A Scalable Digit-Parallel Polynomial Multiplier Architecture for NIST-Standardized Binary Elliptic Curves
Abstract
:1. Introduction
1.1. Existing Polynomial Multiplier Architectures and Their Limitations
1.2. Novelty
1.3. Our Contributions
- (i)
- Five dedicated architectures. We have presented a dedicated digit-parallel architecture for each variant of the NIST-standardized binary elliptic curves, i.e., 163, 233, 283, 409 and 571. The experimental results are evaluated to estimate the area and timing characteristics of the implemented multiplier circuits.
- (ii)
- A scalable polynomial multiplication architecture. Similar to our dedicated designs, a scalable digit-parallel architecture supporting all variants of NIST-specified binary elliptic curves, i.e., 163, 233, 283, 409 and 571, is described. Our scalable architecture results in a decrease in the hardware resources when compared to the sum of resources of our dedicated architectures.
- (iii)
- Dedicated and flexible architecture(s) for NIST reduction algorithms. For each dedicated multiplication architecture, a dedicated architecture for NIST-defined reduction routines is provided. Moreover, a unified architecture for NIST-specified reduction algorithms is presented for our scalable design.
- (iv)
- A dedicated controller. In our scalable architecture, a finite state machine (FSM) controller is used to perform control functionalities over multiplication and reduction operations.
2. Schoolbook Polynomial Multiplication
3. Our Dedicated and Scalabale Multiplier Architectures
Algorithm 1: Pseudocode of our dedicated and scalable multiplier architectures |
Input: Polynomial, and with m-bit length Output: Polynomial, with m-bit length
|
3.1. Dedicated Polynomial Multiplication Architectures
3.2. Scalable Multiplication Architecture
4. Implementation Results and Comparisons
4.1. Results
4.2. Comparison of Our Dedicated Multipliers with Scalable Architecture
4.3. Comparison to State of the Art
4.3.1. Comparison to Bit-Parallel Systolic Multiplier Architectures
4.3.2. Comparison to Karatsuba and Montgomery Multiplier Architectures
4.3.3. Overall Summary
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A. Polynomial Reduction Algorithms over GF(2m)
Algorithm A1: Polynomial Reduction Algorithm over (algorithm 2.41 of [8]) |
Input: Polynomial, with -bit length Output: Polynomial, with m-bit length
|
Algorithm A2: Polynomial Reduction Algorithm over (algorithm 2.42 of [8]) |
Input: Polynomial, with -bit length Output: Polynomial, with m-bit length
|
Algorithm A3: Polynomial Reduction Algorithm over (algorithm 2.43 of [8]) |
Input: Polynomial, with -bit length Output: Polynomial, with m-bit length
|
Algorithm A4: Polynomial Reduction Algorithm over (algorithm 2.44 of [8]) |
Input: Polynomial, with -bit length Output: Polynomial, with m-bit length
|
Algorithm A5: Polynomial Reduction Algorithm over (algorithm 2.45 of [8]) |
Input: Polynomial, with -bit length Output: Polynomial, with m-bit length
|
References
- Rivest, R.L.; Shamir, A.; Adleman, L. A Method for Obtaining Digital Signatures and Public-Key Cryptosystems. Commun. ACM 1978, 21, 120–126. [Google Scholar] [CrossRef]
- Koblitz, N. Elliptic curve cryptosystems. Math. Comput. 1987, 48, 203–209. [Google Scholar] [CrossRef]
- Miller, V.S. Use of elliptic curves in cryptography. In Conference on the Theory and Application of Cryptographic Techniques; Springer: Berlin/Heidelberg, Germany, 1985; pp. 417–426. [Google Scholar]
- Rashid, M.; Jamal, S.S.; Khan, S.Z.; Alharbi, A.R.; Aljaedi, A.; Imran, M. Elliptic-Curve Crypto Processor for RFID Applications. Appl. Sci. 2021, 11, 7079. [Google Scholar] [CrossRef]
- Calderoni, L.; Maio, D. Lightweight Security Settings in RFID Technology for Smart Agri-Food Certification. In Proceedings of the 2020 IEEE International Conference on Smart Computing (SMARTCOMP), Bologna, Italy, 14–17 September 2020; pp. 226–231. [Google Scholar] [CrossRef]
- Dyka, Z.; Langendörfer, P. Improving the Security of Wireless Sensor Networks by Protecting the Sensor Nodes against Side Channel Attacks. In Wireless Networks and Security: Issues, Challenges and Research Trends; Khan, S., Khan Pathan, A.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 303–328. [Google Scholar] [CrossRef]
- NIST. Recommended Elliptic Curves for Federal Government Use (1999). Available online: https://csrc.nist.gov/csrc/media/publications/fips/186/2/archive/2000-01-27/documents/fips186-2.pdf (accessed on 19 February 2022).
