3He/4He Signature of Magmatic Fluids from Telica (Nicaragua) and Baru (Panama) Volcanoes, Central American Volcanic Arc
Abstract
:Featured Application
Abstract
1. Introduction
1.1. Geodynamic and Volcanological Framework
1.2. Geochemistry of CAVA and Aims of This Study
Sample ID | Period of Volcanism | Mineral | 3He | 4He | 20Ne | 40Ar | 36Ar | 40Ar* | 4He/40Ar* | 4He/20Ne | R/Ra | Rc/Ra | Err. | 40Ar/36Ar | Err. |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
x 1·10−19 | x 1·10−14 | x 1·10−15 | x 1·10−13 | x 1·10−15 | x 1·10−14 | +/− | % | ||||||||
TEL04K | Scoria Telica Superior | Ol | 10.8 | 11.04 | 4.03 | 4.5 | 1.45 | 2.11 | 5.23 | 27.4 | 7.19 | 7.27 | 0.432 | 310.02 | 0.97 |
TEL04K (2) | Scoria Telica Superior | Ol | 15.76 | 16.51 | 18.56 | 24.71 | 8.31 | 1.52 | - | 8.9 | 7.02 | 7.25 | 0.249 | 297.33 | 0.07 |
TEL04K | Scoria Telica Superior | Cpx | 16.58 | 17 | 6.56 | 5.73 | 1.9 | 1.08 | - | 25.9 | 7.17 | 7.25 | 0.264 | 301.17 | 0.27 |
TEL04K (2) | Scoria Telica Superior | Cpx | 12.09 | 12.36 | 7.97 | 17.23 | 5.73 | 3.02 | - | 15.5 | 7.19 | 7.33 | 0.483 | 300.77 | 0.46 |
TEL04B | Scoria Telica Superior | Ol | 4.59 | 4.69 | 4.5 | 3.93 | 1.28 | 1.4 | 3.36 | 10.4 | 7.2 | 7.41 | 0.289 | 306.38 | 0.16 |
TEL04B (2) | Scoria Telica Superior | Ol | 6.16 | 6.37 | 9.68 | 6.09 | 2 | 1.9 | 3.36 | 6.6 | 7.11 | 7.43 | 0.239 | 305.01 | 0.09 |
TEL02 | Post-1970s | Cpx | 6.77 | 7.43 | 18.27 | 14.05 | 4.43 | 9.75 | 0.76 | 4.1 | 6.7 | 7.21 | 0.273 | 317.53 | 0.08 |
TEL02 (2) | Post-1970s | Cpx | 6.86 | 9.13 | 28.98 | 19.19 | 6.39 | 2.93 | - | 3.2 | 5.52 | 6.06 | 0.392 | 300.09 | 0.25 |
LCI | La Cuesta Inferior | Ol | 4.41 | 4.21 | 4.42 | 23.7 | 7.3 | 21.4 | 0.2 | 9.5 | 7.7 | 7.94 | 0.346 | 324.84 | 0.09 |
LCI (2) | La Cuesta Inferior | Ol | 3.09 | 3.18 | 0.17 | 8.74 | 2.51 | 13.19 | 0.24 | 184 | 7.14 | 7.15 | 0.463 | 348.07 | 0.64 |
LCI | La Cuesta Inferior | cpx | 0.53 | 0.87 | 6.82 | 8.54 | 2.61 | 8.15 | 0.11 | 1.3 | 4.45 | 5.68 | 0.687 | 326.68 | 0.11 |
BAM | Bambito | cpx | 0.17 | 0.37 | 2.66 | 11.65 | 3.44 | 14.74 | 0.03 | 1.4 | 3.39 | 4.19 | 0.676 | 338.32 | 0.09 |
LCS | La Cuesta Superior | cpx | 0.3 | 0.53 | 5.16 | 5.04 | 1.1 | 18.05 | 0.03 | 1 | 4.19 | 5.77 | 0.611 | 460.24 | 0.42 |
2. Samples and Methods
3. Results
3.1. Bulk Rock and Mineral Chemistry
3.2. Isotope Composition of Noble Gases in Fluid Inclusions
4. Discussion
4.1. 3He/4He Signature of Telica and Baru Magmatic Fluids
4.2. Crust Thickness vs. 3He/4He Variations along CAVA
4.3. Slab Influence on along-CAVA 3He/4He Variations
5. Conclusions
- The magmatic air corrected 3He/4He signature for Telica and Baru is 7.5 Ra and 8.0 Ra, respectively, both within the MORB range (8 ± 1 Ra).
- A data quality check for our, and previous, 3He/4He measurements in FI, fumaroles and springs from the Nicaraguan and Panamanian arc segments, as well as for other CAVA volcanoes, brought to light an along-arc variability of the Rc/Ra signature. The lowest ratios are found in the Nicaraguan volcanoes, whereas 3He/4He ranges between 7.2 and 7.6 Ra with about 34–35 km of crust thickness. The Pacaya (Guatemala) and Turrialba (Costa Rica) volcanoes show the highest ratios with values up to 9.0 and 8.3 Ra, respectively, being both volcanoes built over about 45 km thick continental crust.
