 12(8), 3835. https://doi.org/10.3390/app12083835