Study of Antioxidant Activity of Garden Blackberries (Rubus fruticosus L.) Extracts Obtained with Different Extraction Solvents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sample Preparation
- -
- -
- -
- -
2.3. Determination of the Dry Matter Content of Blackberries
2.4. Antioxidant Activity Determination
2.4.1. 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Assay
2.4.2. Ferric Reducing Antioxidant Power (FRAP) Assay
2.5. Determination of Total Polyphenol Content (TPC)
2.6. Determination of Total Flavonoid Content (TFC)
2.7. Determination of Total Anthocyanin Content (TAC)
- -
- 0.2 mL blackberry extract + 1.8 mL 0.025 M potassium chloride solution (pH = 1);
- -
- 0.2 mL blackberry extract + 1.8 mL 0.4 M sodium-acetate solution (pH = 4.5).
2.8. Determination of Gallic Acid and Quercetin by HPLC-DAD
2.9. Calculation of a Solvent Mixture Optimal Concentration for Anthocyanin Extraction Using the Hansen Solubility Parameters
2.10. Statistical Analysis
3. Results and Discussion
3.1. Dry Matter Content of Blackberries
3.2. Total Anthocyanin, Flavonoid, and Polyphenol Concentrations
3.3. Antioxidant Capacity
3.4. Statistical Correlations
3.5. Determination of Quercetin and Gallic Acid
3.6. Theoretical Study of the Effect of Acetonitrile-Water Concentration on Anthocyanin Extraction Based on Hansen Solubility Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bushway, L.; Pritts, M.; Handley, D. Raspberry and Blackberry Production Guide for the Northeast, Midwest, and Eastern Canada (NRAES-35). Natural Resource, Agriculture, and Engineering Service (NRAES). 2008. Available online: https://hdl.handle.net/1813/66930 (accessed on 15 February 2022).
- Yang, W.; Guo, Y.; Liu, M.; Chen, X.; Xiao, X.; Wang, S.; Gong, P.; Ma, Y.; Chen, F. Structure and function of blueberry anthocyanins: A review of recent advances. J. Funct. Foods 2022, 88, 104864. [Google Scholar] [CrossRef]
- Zia-Ul-Haq, M.; Riaz, M.; de Feo, V.; Jaafar, H.Z.E.; Moga, M. Rubus fruticosus L.: Constituents, biological activities and health related uses. Molecules 2014, 19, 10998–11029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nile, S.H.; Park, S.W. Edible berries: Bioactive components and their effect on human health. Nutrition 2014, 30, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive compounds and antioxidant activity in different types of berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. [Google Scholar] [CrossRef] [Green Version]
- Cassidy, A.; Bertoia, M.; Chiuve, S.; Flint, A.; Forman, J.; Rimm, E.B. Habitual intake of anthocyanins and flavanones and risk of cardiovascular disease in men. Am. J. Clin. Nutr. 2016, 104, 587–594. [Google Scholar] [CrossRef] [Green Version]
- Shahbazi, R.; Sharifzad, F.; Bagheri, R.; Alsadi, N.; Yasavoli-Sharahi, H.; Matar, C. Anti-Inflammatory and Immunomodulatory Properties of Fermented Plant Foods. Nutrients 2021, 13, 1516. [Google Scholar] [CrossRef]
- Lorenzo, J.M.; Pateiro, M.; Domínguez, R.; Barba, F.J.; Putnik, P.; Kovačević, D.B.; Franco, D. Berries extracts as natural antioxidants in meat products: A review. Food Res. Int. 2018, 106, 1095–1104. [Google Scholar] [CrossRef]
- Golovinskaia, O.; Wang, C.K. Review of functional and pharmacological activities of berries. Molecules 2021, 26, 3904. [Google Scholar] [CrossRef]