- The observed 3He/4He variability does not depend on the variable crust thickness reported for CAVA. Instead, it more likely reflects a contamination of the wedge by slab sediment fluids, which is marked in the Nicaraguan arc segment.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DeMets, C. A new estimate for present-day Cocos-Caribbean plate motion: Implications for slip along the Central American volcanic arc. Geophys. Res. Lett. 2001, 28, 4043–4046. [Google Scholar] [CrossRef] [Green Version]
- O’Connor, J.M.; Stoffers, P.; Wijbrans, J.R.; Worthington, T.J. Migration of widespread long-lived volcanism across the Galápagos Volcanic Province: Evidence for a broad hotspot melting anomaly? Earth Planet. Sci. Lett. 2007, 263, 339–354. [Google Scholar] [CrossRef]
- Gazel, E.; Carr, M.J.; Hoernle, K.; Feigenson, M.D.; Szymanski, D.; Hauff, F.; Van Den Bogaard, P. Galapagos-OIB signature in southern Central America: Mantle refertilization by arc–hot spot interaction. Geochem. Geophys. Geosyst. 2009, 10, 1–32. [Google Scholar] [CrossRef]
- Gazel, E.; Hoernle, K.; Carr, M.J.; Herzberg, C.; Saginor, I.; Van den Bogaard, P.; Hauff, F.; Feigenson, M.; Swisher, C., III. Plume–subduction interaction in southern Central America: Mantle upwelling and slab melting. Lithos 2011, 121, 117–134. [Google Scholar] [CrossRef] [Green Version]
- Chan, L.H.; Leeman, W.P.; You, C.F. Lithium isotopic composition of Central American volcanic arc lavas: Implications for modification of subarc mantle by slab-derived fluids: Correction. Chem. Geol. 2002, 182, 293–300. [Google Scholar] [CrossRef]
- DeMets, C.; Gordon, R.G.; Argus, D.F. Geologically current plate motions. Geophys. J. Int. 2010, 181, 1–80. [Google Scholar] [CrossRef] [Green Version]
- Protti, M.; Gu, F.; McNally, K. The geometry of the Wadati-Benioff zone under southern Central America and its tectonic significance: Results from a high-resolution local seismographic network. Phys. Earth Planet. Inter. 1994, 84, 271–287. [Google Scholar] [CrossRef]
- Protti, M.; McNally, K.; Pacheco, J.; Gonzalez, V.; Montero, C.; Segura, J.; Brenes, J.; Barboza, V.; Malavassi, E.; Güendel, F.; et al. The March 25, 1990 (Mw = 7.0, ML = 6.8), earthquake at the entrance of the Nicoya Gulf, Costa Rica: Its prior activity, foreshocks, aftershocks, and triggered seismicity. J. Geophys. Res. Solid Earth 1995, 100, 20345–20358. [Google Scholar] [CrossRef] [Green Version]
- Syracuse, E.M.; Abers, G.A. Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochem. Geophys. Geosyst. 2006, 7, 1–18. [Google Scholar] [CrossRef]
- De Boer, J.Z.; Drummond, M.S.; Bordelon, M.J.; Defant, M.J.; Bellon, H.; Maury, R.C. Early Tertiary arc volcanics from eastern Panama. In Geologic and Tectonic Development of the Caribbean Plate Boundary in Southern Central America; The Geological Society of America: Boulder, Colorado, 1995; Volume 295, pp. 35–56. [Google Scholar]
- Defant, M.J.; Richerson, P.M.; De Boer, J.Z.; Stewart, R.H.; Maury, R.C.; Bellon, H.; Drummond, M.S.; Feigenson, M.D.; Jackson, T.E. Dacite genesis via both slab melting and differentiation: Petrogenesis of La Yeguada volcanic complex, Panama. J. Petrol. 1991, 32, 1101–1142. [Google Scholar] [CrossRef]
- Sherrod, D.R.; Vallance, J.W.; Espinosa, A.T.; McGeehin, J.P. Volcán Barú—Eruptive history and volcano-hazards assessment. US Geol. Surv. Open-File Rep. 2007, 2007, 1401. [Google Scholar]
- Hidalgo, P.J.; Rooney, T.O. Crystal fractionation processes at Baru volcano from the deep to shallow crust. Geochem. Geophys. Geosyst. 2010, 11, 1–29. [Google Scholar] [CrossRef]
- Hidalgo, P.J.; Vogel, T.A.; Rooney, T.O.; Currier, R.M.; Layer, P.W. Origin of silicic volcanism in the Panamanian arc: Evidence for a two-stage fractionation process at El Valle volcano. Contrib. Mineral. Petrol. 2011, 162, 1115–1138. [Google Scholar] [CrossRef]
- Hidalgo, P.J.; Rooney, T.O. Petrogenesis of a voluminous Quaternary adakitic volcano: The case of Baru volcano. Contrib. Mineral. Petrol. 2014, 168, 1–19. [Google Scholar] [CrossRef]
- Carr, M.J. Symmetrical and segmented variation of physical and geochemical characteristics of the Central American volcanic front. J. Volcanol. Geotherm. Res. 1984, 20, 231–252. [Google Scholar] [CrossRef]
- Abratis, M. Geochemical Variations in Magmatic Rocks from Southern Costa Rica as a Consequence of Cocos Ridge Subduction and Uplift of the Cordillera de Talamanca. Ph.D. Thesis, Georg-August-Universität Göttingen, Göttingen, Germany, 1998. [Google Scholar]
- MacKenzie, L.; Abers, G.A.; Fischer, K.M.; Syracuse, E.M.; Protti, J.M.; Gonzalez, V.; Strauch, W. Crustal structure along the southern Central American volcanic front. Geochem. Geophys. Geosyst. 2008, 9, 1–19. [Google Scholar] [CrossRef]
