The Antimicrobial Potential of Hexane Oils and Polyphenols-Rich Extracts from Pistacia vera L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pistachios
2.2. Extraction Methods
2.3. RP-HPLC-DAD Identification and Quantification of Phenolic Compounds
2.4. Chemical Composition of Pistachio Oils
2.5. Antimicrobial Assays
2.5.1. Microbial Strains and Culture Conditions
2.5.2. Susceptibility Studies
3. Results
3.1. Polyphenolic Composition of the Pistachio Extracts and Pistachio Oil
3.2. Chemical Composition of Pistachio Oils
3.3. Antimicrobial Potential of the Pistachio Extracts
3.4. Antimicrobial Potential of the Hexane Pistachio Oil Fractions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oulahal, N.; Degraeve, P. Phenolic-Rich Plant Extracts with Antimicrobial Activity: An Alternative to Food Preservatives and Biocides? Front. Microbial. 2022, 12, 753518. [Google Scholar] [CrossRef]
- Mandalari, G.; Barreca, D.; Gervasi, T.; Roussell, M.A.; Klein, B.; Feeney, M.J.; Carughi, A. Pistachio Nuts (Pistacia vera L.): Production, Nutrients, Bioactives and Novel Health Effects. Plants 2021, 11, 18. [Google Scholar] [CrossRef] [PubMed]
- Musarra-Pizzo, M.; Pennisi, R.; Ben-Amor, I.; Smeriglio, A.; Mandalari, G.; Sciortino, M.T. In Vitro Anti-HSV-1 Activity of Polyphenol-Rich Extracts and Pure Polyphenol Compounds Derived from Pistachios Kernels (Pistacia vera L.). Plants 2020, 9, 267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bisignano, C.; Filocamo, A.; Faulks, R.M.; Mandalari, G. In vitro antimicrobial activity of pistachio (Pistacia vera L.) polyphenols. FEMS Microbiol. Lett. 2013, 341, 62–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Camera, E.; Bisignano, C.; Crisafi, G.; Smeriglio, A.; Denaro, M.; Trombetta, D.; Mandalari, G. Biochemical Characterization of Clinical Strains of Staphylococcus spp. and Their Sensitivity to Polyphenols-Rich Extracts from Pistachio (Pistacia vera L.). Pathogens 2018, 7, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowy, F.D. Staphylococcus aureus infections. N. Engl. J. Med. 1998, 339, 520–532. [Google Scholar] [CrossRef]
- Mandalari, G.; Bisignano, C.; Filocamo, A.; Chessa, S.; Sarò, M.; Torre, G.; Faulks, R.M.; Dugo, P. Bioaccessibility of pistachio polyphenols, xanthophylls, and tocopherols during simulated human digestion. Nutrition 2013, 29, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Taş, N.G.; Gökmen, V. Phenolic compounds in natural and roasted nuts and their skins: A brief review. Curr. Opin. Food Sci. 2017, 14, 103–109. [Google Scholar] [CrossRef]
- CLSI M100-S22; Performance Standards for Antimicrobial Susceptibility Testing. CLSI: Wayne, PA, USA, 2012.
- CLSI M27-A3; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, Approved Standard. 3rd ed. CLSI: Wayne, PA, USA, 2008.