- Rai, D.K.; Tzima, K. A Review on Chromatography–Mass Spectrometry Applications on Anthocyanin and Ellagitannin Metabolites of Blackberries and Raspberries. Foods 2021, 10, 2150. [Google Scholar] [CrossRef]
- Ravichandran, K.S.; Krishnaswamy, K. Sustainable food processing of selected North American native berries to support agroforestry. Crit. Rev. Food Sci. Nutr. 2021. [Google Scholar] [CrossRef]
- Santhi, V.P.; Sriramavaratharajan, V.; Murugan, R.; Masilamani, P.; Gurav, S.S.; Sarasu, V.P.; Ayyanar, M. Edible fruit extracts and fruit juices as potential source of antiviral agents: A review. J. Food Meas. Charact. 2021, 15, 5181–5190. [Google Scholar] [CrossRef]
- Takó, M.; Kerekes, E.B.; Zambrano, C.; Kotogán, A.; Papp, T.; Krisch, J.; Vágvölgyi, C. Plant phenolics and phenolic-enriched extracts as antimicrobial agents against food-contaminating microorganisms. Antioxidants 2020, 9, 165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dormán, G.; Flachner, B.; Hajdú, I.; András, D.C. Target identification and polypharmacology of nutraceuticals. In Nutraceuticals: Efficacy, Safety and Toxicity; Gupta, R.C., Lall, R., Srivastava, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 315–343. [Google Scholar]
- Gil-Martín, E.; Forbes-Hernández, T.; Romero, A.; Cianciosi, D.; Giampieri, F.; Battino, M. Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chem. 2022, 378, 131918. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, G.I.; Almajano, M.P. Red fruits: Extraction of antioxidants, phenolic content, and radical scavenging determination: A review. Antioxidants 2017, 6, 7. [Google Scholar] [CrossRef] [Green Version]
- Lefebvre, T.; Destandau, E.; Lesellier, E. Selective extraction of bioactive compounds from plants using recent extraction techniques: A review. J. Chromatogr. A 2021, 1635, 461770. [Google Scholar] [CrossRef]
- Enaru, B.; Drețcanu, G.; Pop, T.D.; Stǎnilǎ, A.; Diaconeasa, Z. Anthocyanins: Factors affecting their stability and degradation. Antioxidants 2021, 10, 1967. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, S.; Zhao, G.; Ye, F. Destabilisation and stabilisation of anthocyanins in purple-fleshed sweet potatoes: A review. Trends Food Sci. Technol. 2021, 116, 1141–1154. [Google Scholar] [CrossRef]
- Ignat, I.; Volf, I.; Popa, V.I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 2011, 126, 1821–1845. [Google Scholar] [CrossRef]
- Antony, A.; Farid, M. Effect of temperatures on polyphenols during extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Hansen, C.M. Hansen Solubility Parameters: A User’s Handbook, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Celant, V.M.; Braga, G.C.; Vorpagel, J.A.; Salibe, A.B. Composição fenólica e atividade antioxidante dos extratos aquoso e etanólico de amora-preta. Rev. Bras. De Frutic. 2016, 38. [Google Scholar] [CrossRef] [Green Version]
- Boeing, J.S.; Barizão, É.O.; e Silva, B.C.; Montanher, P.F.; de Cinque Almeida, V.; Visentainer, J.V. Evaluation of solvent effect on the extraction of phenolic compounds and antioxidant capacities from the berries: Application of principal component analysis. Chem. Cent. J. 2014, 8, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beattie, J.; Crozier, A.; Duthie, G.G. Potential health benefits of berries. Curr. Nutr. Food Sci. 2005, 1, 71–86. [Google Scholar] [CrossRef]