- Hankerson, D.; Menezes, A.J.; Vanstone, S. Guide to Elliptic Curve Cryptography. 2004, pp. 1–311. Available online: https://link.springer.com/book/10.1007/b97644 (accessed on 14 February 2022).
- Yeh, L.Y.; Chen, P.J.; Pai, C.C.; Liu, T.T. An Energy-Efficient Dual-Field Elliptic Curve Cryptography Processor for Internet of Things Applications. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 1614–1618. [Google Scholar] [CrossRef]
- Jafri, A.R.; Islam, M.N.; Imran, M.; Rashid, M. Towards an Optimized Architecture for Unified Binary Huff Curves. J. Circuits Syst. Comput. 2017, 26, 1750178. [Google Scholar] [CrossRef]
- Rashid, M.; Imran, M.; Jafri, A.R.; Mehmood, Z. A 4-Stage Pipelined Architecture for Point Multiplication of Binary Huff Curves. J. Circuits Syst. Comput. 2020, 29, 2050179. [Google Scholar] [CrossRef]
- Fournaris, A.P.; Koufopavlou, O. Affine Coordinate Binary Edwards Curve Scalar Multiplier with Side Channel Attack Resistance. In Proceedings of the 2015 Euromicro Conference on Digital System Design, Madeira, Portugal, 26–28 August 2015; pp. 431–437. [Google Scholar] [CrossRef]
- Imran, M.; Rashid, M.; Raza Jafri, A.; Najam-ul-Islam, M. ACryp-Proc: Flexible Asymmetric Crypto Processor for Point Multiplication. IEEE Access 2018, 6, 22778–22793. [Google Scholar] [CrossRef]
- Pillutla, S.R.; Boppana, L. An area-efficient bit-serial sequential polynomial basis finite field GF(2m) multiplier. AEU Int. J. Electron. Commun. 2020, 114, 153017. [Google Scholar] [CrossRef]
- Morales-Sandoval, M.; Feregrino-Uribe, C.; Kitsos, P. Bit-serial and digit-serial GF(2m) Montgomery multipliers using linear feedback shift registers. IET Comput. Digit. Tech. 2011, 5, 86–94. [Google Scholar] [CrossRef]
- Gebali, F.; Ibrahim, A. Efficient Scalable Serial Multiplier Over GF(2m) Based on Trinomial. IEEE Trans. Very Large Scale Integr. Syst. 2015, 23, 2322–2326. [Google Scholar] [CrossRef]
- Devi, S.; Mahajan, R.; Bagai, D. Low complexity design of bit parallel polynomial basis systolic multiplier using irreducible polynomials. Egypt. Inform. J. 2022, 23, 105–112. [Google Scholar] [CrossRef]
- Lee, C.Y. Low-complexity bit-parallel systolic multipliers over GF(2m). Integration 2008, 41, 106–112. [Google Scholar] [CrossRef]
- Fournaris, A.P.; Koufopavlou, O. Versatile multiplier architectures in GF(2k) fields using the Montgomery multiplication algorithm. Integration 2008, 41, 371–384. [Google Scholar] [CrossRef]
- Mathe, S.E.; Boppana, L. Low-power and low-hardware bit-parallel polynomial basis systolic multiplier over gf(2m) for irreducible polynomials. ETRI J. 2017, 39, 570–581. [Google Scholar] [CrossRef]
- Devi, S.; Mahajan, R.; Bagai, D. A low complexity bit parallel polynomial basis systolic multiplier for general irreducible polynomials and trinomials. Microelectron. J. 2021, 115, 105163. [Google Scholar] [CrossRef]