- Esteki, M.; Ahmadi, P.; Vander Heyden, Y.; Simal-Gandara, J. Fatty Acids-Based Quality Index to Differentiate Worldwide Commercial Pistachio Cultivars. Molecules 2018, 24, 58. [Google Scholar] [CrossRef] [Green Version]
- Rajaei, A.; Barzegar, M.; Mobarez, A.M.; Sahari, M.A.; Esfahani, Z.H. Antioxidant, anti-microbial and antimutagenity activities of pistachio (Pistachia vera) green hull extract. Food Chem. Toxicol. 2010, 48, 107–112. [Google Scholar] [CrossRef]
- Ballistreri, G.; Arena, E.; Fallico, B. Influence of ripeness and drying process on the polyphenols and tocopherols of Pistacia vera L. Molecules 2009, 14, 4358–4369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arjeh, E.; Akhavan, H.R.; Barzegar, M.; Carbonell-Barrachina, Á.A. Bio-active compounds and functional properties of pistachio hull: A review. Trends. Food Sci. Technol. 2020, 97, 55–64. [Google Scholar] [CrossRef]
- Bellocco, E.; Barreca, D.; Laganà, G.; Calderaro, A.; El Lekhlifi, Z.; Chebaibi, S.; Smeriglio, A.; Trombetta, D. Cyanidin-3-O-galactoside in ripe pistachio (Pistachia vera L. variety Bronte) hulls: Identification and evaluation of its antioxidant and cytoprotective activities. J. Funct. Foods 2016, 27, 376–385. [Google Scholar] [CrossRef]
- Heinonen, M. Antioxidant activity and antimicrobial effect of berry phenolics—A finnish perspective. Mol. Nutr. Food Res. 2007, 51, 684–691. [Google Scholar] [CrossRef]
- Simoes, M.; Bennett, R.N.; Rosa, E.A.S. Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Nat. Prod. Rep. 2009, 26, 746–757. [Google Scholar] [CrossRef] [PubMed]
- Mirzoeva, O.K.; Grishanin, R.N.; Calder, P.C. Antimicrobial action of propolis and some of its components: The effects on growth, membrane potential and motility of bacteria. Microbiol. Res. 1997, 152, 239–246. [Google Scholar] [CrossRef]
- Arakawa, H.; Maeda, M.; Okubo, S.; Shimamura, T. Role of hydrogen peroxide in bactericidal action of catechin. Biol. Pharm. Bull. 2004, 27, 277–281. [Google Scholar] [CrossRef] [Green Version]
- Gopal, J.; Muthu, M.; Paul, D.; Kim, D.H.; Chun, S. Bactericidal activity of green tea extracts: The importance of catechin containing nano particles. Sci. Rep. 2016, 6, 19710. [Google Scholar] [CrossRef]
- Li, L.; Zhou, P.; Wang, Y.; Pan, Y.; Chen, M.; Tian, Y.; Zheng, J. Antimicrobial activity of cyanidin-3-O-glucoside–lauric acid ester against Staphylococcus aureus and Escherichia coli. Food Chem. 2022, 383, 132410. [Google Scholar] [CrossRef]
- Yun, J.; Woo, E.R.; Lee, D.G. Effect of isoquercitrin on membrane dynamics and apoptosis-like death in Escherichia coli. Biochim. Et Biophys. Acta BBA Biomembr. 2018, 1860, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Efenberger-Szmechtyk, M.; Nowak, A.; Czyzowska, A. Plant extracts rich in polyphenols: Antibacterial agents and natural preservatives for meat and meat products. Crit. Rev. Food Sci. Nutr. 2021, 61, 149–178. [Google Scholar] [CrossRef] [PubMed]
