Studying the Role of Cerebrovascular Changes in Different Compartments in Human Brains in Hypertension Prediction
Abstract
:1. Introduction
2. Methods
2.1. Cerebral Vasculature Segmentation
2.2. Extraction of Cerebrovascular Descriptive Features
2.3. Data Preparation and Classification
3. Experimental Results
3.1. Material and Procedure
3.2. Classification Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Control CfD. About Underlying Cause of Death, Hypertension, Available via National Center for Health Statistics. 2015. Available online: http://wonder.cdc.gov/ucd-icd10.html (accessed on 18 January 2018).
- Iadecola, C.; Davisson, R.L. Hypertension and cerebrovascular dysfunction. Cell Metab. 2008, 7, 476–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whelton, P.K.; Carey, R.M.; Aronow, W.S.; Casey, D.E.; Collins, K.J.; Himmelfarb, C.D.; DePalma, S.M.; Gidding, S.; Jamerson, K.A.; Jones, D.W.; et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2018, 71, e127–e248. [Google Scholar] [PubMed]
- Barnes, J.N.; Harvey, R.E.; Zuk, S.M.; Lundt, E.S.; Lesnick, T.G.; Gunter, J.L.; Senjem, M.L.; Shuster, L.T.; Miller, V.M.; Jack, C.R.; et al. Aortic hemodynamics and white matter hyperintensities in normotensive postmenopausal women. J. Neurol. 2017, 264, 938–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Launer, L.J.; Lewis, C.E.; Schreiner, P.J.; Sidney, S.; Battapady, H.; Jacobs, D.R.; Lim, K.O.; D’Esposito, M.; Zhang, Q.; Reis, J.; et al. Vascular factors and multiple measures of early brain health: CARDIA brain MRI study. PLoS ONE 2015, 10, e0122138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi, K.; Makino, A.; Kakoi, D. Remodeling of arterial wall: Response to changes in both blood flow and blood pressure. J. Mech. Behav. Biomed. Mater. 2018, 77, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Ussavarungsi, K.; Whitlock, J.P.; Lundy, T.A.; Carabenciov, I.D.; Burger, C.D.; Lee, A.S. The significance of pulmonary artery size in pulmonary hypertension. Diseases 2014, 2, 243–259. [Google Scholar] [CrossRef] [Green Version]
- Han, H.C. Twisted blood vessels: Symptoms, etiology and biomechanical mechanisms. J. Vasc. Res. 2012, 49, 185–197. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, M.; Hunter, A.; Al-Diri, B. Quantifying retinal blood vessels’ tortuosity. In Proceedings of the 2015 Science and Information Conference (SAI), London, UK, 28–30 July 2015; pp. 687–693. [Google Scholar]
- Kandil, H.; Soliman, A.; Ghazal, M.; Mahmoud, A.; Shalaby, A.; Keynton, R.; Elmaghraby, A.; Giridharan, G.; El-Baz, A. A novel framework for early detection of hypertension using magnetic resonance angiography. Sci. Rep. 2019, 9, 11105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phellan, R.; Peixinho, A.; Falcão, A.; Forkert, N.D. Vascular Segmentation in TOF MRA Images of the Brain Using a Deep Convolutional Neural Network. In Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis; Springer: Berlin/Heidelberg, Germany, 2017; pp. 39–46. [Google Scholar]
- Zhao, S.; Tian, Y.; Wang, X.; Xu, P.; Deng, Q.; Zhou, M. Vascular Extraction Using MRA Statistics and Gradient Information. Math. Probl. Eng. 2018, 2018, 6131325. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Wang, X.C.; Zhou, M.Q.; Wu, Z.; Liu, X.Y. Segmentation algorithm of brain vessel image based on SEM statistical mixture model. In Proceedings of the 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery, Yantai, China, 10–12 August 2010; Volume 4, pp. 1830–1833. [Google Scholar]
- Roth, W.; Morgello, S.; Goldman, J.; Mohr, J.P.; Elkind, M.S.; Marshall, R.S.; Gutierrez, J. Histopathological differences between the anterior and posterior brain arteries as a function of aging. Stroke 2017, 48, 638–644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huttunen, T.; von und zu Fraunberg, M.; Frösen, J.; Lehecka, M.; Tromp, G.; Helin, K.; Koivisto, T.; Rinne, J.; Ronkainen, A.; Hernesniemi, J.; et al. Saccular intracranial aneurysm disease: Distribution of site, size, and age suggests different etiologies for aneurysm formation and rupture in 316 familial and 1454 sporadic eastern Finnish patients. Neurosurgery 2010, 66, 631–638. [Google Scholar] [CrossRef] [PubMed]