- Reguzzoni, M.; Sampietro, D. GEMMA: An Earth crustal model based on GOCE satellite data. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 31–43. [Google Scholar] [CrossRef]
- Patino, L.C.; Carr, M.J.; Feigenson, M.D. Local and regional variations in Central American arc lavas controlled by variations in subducted sediment input. Contrib. Mineral. Petrol. 2000, 138, 265–283. [Google Scholar] [CrossRef]
- Benjamin, E.R.; Plank, T.; Wade, J.A.; Kelley, K.A.; Hauri, E.H.; Alvarado, G.E. High water contents in basaltic magmas from Irazú Volcano, Costa Rica. J. Volcanol. Geotherm. Res. 2007, 168, 68–92. [Google Scholar] [CrossRef]
- Hoernle, K.; Abt, D.L.; Fischer, K.M.; Nichols, H.; Hauff, F.; Abers, G.A.; Bogaard, P.V.D.; Heydolph, K.; Alvarado, G.; Protti, M.; et al. Arc-parallel flow in the mantle wedge beneath Costa Rica and Nicaragua. Nature 2008, 451, 1094–1097. [Google Scholar] [CrossRef]
- Saginor, I.; Gazel, E.; Condie, C.; Carr, M.J. Evolution of geochemical variations along the Central American volcanic front. Geochem. Geophys. Geosyst. 2013, 14, 4504–4522. [Google Scholar] [CrossRef]
- Walker, J.A.; Patino, L.C.; Carr, M.J.; Feigenson, M.D. Slab control over HFSE depletions in central Nicaragua. Earth Planet. Sci. Lett. 2001, 192, 533–543. [Google Scholar] [CrossRef]
- Sadofsky, S.J.; Portnyagin, M.; Hoernle, K.; van den Bogaard, P. Subduction cycling of volatiles and trace elements through the Central American volcanic arc: Evidence from melt inclusions. Contrib. Mineral. Petrol. 2008, 155, 433–456. [Google Scholar] [CrossRef]
- Rooney, T.O.; Morell, K.D.; Hidalgo, P.; Fraceschi, P. Magmatic consequences of the transition from orthogonal to oblique subduction in P anama. Geochem. Geophys. Geosyst. 2015, 16, 4178–4208. [Google Scholar] [CrossRef] [Green Version]
- Sano, Y.; Williams, S.N. Fluxes of mantle and subducted carbon along convergent plate boundaries. Geophys. Res. Lett. 1996, 23, 2749–2752. [Google Scholar] [CrossRef]
- Tassi, F.; Vaselli, O.; Barboza, V.; Fernandez, E.; Duarte, E. Fluid geochemistry and seismic activity in the period 1998–2002 at Turrialba Volcano (Costa Rica). Ann. Geophysics 2004, 47, 1501–1511. [Google Scholar]
- Hilton, D.R.; Ramirez, C.J.; Mora-Amador, R.; Fischer, T.P.; Füri, E.; Barry, P.H.; Shaw, A.M. Monitoring of temporal and spatial variations in fumarole helium and carbon dioxide characteristics at Poás and Turrialba volcanoes, Costa Rica (2001–2009). Geochem. J. 2010, 44, 431–440. [Google Scholar] [CrossRef] [Green Version]
- Vaselli, O.; Tassi, F.; Duarte, E.; Fernandez, E.; Poreda, R.J.; Huertas, A.D. Evolution of fluid geochemistry at the Turrialba volcano (Costa Rica) from 1998 to 2008. Bull. Volcanol. 2010, 72, 397–410. [Google Scholar] [CrossRef]
- Aiuppa, A.; Robidoux, P.; Tamburello, G.; Conde, V.; Galle, B.; Avard, G.; Bagnato, E.; De Moor, J.M.; Martínez, M.; Muñoz, A. Gas measurements from the Costa Rica–Nicaragua volcanic segment suggest possible along-arc variations in volcanic gas chemistry. Earth Planet. Sci. Lett. 2014, 407, 134–147. [Google Scholar] [CrossRef] [Green Version]
- Aiuppa, A.; Bitetto, M.; Francofonte, V.; Velasquez, G.; Parra, C.B.; Giudice, G.; Liuzzo, M.; Moretti, R.; Moussallam, Y.; Peters, N.; et al. A CO2-gas precursor to the March 2015 Villarrica volcano eruption. Geochem. Geophys. Geosyst. 2017, 18, 2120–2132. [Google Scholar] [CrossRef] [Green Version]
- Conde, V.; Bredemeyer, S.; Duarte, E.; Pacheco, J.F.; Miranda, S.; Galle, B.; Hansteen, T.H. SO2 degassing from Turrialba Volcano linked to seismic signatures during the period 2008–2012. Int. J. Earth Sci. 2014, 103, 1983–1998. [Google Scholar] [CrossRef]
- Fischer, T.P.; Ramírez, C.; Mora-Amador, R.A.; Hilton, D.R.; Barnes, J.D.; Sharp, Z.D.; Brun, M.L.; de Moor, J.M.; Barry, P.H.; Füri, E.; et al. Temporal variations in fumarole gas chemistry at Poás volcano, Costa Rica. J. Volcanol. Geotherm. Res. 2015, 294, 56–70. [Google Scholar] [CrossRef]
- De Moor, J.M.; Aiuppa, A.; Avard, G.; Wehrmann, H.; Dunbar, N.; Muller, C.; Tamburello, G.; Giudice, G.; Liuzzo, M.; Moretti, R.; et al. Turmoil at Turrialba Volcano (Costa Rica): Degassing and eruptive processes inferred from high-frequency gas monitoring. J. Geophys. Res. Solid Earth 2016, 121, 5761–5775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Moor, J.M.; Kern, C.; Avard, G.; Muller, C.; Aiuppa, A.; Saballos, A.; Ibarra, M.; LaFemina, P.; Protti, M.; Fischer, T.P. A new sulfur and carbon degassing inventory for the Southern Central American Volcanic Arc: The importance of accurate time-series data sets and possible tectonic processes responsible for temporal variations in arc-scale volatile emissions. Geochem. Geophys. Geosyst. 2017, 18, 4437–4468. [Google Scholar] [CrossRef]