- Baptista, R.C.; Horita, C.N.; Sant’Ana, A.S. Natural products with preservative properties for enhancing the microbiological safety and extending the shelf-life of seafood: A review. Food Res. Int. 2020, 127, 108762. [Google Scholar] [CrossRef] [PubMed]
- Mateus, T.; Silva, J.; Maia, R.L.; Teixeira, P. Listeriosis during Pregnancy: A Public Health Concern. ISRN Obstet. Gynecol. 2013, 2013, 851712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thakur, M.; Asrani, R.K.; Patial, V. Listeria monocytogenes: A food-borne pathogen. In Foodborne Diseases; Academic Press: Cambridge, MA, USA, 2018; pp. 157–192. [Google Scholar]
- Shah, M.A.; Mir, S.A. Plant extracts as food preservatives. In Plant Extracts: Applications in the Food Industry; Academic Press: Cambridge, MA, USA, 2022; pp. 127–141. [Google Scholar]
Compound | Extraction Method 1 | Extraction Method 2 | Oil Fraction | |||
---|---|---|---|---|---|---|
NRRE | RURE | NRRE | RURE | NRRE | RURE | |
Gallic acid | 1.05 ± 0.12 | 1.83 ± 0.15 | 1.47 ± 0.13 | 2.28 ± 0.14 | 0.25 ± 0.02 | 0.22 ± 0.01 |
Protocatechuic acid | 0.71 ± 0.08 | 0.80 ± 0.10 | 0.80 ± 0.05 | 1.27 ± 0.11 | 0.15 ± 0.01 | 0.20 ± 0.01 |
Chlorogenic acid | Trace | 0.11 ± 0.01 | Trace | 0.24 ± 0.04 | - | - |
Catechin | 2.01 ± 0.15 | 0.86 ± 0.07 | 2.74 ± 0.11 | 1.34 ± 0.10 | Trace | Trace |
Caffeic acid | 0.91 ± 0.10 | Trace | 0.8 ± 0.07 | Trace | - | - |
Epicatechin | 0.20 ± 0.03 | 0.10 ± 0.01 | 0.35 ± 0.02 | 0.09 ± 0.01 | ||
Cyanidin-3-O-galactoside | 0.92 ± 0.11 | 0.85 ± 0.12 | 1.1 ± 0.14 | 1.0 ± 0.11 | - | - |
Eriodictyol-7-O-glucoside | Trace | Trace | Trace | Trace | ||
Quercetin-3-O-rutinoside | 0.50 ± 0.04 | 0.60 ± 0.07 | 0.86 ± 0.03 | 0.74 ± 0.08 | - | - |
Isoquercetin | 1.36 ± 0.12 | 0.80 ± 0.07 | 1.85 ± 0.10 | 0.71 ± 0.06 | Trace | Trace |
Daidzein | Trace | Trace | Trace | Trace | - | - |
Eriodictyol | Trace | Trace | Trace | Trace | ||
Luteolin | 0.14 ± 0.02 | 0.24 ± 0.03 | 0.29 ± 0.01 | 0.41 ± 0.08 | - | - |
Fatty Acids | Raw Pistachio Oil | Roasted Pistachio Oil |
---|---|---|
Myristic acid (C14:0) | 0.01 | 0.01 |
Palmitic acid (C16:0) | 10.23 | 10.93 |
Palmitoleic acid (C16:1) | 1.01 | 1.1 |
Heptadecanoic acid (C17:0) | 0.04 | 0.05 |
Heptadecenoic acid (C17:1) | 0.09 | 0.09 |
Stearic acid (C18:0) | 1.27 | 1.26 |
Oleic acid (C18:1) | 56.88 | 57.75 |
Linoleic acid (C18:1) | 29.54 | 27.95 |
γ-linolenic acid (C18:3) | 0.02 | 0.01 |
α-linolenic acid (C18:3) | 0.43 | 0.4 |
Arachidic acid (C20:0) | 0.12 | 0.12 |
Eicosenoic acid (C20:1) | 0.32 | 0.3 |
Eicosadienoic acid (C20:2) | 0.02 | 0.01 |
Behenic acid (C22:0) | 0.01 | 0.01 |
Lignoceric acid (C24:0) | 0.01 | 0.01 |
SFA | 11.69 | 12.39 |
MUFA | 58.3 | 59.24 |
PUFA | 30.01 | 28.37 |
Strain | Extraction Method 1 | Extraction Method 2 | ||
---|---|---|---|---|
NRRE | RURE | NRRE | RURE | |
E. faecium DSZM 17050 | >2.000 | >2.000 | >2.000 | >2.000 |