- Bayat-Sarmadi, S.; Farmani, M. High-throughput low-complexity systolic Montgomery multiplication over GF(2m) based on trinomials. IEEE Trans. Circuits Syst. II Express Briefs 2015, 62, 377–381. [Google Scholar] [CrossRef]
- Mathe, S.E.; Boppana, L. Bit-parallel systolic multiplier over GF(2m) for irreducible trinomials with ASIC and FPGA implementations. IET Circuits Devices Syst. 2018, 12, 315–325. [Google Scholar] [CrossRef]
- Heidarpur, M.; Mirhassani, M. An Efficient and High-Speed Overlap-Free Karatsuba-Based Finite-Field Multiplier for FGPA Implementation. IEEE Trans. Very Large Scale Integr. Syst. 2021, 29, 667–676. [Google Scholar] [CrossRef]
- Ibrahim, A.; Gebali, F. Energy-Efficient Word-Serial Processor for Field Multiplication and Squaring Suitable for Lightweight Authentication Schemes in RFID-Based IoT Applications. Appl. Sci. 2021, 11, 6938. [Google Scholar] [CrossRef]
- Khan, S.; Javeed, K.; Shah, Y.A. High-speed FPGA implementation of full-word Montgomery multiplier for ECC applications. Microprocess. Microsyst. 2018, 62, 91–101. [Google Scholar] [CrossRef]
- Thirumoorthi, M.; Heidarpur, M.; Mirhassani, M.; Khalid, M. An Optimized M-term Karatsuba-Like Binary Polynomial Multiplier for Finite Field Arithmetic. IEEE Trans. Very Large Scale Integr. Syst. 2022, 1–12. [Google Scholar] [CrossRef]
- Rashid, M.; Imran, M.; Kashif, M.; Sajid, A. An Optimized Architecture for Binary Huff Curves With Improved Security. IEEE Access 2021, 9, 88498–88511. [Google Scholar] [CrossRef]
- Rashid, M.; Imran, M.; Sajid, A. An Efficient Elliptic-Curve Point Multiplication Architecture for High-Speed Cryptographic Applications. Electronics 2020, 9, 2126. [Google Scholar] [CrossRef]
- Imran, M.; Rashid, M. Architectural review of polynomial bases finite field multipliers over GF(2m). In Proceedings of the 2017 International Conference on Communication, Computing and Digital Systems (C-CODE), Islamabad, Pakistan, 8–9 March 2017; pp. 331–336. [Google Scholar] [CrossRef]
- Imran, M.; Abideen, Z.U.; Pagliarini, S. An Open-source Library of Large Integer Polynomial Multipliers. In Proceedings of the 2021 24th International Symposium on Design and Diagnostics of Electronic Circuits Systems (DDECS), Vienna, Austria, 7–9 April 2021; pp. 145–150. [Google Scholar] [CrossRef]
- Kashif, M.; Cicek, I.; Imran, M. A Hardware Efficient Elliptic Curve Accelerator for FPGA Based Cryptographic Applications. In Proceedings of the 2019 11th International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 28–30 November 2019; pp. 362–366. [Google Scholar] [CrossRef]
- Imran, M.; Abideen, Z.U.; Pagliarini, S. An Experimental Study of Building Blocks of Lattice-Based NIST Post-Quantum Cryptographic Algorithms. Electronics 2020, 9, 1953. [Google Scholar] [CrossRef]
- Ilter, M.B.; Cenk, M. Efficient Big Integer Multiplication in Cryptography. Int. J. Inf. Secur. Sci. 2017, 6, 70–78. Available online: https://dergipark.org.tr/en/download/article-file/2160206 (accessed on 1 March 2022).