- Moussallam, Y.; Peters, N.; Ramirez, C.; Oppenheimer, C.; Aiuppa, A.; Giudice, G. Characterisation of the magmatic signature in gas emissions from Turrialba Volcano, Costa Rica. Solid Earth 2014, 5, 1341–1350. [Google Scholar] [CrossRef] [Green Version]
- Di Piazza, A.; Rizzo, A.L.; Barberi, F.; Carapezza, M.L.; De Astis, G.; Romano, C.; Sortino, F. Geochemistry of the mantle source and magma feeding system beneath Turrialba volcano, Costa Rica. Lithos 2015, 232, 319–335. [Google Scholar] [CrossRef]
- Rizzo, A.L.; Di Piazza, A.; de Moor, J.M.; Alvarado, G.E.; Avard, G.; Carapezza, M.L.; Mora, M.M. Eruptive activity at Turrialba volcano (Costa Rica): Inferences from 3 He/4 He in fumarole gases and chemistry of the products ejected during 2014 and 2015. Geochem. Geophys. Geosyst. 2016, 17, 4478–4494. [Google Scholar] [CrossRef] [Green Version]
- Allard, P. The origin of hydrogen, carbon, sulfur, nitrogen, and rare gases in volcanic exhalations: Evidence from isotope geochemistry. In Forecasting Volcanic Events; Tazieff, H., Sabroux, J.-C., Eds.; Elsevier: Amsterdam, The Netherlands, 1983; pp. 337–386. [Google Scholar]
- Burton, M.R.; Oppenheimer, C.; Horrocks, L.A.; Francis, P.W. Remote sensing of CO2 and H2O emission rates from Masaya volcano, Nicaragua. Geology 2000, 28, 915–918. [Google Scholar] [CrossRef]
- Shaw, A.M.; Hilton, D.R.; Fischer, T.P.; Walker, J.A.; Alvarado, G.E. Contrasting He–C relationships in Nicaragua and Costa Rica: Insights into C cycling through subduction zones. Earth Planet. Sci. Lett. 2003, 214, 499–513. [Google Scholar] [CrossRef] [Green Version]
- Martin, R.S.; Sawyer, G.M.; Spampinato, L.; Salerno, G.G.; Ramirez, C.; Ilyinskaya, E.; Witt, M.L.I.; Mather, T.A.; Watson, I.M.; Phillips, J.C.; et al. A total volatile inventory for Masaya Volcano, Nicaragua. J. Geophys. Res. Solid Earth 2010, 115, 1–12. [Google Scholar] [CrossRef]
- Robidoux, P.; Aiuppa, A.; Rotolo, S.G.; Rizzo, A.L.; Hauri, E.H.; Frezzotti, M.L. Volatile contents of mafic-to-intermediate magmas at San Cristóbal volcano in Nicaragua. Lithos 2017, 272, 147–163. [Google Scholar] [CrossRef]
- Goff, F.; McMurtry, G.M. Tritium and stable isotopes of magmatic waters. J. Volcanol. Geotherm. Res. 2000, 97, 347–396. [Google Scholar] [CrossRef]
- Battaglia, A.; Bitetto, M.; Aiuppa, A.; Rizzo, A.L.; Chigna, G.; Watson, I.M.; D’Aleo, R.; Juárez Cacao, F.J.; de Moor, M.J. The Magmatic gas Signature of Pacaya Volcano, with implications for the volcanic CO2 flux from Guatemala. Geochem. Geophys. Geosyst. 2018, 19, 667–692. [Google Scholar] [CrossRef]
- Martelli, M.; Rizzo, A.L.; Renzulli, A.; Ridolfi, F.; Arienzo, I.; Rosciglione, A. Noble-gas signature of magmas from a heterogeneous mantle wedge: The case of Stromboli volcano (Aeolian Islands, Italy). Chem. Geol. 2014, 368, 39–53. [Google Scholar] [CrossRef]
- Barry, P.H.; Nakagawa, M.; Giovannelli, D.; Maarten de Moor, J.; Schrenk, M.; Seltzer, A.M.; Manini, E.; Fattorini, D.; di Carlo, M.; Regoli, F.; et al. Helium, inorganic and organic carbon isotopes of fluids and gases across the Costa Rica convergent margin. Sci. Data 2019, 6, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizzo, A.; Barberi, F.; Carapezza, M.L.; Di Piazza, A.; Francalanci, L.; Sortino, F.; D’Alessandro, W. New mafic magma refilling a quiescent volcano: Evidence from He–Ne–Ar isotopes during the 2011–2012 unrest at Santorini, Greece. Geochem. Geophys. Geosyst. 2015, 16, 798–814. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, A.L.; Caracausi, A.; Chavagnac, V.; Nomikou, P.; Polymenakou, P.N.; Mandalakis, M.; Kotoulas, G.; Magoulas, A.; Castillo, A.; Lampridou, D. Kolumbo submarine volcano (Greece): An active window into the Aegean subduction system. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, A.L.; Caracausi, A.; Chavagnac, V.; Nomikou, P.; Polymenakou, P.; Mandalakis, M.; Kotoulas, G.; Magoulas, A.; Castillo, A.; Lampridou, D.; et al. Geochemistry of CO2-rich gases venting from submarine volcanism: The case of Kolumbo (Hellenic Volcanic Arc, Greece). Front. Earth Sci. 2019, 7, 1–20. [Google Scholar] [CrossRef]
- Lages, J.; Rizzo, A.L.; Aiuppa, A.; Robidoux, P.; Aguilar, R.; Apaza, F.; Masias, P. Crustal controls on light noble gas isotope variability along the Andean Volcanic Arc. Geochem. Perspect. Lett. 2021, 19, 45–49. [Google Scholar] [CrossRef]