- Moyer, R.A.; Hummer, K.E.; Finn, C.E.; Frei, B.; Wrolstad, R.E. Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes. J. Agric. Food Chem. 2002, 50, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.J.; Howard, L.R.; Prior, R.L.; Clark, J.R. Flavonol glycosides and antioxidant capacity of various blackberry and blueberry genotypes determined by high-performance liquid chromatography/mass spectrometry. J. Sci. Food Agric. 2005, 85, 2149–2158. [Google Scholar] [CrossRef]
- Sellappan, S.; Akoh, C.C.; Krewer, G. Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. J. Agric. Food Chem. 2002, 50, 2432–2438. [Google Scholar] [CrossRef]
- Nour, V.; Trandafir, I.; Cosmulescu, S. Antioxidant capacity, phenolic compounds and minerals content of blackcurrant (Ribes nigrum L.) leaves as influenced by harvesting date and extraction method. Ind. Crop. Prod. 2014, 53, 133–139. [Google Scholar] [CrossRef]
- Alam, M.N.; Bristi, N.J.; Rafiquzzaman, M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J. 2013, 21, 143–152. [Google Scholar] [CrossRef] [Green Version]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 1999; p. 299. [Google Scholar]
- Chandra, S.; Khan, S.; Avula, B.; Lata, H.; Yang, M.H.; Elsohly, M.A.; Khan, I.A. Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: A comparative study. Evid.-Based Complement. Altern. Med. 2014, 2014, 253875. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef] [Green Version]
- Aye, T.; Onoomar, T.; Malai, S. Simultaneous determination of gallic acid and quercetin in leaf extract of Madhuca longifolia from Myanmar by HPLC-DAD: Method development and validation. Key Eng. Mater. 2020, 859, 51–56. [Google Scholar]
- Shirazi, O.U.; Khattak, M.M.A.K.; Shukri, N.A.M. Chromatographic evaluation of gallic acid, catechin and quercetin in methanolic extracts of selected formulations of spices and herbs. Prog. Nutr. 2019, 21, 236–251. [Google Scholar]
- Wang, W.; Jung, J.; Tomasino, E.; Zhao, Y. Optimization of solvent and ultrasound-assisted extraction for different anthocyanin rich fruit and their effects on anthocyanin compositions. LWT-Food Sci. Technol. 2016, 72, 229–238. [Google Scholar] [CrossRef] [Green Version]
- Croge, C.P.; Cuquel, F.L.; Pintro, P.T.M.; Biasi, L.A.; de Bona, C.M. Antioxidant capacity and polyphenolic compounds of blackberries produced in different climates. HortScience 2019, 54, 2209–2213. [Google Scholar] [CrossRef]
- Ungureanu, C.R.M.; Lupitu, A.I.; Moisa, C.; Rivis, A.; Copolovici, L.O.; Poiana, M.A. Investigation on high-value bioactive compounds and antioxidant properties of blackberries and their fractions obtained by home-scale juice processing. Sustainability 2020, 12, 5681. [Google Scholar] [CrossRef]
- Bae, I.Y.; An, J.S.; Oh, I.K.; Lee, H.G. Optimized preparation of anthocyanin-rich extract from black rice and its effects on in vitro digestibility. Food Sci. Biotechnol. 2017, 26, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Tabart, J.; Kevers, C.; Pincemail, J.; Defraigne, J.-O.; Dommes, J. Evaluation of spectrophotometric methods for antioxidant compound measurement in relation to total antioxidant capacity in beverages. Food Chem. 2010, 120, 607–614. [Google Scholar] [CrossRef]