S. aureus ATCC 6538 | >2.000 | >2.000 | >2.000 | >2.000 |
P. aeruginosa ATCC 9027 | >2.000 | >2.000 | >2.000 | >2.000 |
E. coli ATCC 10536 | >2.000 | >2.000 | >2.000 | >2.000 |
C. albicans ATCC 10231 | >2.000 | >2.000 | >2.000 | >2.000 |
C. albicans strain 16 | >2.000 | >2.000 | >2.000 | >2.000 |
L. monocytogenes ATCC 13932 | 1.000 | >2.000 | 1.000–2.000 | 2.000 |
L. monocytogenes (food isolate) | 0.250–1.000 | >2.000 | >2.000 | >2.000 |
L. monocytogenes (food isolate) | 0.500–1.000 | >2.000 | >2.000 | >2.000 |
L. monocytogenes (food isolate) | 1.000–2.000 | >2.000 | >2.000 | >2.000 |
L. monocytogenes (food isolate) | 1.000–2.000 | >2.000 | >2.000 | >2.000 |
L. monocytogenes (food isolate) | 0.500–1.000 | >2.000 | >2.000 | >2.000 |
L. monocytogenes (food isolate) | 0.500–1.000 | >2.000 | >2.000 | >2.000 |
L. monocytogenes (food isolate) | 0.500–1.000 | >2.000 | >2.000 | >2.000 |
L. monocytogenes (food isolate) | 0.500–1.000 | >2.000 | >2.000 | >2.000 |
Strain | Hexane Oil Fraction from NPs | Hexane Oil Fraction from RPs |
---|---|---|
E. faecium DSZM 17050 | 0.250 | 0.500 |
St. aureus ATCC 6538 | >2.000 | >2.000 |
P. aeruginosa ATCC 9027 | >2.000 | >2.000 |
E. coli ATCC 10536 | >2.000 | >2.000 |
C. albicans ATCC 10231 | >2.000 | >2.000 |
C.albicans strain 16 | >2.000 | >2.000 |
L. monocytogenes ATCC 13932 | 0.031–0.125 | 0.125–0.250 |
L. monocytogenes (food isolate) | 0.250–1.000 | >2.000 |
L. monocytogenes (food isolate) | >2.000 | >2.000 |
L. monocytogenes (food isolate) | >2.000 | >2.000 |
L. monocytogenes (food isolate) | >2.000 | >2.000 |
L. monocytogenes (food isolate) | 0.250 | >2.000 |
L. monocytogenes (food isolate) | 0.500 | >2.000 |
L. monocytogenes (food isolate) | >2.000 | >2.000 |
L. monocytogenes (food isolate) | >2.000 | >2.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gervasi, T.; D’Arrigo, M.; Rando, R.; Sciortino, M.T.; Carughi, A.; Barreca, D.; Mandalari, G. The Antimicrobial Potential of Hexane Oils and Polyphenols-Rich Extracts from Pistacia vera L. Appl. Sci. 2022, 12, 4389. https://doi.org/10.3390/app12094389
Gervasi T, D’Arrigo M, Rando R, Sciortino MT, Carughi A, Barreca D, Mandalari G. The Antimicrobial Potential of Hexane Oils and Polyphenols-Rich Extracts from Pistacia vera L. Applied Sciences. 2022; 12(9):4389. https://doi.org/10.3390/app12094389
Chicago/Turabian StyleGervasi, Teresa, Manuela D’Arrigo, Rossana Rando, Maria Teresa Sciortino, Arianna Carughi, Davide Barreca, and Giuseppina Mandalari. 2022. "The Antimicrobial Potential of Hexane Oils and Polyphenols-Rich Extracts from Pistacia vera L." Applied Sciences 12, no. 9: 4389. https://doi.org/10.3390/app12094389
APA StyleGervasi, T., D’Arrigo, M., Rando, R., Sciortino, M. T., Carughi, A., Barreca, D., & Mandalari, G. (2022). The Antimicrobial Potential of Hexane Oils and Polyphenols-Rich Extracts from Pistacia vera L. Applied Sciences, 12(9), 4389. https://doi.org/10.3390/app12094389