- Lages, J.; Rizzo, A.L.; Aiuppa, A.; Samaniego, P.; Le Pennec, J.L.; Ceballos, J.A.; Narvaez, P.A.; Moussallam, Y.; Bani, P.; Schipper, C.I.; et al. Noble gas magmatic signature of the Andean Northern Volcanic Zone from fluid inclusions in minerals. Chem. Geol. 2021, 559, 119966. [Google Scholar] [CrossRef]
- Poreda, R.; Craig, H. Helium isotope ratios in circum-Pacific volcanic arcs. Nature 1989, 338, 473–478. [Google Scholar] [CrossRef]
- Janik, C.J.; Goff, F.; Fahlquist, L.; Adams, A.I.; Roldan, M.A.; Chipera, S.J.; Trujillo, P.E.; Counce, D. Hydrogeochemical exploration of geothermal prospects in the Tecuamburro volcano region, Guatemala. Geothermics 1992, 21, 447–481. [Google Scholar] [CrossRef]
- Snyder, G.; Poreda, R.; Hunt, A.; Fehn, U. Regional variations in volatile composition: Isotopic evidence for carbonate recycling in the Central American volcanic arc. Geochem. Geophys. Geosyst. 2001, 2, 1–25. [Google Scholar] [CrossRef]
- Snyder, G.; Poreda, R.; Fehn, U.; Hunt, A. Sources of nitrogen and methane in Central American geothermal settings: Noble gas and 129I evidence for crustal and magmatic volatile components. Geochem. Geophys. Geosyst. 2003, 4, 1–28. [Google Scholar] [CrossRef]
- Elkins, L.J.; Fischer, T.P.; Hilton, D.R.; Sharp, Z.D.; McKnight, S.; Walker, J. Tracing nitrogen in volcanic and geothermal volatiles from the Nicaraguan volcanic front. Geochim. Et Cosmochim. Acta 2006, 70, 5215–5235. [Google Scholar] [CrossRef]
- De Leeuw, G.A.M.; Hilton, D.R.; Fischer, T.P.; Walker, J.A. The He–CO2 isotope and relative abundance characteristics of geothermal fluids in el salvador and honduras: New constraints on volatile mass balance of the central american volcanic arc. Earth Planet. Sci. Lett. 2007, 258, 132–146. [Google Scholar] [CrossRef]
- Lucic, G.; Stix, J.; Sherwood Lollar, B.; Lacrampe-Couloume, G.; Muñoz, A.; Carcache, M.I. The degassing character of a young volcanic center: Cerro Negro, Nicaragua. Bull. Volcanol. 2014, 76, 1–23. [Google Scholar] [CrossRef]
- Bekaert, D.V.; Gazel, E.; Turner, S.; Behn, M.D.; De Moor, J.M.; Zahirovic, S.; Manea, V.C.; Hoernle, K.; Fischer, T.P.; Hammerstrom, A.; et al. High 3He/4He in central Panama reveals a distal connection to the Galápagos plume. Proc. Natl. Acad. Sci. USA 2021, 118, e2110997118. [Google Scholar] [CrossRef]
- Fischer, T.P.; Marty, B. Volatile abundances in the sub-arc mantle: Insights from volcanic and hydrothermal gas discharges. J. Volcanol. Geotherm. Res. 2005, 140, 205–216. [Google Scholar] [CrossRef]
- Shaw, A.M.; Hilton, D.R.; Fischer, T.P.; Walker, J.A.; De Leeuw, G.A.M. Helium isotope variations in mineral separates from Costa Rica and Nicaragua: Assessing crustal contributions, timescale variations and diffusion-related mechanisms. Chem. Geol. 2006, 230, 124–139. [Google Scholar] [CrossRef]
- Conde, V.; Nilsson, D.; Galle, B.; Cartagena, R.; Muñoz, A. A rapid deployment instrument network for temporarily monitoring volcanic SO2 emissions—A case study from Telica volcano. Geosci. Instrum. Methods Data Syst. 2014, 3, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Rodgers, M.; Roman, D.C.; Geirsson, H.; LaFemina, P.; Muñoz, A.; Guzman, C.; Tenorio, V. Seismicity accompanying the 1999 eruptive episode at Telica Volcano, Nicaragua. J. Volcanol. Geotherm. Res. 2013, 265, 39–51. [Google Scholar] [CrossRef]
- Defant, M.J.; Drummond, M.S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Maury, R.C.; Defant, M.J.; Belon, H.; de Boer, J.Z.; Stewart, R.W.; Cotten, J. Early Tertiary arc volcanics from eastern Panama. In Geologic and Tectonic Development of the Caribbean Plate Boundary in Southern Central America: Geological Society of America Special Paper; Mann, P., Ed.; The Geological Society of America: Boulder, Colorado, 1995; Volume 295, pp. 29–34. [Google Scholar]
- Wegner, W.; Wörner, G.; Harmon, R.S.; Jicha, B.R. Magmatic history and evolution of the Central American Land Bridge in Panama since Cretaceous times. Bulletin 2011, 123, 703–724. [Google Scholar] [CrossRef]
- Kurz, M.D. Cosmogenic helium in a terrestrial igneous rock. Nature 1986, 320, 435–439. [Google Scholar] [CrossRef]
- Hilton, D.R.; Hammerschmidt, K.; Teufel, S.; Friedrichsen, H. Helium isotope characteristics of Andean geothermal fluids and lavas. Earth Planet. Sci. Lett. 1993, 120, 265–282. [Google Scholar] [CrossRef]
- Hilton, D.R.; Fischer, T.P.; Marty, B. Noble gases and volatile recycling at subduction zones. Rev. Mineral. Geochem. 2002, 47, 319–370. [Google Scholar] [CrossRef]
- Robidoux, P.; Rotolo, S.G.; Aiuppa, A.; Lanzo, G.; Hauri, E.H. Geochemistry and volatile content of magmas feeding explosive eruptions at Telica volcano (Nicaragua). J. Volcanol. Geotherm. Res. 2017, 341, 131–148. [Google Scholar] [CrossRef]