- Reichardt, C.; Welton, T. Solvents and Solvent Effects in Organic Chemistry, 4th ed.; Wiley-VCH: Weincheim, Germany, 2005. [Google Scholar]
- Koczka, N.; Stefanovits-Bányai, É.; Prokaj, E. Element composition, total phenolics and antioxidant activity of wild and cultivated blackberry (Rubus fruticosus L.) fruits and leaves during the harvest time. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 538. [Google Scholar] [CrossRef] [Green Version]
- Koca, I.; Karadeniz, B. Antioxidant properties of blackberry and blueberry fruits grown in the Black Sea Region of Turkey. Sci. Hortic. 2009, 121, 447–450. [Google Scholar] [CrossRef]
- Wang, S.Y.; Lin, H.S. Antioxidant activity in fruits and leaves of blackberry, raspberry, and strawberry varies with cultivar and developmental stage. J. Agric. Food Chem. 2000, 48, 140–146. [Google Scholar] [CrossRef]
- Jacques, A.C.; Pertuzatti, P.B.; Barcia, M.T.; Zambiazi, R.C.; Chim, J.F. Estabilidade de compostos bioativos em polpa congelada de amora-preta (Rubus fruticosus) cv. Tupy. Química Nova 2010, 33, 1720–1725. [Google Scholar] [CrossRef] [Green Version]
- Ponder, A.; Hallmann, E.; Kwolek, M.; Średnicka-Tober, D.; Kazimierczak, R. Genetic differentiation in anthocyanin content among berry fruits. Curr. Issues Mol. Biol. 2021, 43, 36–51. [Google Scholar] [CrossRef] [PubMed]
- Phan, K.; Van Den Broeck, E.; Raes, K.; De Clerck, K.; Van Speybroeck, V.; De Meester, S. A comparative theoretical study on the solvent dependency of anthocyanin extraction profiles. J. Mol. Liq. 2022, 351, 118606. [Google Scholar] [CrossRef]
- Srinivas, K.; King, J.W.; Monrad, J.K.; Howard, L.R.; Hansen, C.M. Optimization of subcritical fluid extraction of bioactive compounds using Hansen solubility parameters. J. Food Sci. 2009, 74, E342–E354. [Google Scholar] [CrossRef] [PubMed]
- Kumoro, A.C.; Retnowati, D.S.; Budiyati, C.S. Solubility of delphinidin in water and various organic solvents between (298.15 and 343.15) K. J. Chem. Eng. Data 2010, 55, 2603–2606. [Google Scholar] [CrossRef]
- András, C.D.; Mátyás, L.; Ráduly, B.; Salamon, R.V. Increasing the prediction efficiency of Hansen solubility parameters in supercritical fluids. Period. Polytech. Chem. Eng. 2019, 63, 286–293. [Google Scholar] [CrossRef] [Green Version]
- Mihalovits, M.; Körösi, M.; Székely, E. New formula for the hydrogen-bonding Hansen component of methanol, ethanol, and n-propanol for non-ambient conditions—Application in gas antisolvent fractionation-based optical resolution. ACS Omega 2021, 6, 18964–18974. [Google Scholar] [CrossRef]
Extraction Solvent | TAC (mg C3G/100 g DW) | TAC (mg C3G/100 g FW) | TFC (mg Q/100 g DW) | TFC (mg Q/100 g FW) | TPC (mg GAE/100 g DW) | TPC (mg GAE/100 g FW) |
---|---|---|---|---|---|---|
ACN | 885.08 ± 59.81 | 120.01 ± 8.11 | 240.93 ± 16.96 | 32.64 ± 2.29 | 3311.84 ± 54.84 | 449.08 ± 7.43 |
Met | 773.30 ± 68.34 | 104.86 ± 9.26 | 129.75 ± 9.51 | 17.58 ± 1.28 | 2789.97 ± 211.79 | 378.32 ± 28.71 |
A | 819.18 ± 194.8 | 97.67 ± 29.8 | 199.85 ± 19.45 | 27.08 ± 2.63 | 3245.97 ± 338.77 | 440.15 ± 45.93 |