- Liu, W.; Fan, S.; Khalid, A.; Rafferty, C.; O’Neill, M. Optimized Schoolbook Polynomial Multiplication for Compact Lattice-Based Cryptography on FPGA. IEEE Trans. Very Large Scale Integr. Syst. 2019, 27, 2459–2463. [Google Scholar] [CrossRef] [Green Version]
m | Slices | LUTs | CCs | PP (in ns) | Freq. (MHz) | Latency (in s) | Pwr. (in W) | |
---|---|---|---|---|---|---|---|---|
Dedicated architectures | ||||||||
163 (Figure 2) | 1182 | 3925 | 1 | 2.000 | 500 | 0.00200 | 3.201 | 2.364 |
233 (Figure 3) | 1451 | 4464 | 1 | 2.100 | 476 | 0.00210 | 3.326 | 3.047 |
283 (Figure 4) | 1589 | 4927 | 1 | 2.150 | 465 | 0.00215 | 3.409 | 3.416 |
409 (Figure 5) | 2093 | 5728 | 1 | 2.215 | 451 | 0.00221 | 3.561 | 4.625 |
571 (Figure 6) | 3451 | 6943 | 1 | 2.255 | 443 | 0.00225 | 3.726 | 7.764 |
Scalable/flexible architecture | ||||||||
163 (Figure 7) | 3753 | 7461 | 4 | 3.275 | 305 | 0.01311 | 3.905 | 49.201 |
233 (Figure 7) | ||||||||
283 (Figure 7) | ||||||||
409 (Figure 7) | ||||||||
571 (Figure 7) |
Ref #/Year | Multiplier | m | Device | Slices | CCs | Freq. (MHz) | Latency | Pwr. (in W) |
---|---|---|---|---|---|---|---|---|
[17]/2022 | bit-parallel systolic | 163 | Virtex-7 | 32,685 | – | – | – | 5.277 |
[18]/2008 | bit-parallel systolic | 163 | Virtex-7 | 154,635 | – | – | – | 3.600 |
[19]/2008 | bit-parallel systolic | 163 | Virtex-7 | 105,787 | – | – | – | 6.187 |
[20]/2017 | bit-parallel systolic | 163 | Virtex-7 | 66,434 | – | – | – | 2.848 |
[21]/2021 | bit-parallel systolic | 233 | Virtex-7 | 22,864 | – | – | – | 0.717 |
[22]/2015 | bit-parallel systolic | 233 | Virtex-7 | 94,498 | – | – | – | 2.148 |
[23]/2018 | bit-parallel systolic | 233 | Virtex-7 | 56,223 | 233 | 44 | 5.295 s | 1.192 |
[24]/2021 | overlap-free Karatsuba | 409 | Artix-7 | 49,211 * | – | – | – | – |
[26]/2018 | Montgomery | 521 | Virtex-7 | 20,695 * | 7 | 99.68 | 0.070 s | – |
[27]/2022 | similar to Karatsuba | 409 | Spartan-7 | 40,056 * | – | – | – | – |
Figure 2 | digit-parallel | 163 | Virtex-7 | 1182 | 1 | 500 | 0.002 s | 3.201 |
Figure 3 | digit-parallel | 233 | Virtex-7 | 1451 | 1 | 476 | 0.00210 s | 3.326 |
Figure 5 | digit-parallel | 409 | Artix-7 | 6128 * | 1 | 468 | 0.00213 s | 3.632 |
Figure 5 | digit-parallel | 409 | Spartan-7 | 6784 * | 1 | 457 | 0.00218 s | 3.541 |
Figure 6 | digit-parallel | 571 | Virtex-7 | 6943 * | 1 | 443 | 0.00225 s | 3.726 |
Figure 7 | scalable digit-parallel | BFL | Virtex-7 | 3753 | 4 | 305 | 0.01311 s | 3.905 |
Figure 7 | scalable digit-parallel | BFL | Artix-7 | 8019 * | 4 | 331 | 0.01208 s | 4.251 |
Figure 7 | scalable digit-parallel | BFL | Spartan-7 | 8653 * | 4 | 316 | 0.01265 s | 4.016 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, H.; Rashid, M.; Alhomoud, A.; Khan, S.Z.; Bahkali, I.; Alotaibi, S.S. A Scalable Digit-Parallel Polynomial Multiplier Architecture for NIST-Standardized Binary Elliptic Curves. Appl. Sci. 2022, 12, 4312. https://doi.org/10.3390/app12094312
Kumar H, Rashid M, Alhomoud A, Khan SZ, Bahkali I, Alotaibi SS. A Scalable Digit-Parallel Polynomial Multiplier Architecture for NIST-Standardized Binary Elliptic Curves. Applied Sciences. 2022; 12(9):4312. https://doi.org/10.3390/app12094312
Chicago/Turabian StyleKumar, Harish, Muhammad Rashid, Ahmed Alhomoud, Sikandar Zulqarnain Khan, Ismail Bahkali, and Saud S. Alotaibi. 2022. "A Scalable Digit-Parallel Polynomial Multiplier Architecture for NIST-Standardized Binary Elliptic Curves" Applied Sciences 12, no. 9: 4312. https://doi.org/10.3390/app12094312
APA StyleKumar, H., Rashid, M., Alhomoud, A., Khan, S. Z., Bahkali, I., & Alotaibi, S. S. (2022). A Scalable Digit-Parallel Polynomial Multiplier Architecture for NIST-Standardized Binary Elliptic Curves. Applied Sciences, 12(9), 4312. https://doi.org/10.3390/app12094312