- Havlicek, P.; Hradecky, P.; Hrubes, M.; Mlcoch, B.; Opletal, M.; Sebesta, J.; Buitrago, N.; Strauch, W. Estudio Geológico Y Reconocimiento De La Amenaza Natural—Zona Chinandega-Leon, Nicaragua. Praga-Managua 1999, Resumen Ejecutivo (Servicio Geológico Checo, CGU, en Cooperación con Instituto Nicaragüense de Estudios Territoriales, INETER); CGU: Pragua, Czech, 1999; 23p. [Google Scholar]
- Havlicek, P.; Hradecky, P.; Hrubes, M.; Kyel, P.; Mlcoch, B.; Mrazova, S.; Novak, Z.; Opletal, M.; Prichystal, A.; Sebesta, J.; et al. Estudio Geológico Y Reconocimiento De La Amenaza Geológica En El Área De León—La Paz Centro Y Malpasillo, Praga-Managua 2000, Reporte Final (Servicio Geológico Checo, CGU, en Cooperación con Instituto Nicaragüense de Estudios Territoriales, INETER); CGU: Pragua, Czech, 2000; 244p. [Google Scholar]
- McClelland, L. (Ed.) Global Volcanism Program. Report on Telica (Nicaragua). In Scientific Event Alert Network Bulletin, 7:2. Smithsonian Institution; Smithsonian Institution: Washington, DC, USA, 1982. [Google Scholar] [CrossRef]
- Robidoux, P.; Rizzo, A.L.; Aguilera, F.; Aiuppa, A.; Artale, M.; Liuzzo, M.; Nazzari, M.; Zummo, F. Petrological and noble gas features of Lascar and Lastarria volcanoes (Chile): Inferences on plumbing systems and mantle characteristics. Lithos 2020, 370, 105615. [Google Scholar] [CrossRef]
- Robidoux, P.; Pastén, D.; Levresse, G.; Diaz, G.; Paredes, D. Volatile Content Implications of Increasing Explosivity of the Strombolian Eruptive Style along the Fracture Opening on the NE Villarrica Flank: Minor Eruptive Centers in the Los Nevados Group 2. Geosciences 2021, 11, 309. [Google Scholar] [CrossRef]
- Rizzo, A.L.; Pelorosso, B.; Coltorti, M.; Ntaflos, T.; Bonadiman, C.; Matusiak-Małek, M.; Italiano, F.; Bergonzoni, G. Geochemistry of noble gases and CO2 in fluid inclusions from lithospheric mantle beneath Wilcza Góra (Lower Silesia, southwest Poland). Front. Earth Sci. 2018, 6, 215. [Google Scholar] [CrossRef]
- Rizzo, A.L.; Faccini, B.; Casetta, F.; Faccincani, L.; Ntaflos, T.; Italiano, F.; Coltorti, M. Melting and metasomatism in West Eifel and Siebengebirge Sub-Continental Lithospheric Mantle: Evidence from concentrations of volatiles in fluid inclusions and petrology of ultramafic xenoliths. Chem. Geol. 2021, 581, 120400. [Google Scholar] [CrossRef]
- Sano, Y.; Wakita, H. Geographical distribution of 3He/4He ratios in Japan: Implications for arc tectonics and incipient magmatism. J. Geophys. Res. Solid Earth 1985, 90, 8729–8741. [Google Scholar] [CrossRef] [Green Version]
- Carr, M.J.; Rose, W.I., Jr. CENTAM—a data base of Central American volcanic rocks. J. Volcanol. Geotherm. Res. 1987, 33, 239–240. [Google Scholar] [CrossRef]
- Heydolph, K.; Hoernle, K.; Hauff, F.; van den Bogaard, P.; Portnyagin, M.; Bindeman, I.; Garbe-Schönberg, D. Along and across arc geochemical variations in NW Central America: Evidence for involvement of lithospheric pyroxenite. Geochim. Cosmochim. Acta 2012, 84, 459–491. [Google Scholar] [CrossRef]
- Gale, A.; Dalton, C.A.; Langmuir, C.H.; Su, Y.; Schilling, J.G. The mean composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 2013, 14, 489–518. [Google Scholar] [CrossRef] [Green Version]
- Ozima, M.; Podosek, F.A. Noble Gas Geochemistry; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 2012, 313, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Nuccio, P.M.; Paonita, A.; Rizzo, A.; Rosciglione, A. Elemental and isotope covariation of noble gases in mineral phases from Etnean volcanics erupted during 2001–2005, and genetic relation with peripheral gas discharges. Earth Planet. Sci. Lett. 2008, 272, 683–690. [Google Scholar] [CrossRef]
- Graham, D.W. Noble gas isotope geochemistry of mid-ocean ridge and ocean island basalts: Characterization of mantle source reservoirs. Rev. Miner. Geochem. 2002, 47, 247–319. [Google Scholar] [CrossRef]
- Matsumoto, T.; Chen, Y.; Matsuda, J.I. Concomitant occurrence of primordial and recycled noble gases in the Earth’s mantle. Earth Planet. Sci. Lett. 2001, 185, 35–47. [Google Scholar] [CrossRef]
- Hopp, J.; Ionov, D.A. Tracing partial melting and subduction-related metasomatism in the Kamchatkan mantle wedge using noble gas compositions. Earth Planet. Sci. Lett. 2011, 302, 121–131. [Google Scholar] [CrossRef]
- Hopp, J.; Trieloff, M.; Altherr, R. Noble gas compositions of the lithospheric mantle below the Chyulu Hills volcanic field, Kenya. Earth Planet. Sci. Lett. 2007, 261, 635–648. [Google Scholar] [CrossRef]