- Libman, R.; Kwiatkowski, T.; Hansen, M.; Clarke, W.; Woolson, R.; Adams, H. Differences between anterior and posterior circulation stroke in TOAST. Cerebrovasc. Dis. 2001, 11, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Washio, T.; Watanabe, H.; Ogoh, S. Dynamic cerebral autoregulation in anterior and posterior cerebral circulation during cold pressor test. J. Physiol. Sci. 2020, 70, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Varble, N.; Rajabzadeh-Oghaz, H.; Wang, J.; Siddiqui, A.; Meng, H.; Mowla, A. Differences in morphologic and hemodynamic characteristics for “PHASES-based” intracranial aneurysm locations. Am. J. Neuroradiol. 2017, 38, 2105–2110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tustison, N.J.; Avants, B.B.; Cook, P.A.; Zheng, Y.; Egan, A.; Yushkevich, P.A.; Gee, J.C. N4ITK: Improved N3 bias correction. IEEE Trans. Med. Imaging 2010, 29, 1310–1320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouman, C.; Sauer, K. A generalized Gaussian image model for edge-preserving MAP estimation. IEEE Trans. Image Process. 1993, 2, 296–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandil, H.; Soliman, A.; Fraiwan, L.; Shalaby, A.; Mahmoud, A.; ElTanboly, A.; Elmaghraby, A.; Giridharan, G.; El-Baz, A. A novel MRA framework based on integrated global and local analysis for accurate segmentation of the cerebral vascular system. In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 1365–1368. [Google Scholar]
- El-Baz, A.; Gimel’farb, G. EM based approximation of empirical distributions with linear combinations of discrete Gaussians. In Proceedings of the 2007 IEEE International Conference on Image Processing, San Antonio, TX, USA, 16 September–19 October 2007; Volume 4, pp. 300–373. [Google Scholar]
- Moccia, S.; De Momi, E.; El Hadji, S.; Mattos, L.S. Blood vessel segmentation algorithms—Review of methods, datasets and evaluation metrics. Comput. Methods Programs Biomed. 2018, 158, 71–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, C.K.; Park, C.A.; Lee, H.; Kim, S.H.; Park, C.W.; Kim, Y.B.; Cho, Z.H. Hypertension correlates with lenticulostriate arteries visualized by 7T magnetic resonance angiography. Hypertension 2009, 54, 1050–1056. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.C.; Li, M.H.; Li, Y.H.; Qiao, R.H. Analysis of correlation between the number of lenticulostriate arteries and hypertension based on high-resolution MR angiography findings. Am. J. Neuroradiol. 2011, 32, 1899–1903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Classifiers | Kernel | Features | Validation-Scenario | Whole Brain Accuracy % | Anterior Accuracy % | Posterior Accuracy % |
---|---|---|---|---|---|---|
Ensemble | Bagged Trees | Median of diameter change, median of tortuosity change, delta MAP, delta SBP, delta DBP | 5-fold | 75 | ||
KNN | Weighted | Average of diameter change, Average of tortuosity change, delta MAP, delta SBP, delta DBP | 10-fold | |||
KNN | Fine | Diameter change, tortuosity change, delta MAP, delta SBP, delta DBP | hold-out | |||
Ensemble | Subspace KNN | Diameter change, tortuosity change, delta MAP, delta SBP, delta DBP | hold-out | |||
Ensemble | Bagged Trees | Diameter change, tortuosity change, delta MAP, delta SBP, delta DBP | hold-out | 90 | 90 | 70 |
KNN | Weighted | Diameter change, tortuosity change, delta SBP, delta DBP | hold-out | 90 | 80 | 60 |
KNN | Cosine | Diameter change, tortuosity change, delta MAP, delta SBP, delta DBP | hold-out | |||
Ensemble | RUSBoosted | Diameter change, tortuosity change, delta MAP, delta SBP, delta DBP | hold-out | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kandil, H.; Soliman, A.; Elsaid, N.; Saied, A.; Alghamdi, N.S.; Mahmoud, A.; Taher, F.; El-Baz, A. Studying the Role of Cerebrovascular Changes in Different Compartments in Human Brains in Hypertension Prediction. Appl. Sci. 2022, 12, 4291. https://doi.org/10.3390/app12094291
Kandil H, Soliman A, Elsaid N, Saied A, Alghamdi NS, Mahmoud A, Taher F, El-Baz A. Studying the Role of Cerebrovascular Changes in Different Compartments in Human Brains in Hypertension Prediction. Applied Sciences. 2022; 12(9):4291. https://doi.org/10.3390/app12094291
Chicago/Turabian StyleKandil, Heba, Ahmed Soliman, Nada Elsaid, Ahmed Saied, Norah Saleh Alghamdi, Ali Mahmoud, Fatma Taher, and Ayman El-Baz. 2022. "Studying the Role of Cerebrovascular Changes in Different Compartments in Human Brains in Hypertension Prediction" Applied Sciences 12, no. 9: 4291. https://doi.org/10.3390/app12094291
APA StyleKandil, H., Soliman, A., Elsaid, N., Saied, A., Alghamdi, N. S., Mahmoud, A., Taher, F., & El-Baz, A. (2022). Studying the Role of Cerebrovascular Changes in Different Compartments in Human Brains in Hypertension Prediction. Applied Sciences, 12(9), 4291. https://doi.org/10.3390/app12094291