Et | 642.96 ± 71.24 | 87.18 ± 9.66 | 163.01 ± 13.57 | 22.09 ± 1.83 | 2143.00 ± 321.21 | 290.59 ± 43.55 |
Extraction Solvent | E% (DPPH Assay) | FRAP (mg AAE/100 g DW) | FRAP (mg AAE/100 g FW) |
---|---|---|---|
ACN | 76.4078 ± 1.43 | 3547.68 ± 154.76 | 481.06 ± 20.98 |
Met | 63.1294 ± 3.45 | 2455 ± 141.31 | 332.92 ± 19.16 |
A | 71.9624 ± 3.04 | 2853.13 ± 413.98 | 386.88 ± 56.13 |
Et | 47.2017 ± 2.47 | 1682.22 ± 357.37 | 228.11 ± 48.46 |
N = 12 | TAC | TPC | TFC | DPPH Assay | FRAP Assay | |
---|---|---|---|---|---|---|
Skewness | −0.3 | −0.682 | 0.211 | −0.669 | −0.158 | |
Standard error | 0.637 | 0.637 | 0.637 | 0.637 | 0.637 | |
Z test | −1.459 | −1.07 | 0.331 | −1.05 | −0.248 | |
Kurtosis | −1.049 | −0.294 | −1.176 | −1.050 | −0.769 | |
Standard error | 1.232 | 1.232 | 1.232 | 1.232 | 1.232 | |
Z test | −1.292 | −0.238 | −0.954 | −0.852 | −0.624 | |
Kolmogorov-Smirnov | Statistics | 0.105 | 0.162 | 0.123 | 0.177 | 0.172 |
Significance | 0.200 | 0.200 | 0.200 | 0.200 | 0.200 | |
Shapiro-Wilk | Statistics | 0.956 | 0.947 | 0.959 | 0.883 | 0.951 |
Significance | 0.850 | 0.592 | 0.769 | 0.096 | 0.648 |
TAC | TPC | TFC | DPPH Assay | FRAP-Assay | ||
---|---|---|---|---|---|---|
DPPH radical scavenging activity | Pearson correlation | 0.614 ** | 0.950 ** | 0.630 * | 1 | 0.903 ** |
Significance level (2-tailed) | 0.004 | 0.000 | 0.028 | - | 0.000 | |
N | 12 | 12 | 12 | 12 | 12 | |
FRAP-assay | Pearson correlation | 0.491 | 0.836 ** | 0.732 ** | 0.903 ** | 1 |
Significance level (2-tailed) | 0.065 | 0.001 | 0.007 | 0.000 | - | |
N | 12 | 12 | 12 | 12 | 12 |
Solvents and Solutes | Hansen Parameters | Hildebrand Parameter | ||
---|---|---|---|---|
äD (Dispersive) MPa0.5 | äP (Polar) MPa0.5 | äH (H-Bond) MPa0.5 | ä MPa0.5 | |
Acetone | 15.50 | 10.40 | 7.00 | 19.93 |
Acetonitrile | 15.30 | 18.00 | 6.10 | 24.39 |
Ethanol | 15.80 | 8.80 | 19.40 | 26.52 |
Methanol | 15.10 | 12.30 | 22.30 | 29.60 |
Water | 15.60 | 16.00 | 42.30 | 47.80 |
Cyanidin | 27.15 | 18.01 | 27.06 | 42.35 |
Cyanidin-3-O-glucoside | 25.70 | 19.48 | 28.08 | 42.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albert, C.; Codină, G.G.; Héjja, M.; András, C.D.; Chetrariu, A.; Dabija, A. Study of Antioxidant Activity of Garden Blackberries (Rubus fruticosus L.) Extracts Obtained with Different Extraction Solvents. Appl. Sci. 2022, 12, 4004. https://doi.org/10.3390/app12084004
Albert C, Codină GG, Héjja M, András CD, Chetrariu A, Dabija A. Study of Antioxidant Activity of Garden Blackberries (Rubus fruticosus L.) Extracts Obtained with Different Extraction Solvents. Applied Sciences. 2022; 12(8):4004. https://doi.org/10.3390/app12084004
Chicago/Turabian StyleAlbert, Csilla, Georgiana Gabriela Codină, Melinda Héjja, Csaba Dezső András, Ancuța Chetrariu, and Adriana Dabija. 2022. "Study of Antioxidant Activity of Garden Blackberries (Rubus fruticosus L.) Extracts Obtained with Different Extraction Solvents" Applied Sciences 12, no. 8: 4004. https://doi.org/10.3390/app12084004
APA StyleAlbert, C., Codină, G. G., Héjja, M., András, C. D., Chetrariu, A., & Dabija, A. (2022). Study of Antioxidant Activity of Garden Blackberries (Rubus fruticosus L.) Extracts Obtained with Different Extraction Solvents. Applied Sciences, 12(8), 4004. https://doi.org/10.3390/app12084004