- Yamamoto, J.; Kaneoka, I.; Nakai, S.I.; Kagi, H.; Prikhod’ko, V.S.; Arai, S. Evidence for subduction-related components in the subcontinental mantle from low 3He/4He and 40Ar/36Ar ratio in mantle xenoliths from Far Eastern Russia. Chem. Geol. 2004, 207, 237–259. [Google Scholar] [CrossRef]
- Yamamoto, J.; Kagi, H.; Kawakami, Y.; Hirano, N.; Nakamura, M. Paleo-Moho depth determined from the pressure of CO2 fluid inclusions: Raman spectroscopic barometry of mantle-and crust-derived rocks. Earth Planet. Sci. Lett. 2007, 253, 369–377. [Google Scholar] [CrossRef]
- Sandoval-Velasquez, A.; Rizzo, A.L.; Aiuppa, A.; Remigi, S.; Padron, E.; Perez, N.M.; Frezzotti, M.L. Recycled crustal carbon in the depleted mantle source of El Hierro volcano, Canary Islands. Lithos 2021, 400, 106414. [Google Scholar] [CrossRef]
- Sandoval-Velasquez, A.; Rizzo, A.L.; Frezzotti, M.L.; Saucedo, R.; Aiuppa, A. The composition of fluids stored in the central Mexican lithospheric mantle: Inferences from noble gases and CO2 in mantle xenoliths. Chem. Geol. 2021, 576, 120270. [Google Scholar] [CrossRef]
- Hilton, D.R.; Barling, J.; Wheller, G.E. Effect of shallow-level contamination on the helium isotope systematics of ocean-island lavas. Nature 1995, 373, 330–333. [Google Scholar] [CrossRef]
- Ballentine, C.J.; Burnard, P.G. Production, release and transport of noble gases in the continental crust. Rev. Mineral. Geochem. 2002, 47, 481–538. [Google Scholar] [CrossRef]
- Paonita, A.; Caracausi, A.; Iacono-Marziano, G.; Martelli, M.; Rizzo, A. Geochemical evidence for mixing between fluids exsolved at different depths in the magmatic system of Mt Etna (Italy). Geochim. Et Cosmochim. Acta 2012, 84, 380–394. [Google Scholar] [CrossRef] [Green Version]
- Caracausi, A.; Paternoster, M. Radiogenic helium degassing and rock fracturing: A case study of the southern Apennines active tectonic region. J. Geophys. Res. Solid Earth 2015, 120, 2200–2211. [Google Scholar] [CrossRef]
- Boudoire, G.; Rizzo, A.L.; Arienzo, I.; Di Muro, A. Paroxysmal eruptions tracked by variations of helium isotopes: Inferences from Piton de la Fournaise (La Réunion island). Sci. Rep. 2020, 10, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Montoya-Lopera, P.; Levresse, G.; Ferrari, L.; Rizzo, A.L.; Urquiza, S.; Mata, L. Genesis of the telescoped Eocene silver and Oligocene gold San Dimas deposits, Sierra Madre Occidental, Mexico: Constraints from fluid inclusions, oxygen-deuterium and noble gases isotopes. Ore Geol. Rev. 2020, 120, 103427. [Google Scholar] [CrossRef]
- Staudacher, T.; Allègre, C.J. Recycling of oceanic crust and sediments: The noble gas subduction barrier. Earth Planet. Sci. Lett. 1988, 89, 173–183. [Google Scholar] [CrossRef]
- Sano, Y.; Fischer, T.P. The analysis and interpretation of noble gases in modern hydrothermal systems. In The Noble Gases as Geochemical Tracers; Springer: Berlin/Heidelberg, Germany, 2013; pp. 249–317. [Google Scholar]
- Oppenheimer, C.; Fischer, T.P.; Scaillet, B. Volcanic degassing: Process and impact. Treatise Geochem. 2014, 4, 111–179. [Google Scholar]
- Mason, E.; Edmonds, M.; Turchyn, A.V. Remobilization of crustal carbon may dominate volcanic arc emissions. Science 2017, 357, 290–294. [Google Scholar] [CrossRef] [Green Version]
- Martelli, M.; Nuccio, P.M.; Stuart, F.M.; Burgess, R.; Ellam, R.M.; Italiano, F. Helium–strontium isotope constraints on mantle evolution beneath the Roman Comagmatic Province, Italy. Earth Planet. Sci. Lett. 2004, 224, 295–308. [Google Scholar] [CrossRef]
- Case, J.E.; MacDonald, W.D.; Fox, P.J. Caribbean crustal provinces; seismic and gravidy evidence. In The Caribbean Region; Dengo, G., Case, J.E., Eds.; The Geology of North America: Boulder, NV, USA, 1990; pp. 15–36. [Google Scholar]
- Carr, M.J.; Feigenson, M.D.; Bennett, E.A. Incompatible element and isotopic evidence for tectonic control of source mixing and melt extraction along the Central American arc. Contrib. Mineral. Petrol. 1990, 105, 369–380. [Google Scholar] [CrossRef]
- De Boer, J.Z.; Defant, M.J.; Stewart, R.H.; Restrepo, J.F.; Clark, L.F.; Ramirez, A.H. Quaternary calc-alkaline volcanism in western Panama: Regional variation and implication for the plate tectonic framework. J. S. Am. Earth Sci. 1988, 1, 275–293. [Google Scholar] [CrossRef]
- Defant, M.J.; Jackson, T.E.; Drummond, M.D.; De Boer, J.Z.; Bellon, H.; Feigenson, M.D.; Maury, R.C.; Stewart, R.H. The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: An overview. J. Geol. Soc. 1992, 149, 569–579. [Google Scholar] [CrossRef]
- De Boer, J.Z.; Defant, M.J.; Stewart, R.H.; Bellon, H. Evidence for active subduction below western Panama. Geology 1991, 19, 649–652. [Google Scholar] [CrossRef]
- Drummond, M.S.; Defant, M.J. A model for trondhjemite-tonalite-dacite genesis and crustal growth via slab melting: Archean to modern comparisons. J. Geophys. Res. Solid Earth 1990, 95, 21503–21521. [Google Scholar] [CrossRef]
- Drummond, M.S.; Defant, M.J.; Kepezhinskas, P.K. Petrogenesis of slab-derived trondhjemite–tonalite–dacite/adakite magmas. Earth Environ. Sci. Trans. R. Soc. Edinb. 1996, 87, 205–215. [Google Scholar]
- Drummond, M.S.; Bordelon, M.; De Boer, J.Z.; Defant, M.J.; Bellon, H.; Feigenson, M.D. Igneous petrogenesis and tectonic setting of plutonic and volcanic rocks of the Cordillera de Talamanca, Costa Rica-Panama, Central American arc. Am. J. Sci. 1995, 295, 875–919. [Google Scholar] [CrossRef]
- Ribeiro, J.M.; Maury, R.C.; Grégoire, M. Are adakites slab melts or high-pressure fractionated mantle melts? J. Petrol. 2016, 57, 839–862. [Google Scholar] [CrossRef] [Green Version]
- Johnston, S.T.; Thorkelson, D.J. Cocos-Nazca slab window beneath central America. Earth Planet. Sci. Lett. 1997, 146, 465–474. [Google Scholar] [CrossRef]
- Abratis, M.; Wörner, G. Ridge collision, slab-window formation, and the flux of Pacific asthenosphere into the Caribbean realm. Geology 2001, 29, 127–130. [Google Scholar] [CrossRef]
- Goss, A.R.; Kay, S.M. Steep REE patterns and enriched Pb isotopes in southern Central American arc magmas: Evidence for forearc subduction erosion? Geochem. Geophys. Geosyst. 2006, 7, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Rooney, T.O.; Franceschi, P.; Hall, C.M. Water-saturated magmas in the Panama Canal region: A precursor to adakite-like magma generation? Contrib. Mineral. Petrol. 2011, 161, 373–388. [Google Scholar] [CrossRef]
- Morell, K.D.; Gardner, T.W.; Fisher, D.M.; Idleman, B.D.; Zellner, H.M. Active thrusting, landscape evolution, and late Pleistocene sector collapse of Barú Volcano above the Cocos-Nazca slab tear, southern Central America. Bulletin 2013, 125, 1301–1318. [Google Scholar] [CrossRef]
- Gazel, E.; Hayes, J.L.; Hoernle, K.; Kelemen, P.; Everson, E.; Holbrook, W.S.; Hauff, F.; Van Den Bogaard, P.; Vance, E.A.; Chu, S.; et al. Continental crust generated in oceanic arcs. Nat. Geosci. 2015, 8, 321–327. [Google Scholar] [CrossRef] [Green Version]
- Morell, K.D. Late M iocene to recent plate tectonic history of the southern C entral A merica convergent margin. Geochem. Geophys. Geosyst. 2015, 16, 3362–3382. [Google Scholar] [CrossRef] [Green Version]
- Morell, K.D.; Kirby, E.; Fisher, D.M.; van Soest, M. Geomorphic and exhumational response of the Central American Volcanic Arc to Cocos Ridge subduction. J. Geophys. Res. Solid Earth 2012, 117, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Trenkamp, R.; Kellogg, J.N.; Freymueller, J.T.; Mora, H.P. Wide plate margin deformation, southern Central America and northwestern South America, CASA GPS observations. J. S. Am. Earth Sci. 2002, 15, 157–171. [Google Scholar] [CrossRef]
- Walther, C.H. The crustal structure of the Cocos ridge off Costa Rica. J. Geophys. Res. Solid Earth 2003, 108, 1–21. [Google Scholar] [CrossRef]
- Geochemistry of Rocks of the Oceans and Continents (GEOROC). Available online: http://georoc.mpch-mainz.gwdg.de/georoc/ (accessed on 10 December 2021).
- EarthChem. Available online: http://www.earthchem.org/ (accessed on 10 December 2021).
- Hofmann, A.W. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett. 1988, 90, 297–314. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Plank, T.; Langmuir, C.H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 1998, 145, 325–394. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizzo, A.L.; Robidoux, P.; Aiuppa, A.; Di Piazza, A. 3He/4He Signature of Magmatic Fluids from Telica (Nicaragua) and Baru (Panama) Volcanoes, Central American Volcanic Arc. Appl. Sci. 2022, 12, 4241. https://doi.org/10.3390/app12094241
Rizzo AL, Robidoux P, Aiuppa A, Di Piazza A. 3He/4He Signature of Magmatic Fluids from Telica (Nicaragua) and Baru (Panama) Volcanoes, Central American Volcanic Arc. Applied Sciences. 2022; 12(9):4241. https://doi.org/10.3390/app12094241
Chicago/Turabian StyleRizzo, Andrea L., Philippe Robidoux, Alessandro Aiuppa, and Andrea Di Piazza. 2022. "3He/4He Signature of Magmatic Fluids from Telica (Nicaragua) and Baru (Panama) Volcanoes, Central American Volcanic Arc" Applied Sciences 12, no. 9: 4241. https://doi.org/10.3390/app12094241
APA StyleRizzo, A. L., Robidoux, P., Aiuppa, A., & Di Piazza, A. (2022). 3He/4He Signature of Magmatic Fluids from Telica (Nicaragua) and Baru (Panama) Volcanoes, Central American Volcanic Arc. Applied Sciences, 12(9), 4241. https://doi.org/10.3390/app12094241