Research on the Hand–Eye Calibration Method of Variable Height and Analysis of Experimental Results Based on Rigid Transformation
Abstract
:1. Introduction
2. Pinhole Camera Model
3. Rigid Transformation of the Coordinate System
4. Experimental Verification and Analysis
4.1. Camera Parameter Calibration
Parameter Type | Calibration Results |
---|---|
Equivalent focal length | [5010.81789826726, 5011.24572785725] |
Principal point coordinates | [2768.70959640510, 1806.34169717229] |
Radial distortion | k1 = −0.0625967952090845, k2 = 0.133984194777852 |
Tangential distortion | p1 = −0.000122713140590104, p2 = 0.00160031845139996 |
Scaling factor | = 0.168076608984161 |
Mean reprojection error | Mean reprojection error = 0.08 |
4.2. Rigid Transformation from Calibration Plate Coordinate System to Robot Coordinate System
4.3. Analysis of Experimental Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Liu, J.; Wu, J.; Li, X. Robust and accurate hand–eye calibration method based on schur matric decomposition. Sensors 2019, 19, 4490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiu, Y.C.; Ahmad, S. Calibration of Wrist-Mounted Robotic Sensors by Solving Homogeneous Transform Equations of the Form AX = XB. IEEE Trans. Robot. Autom. 1989, 5, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Tsai, R.Y.; Lenz, R.K. A new technique for fully autonomous and efficient 3d robotics hand-eye calibration. In Proceedings of the 4th International Symposium on Robotics Research, Santa Clara, CA, USA, 1 May 1988; pp. 287–297. [Google Scholar]
- Huang, C.; Chen, D.; Tang, X. Robotic hand-eye calibration based on active vision. In Proceedings of the 2015 8th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 12–13 December 2015; pp. 55–59. [Google Scholar]
- Wu, J.; Liu, M.; Qi, Y. Computationally Efficient Robust Algorithm for Generalized Sensor Calibration Problem AR=RB. IEEE Sens. J. 2019, 19, 9512–9521. [Google Scholar] [CrossRef]
- Ali, I.; Suominen, O.; Gotchev, A.; Morales, E.R. Methods for simultaneous robot-world-hand–eye calibration: A comparative study. Sensors 2019, 19, 2837. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Luo, X.; Luo, Q.; Qiao, L.; Li, M. An overview of hand-eye calibration. Int. J. Adv. Manuf. Technol. 2021, 119, 77–97. [Google Scholar] [CrossRef]
- Song, H.; Du, Z.; Wang, W.; Sun, L. Singularity analysis for the existing closed-form solutions of the hand-eye calibration. IEEE Access 2018, 6, 75407–75421. [Google Scholar] [CrossRef]
- Cui, H.; Sun, R.; Fang, Z.; Lou, H.; Tian, W.; Liao, W. A novel flexible two-step method for eye-to-hand calibration for robot assembly system. Meas. Control 2020, 53, 2020–2029. [Google Scholar] [CrossRef]
- Zhang, Y.; Qiu, Z.; Zhang, X. A Simultaneous Optimization Method of Calibration and Measurement for a Typical Hand–Eye Positioning System. IEEE Trans. Instrum. Meas. 2020, 70, 1–11. [Google Scholar] [CrossRef]
- Zeng, J.; Xue, W.; Zhai, X. A Synchronous Solution Method of Calibration Parameters for Visual Guidance of Robot. Mach. Tool Hydraul. 2019, 47, 37–40. [Google Scholar]
- Fu, Z.; Pan, J.; Spyrakos-Papastavridis, E.; Chen, X.; Li, M. A dual quaternion-based approach for coordinate calibration of dual robots in collaborative motion. IEEE Robot. Autom. Lett. 2020, 5, 4086–4093. [Google Scholar] [CrossRef]
- Deng, S.; Feng, M. Research on Hand-eye Calibration of Monocular Robot. Modul. Macine Autom. Manuf. Tech. 2021, 12, 53–57. [Google Scholar]
- Wang, X.; Huang, J.; Song, H. Simultaneous robot–world and hand–eye calibration based on a pair of dual equations. Measurement 2021, 181, 109623. [Google Scholar] [CrossRef]
- Koide, K.; Menegatti, E. General hand–eye calibration based on reprojection error minimization. IEEE Robot. Autom. Lett. 2019, 4, 1021–1028. [Google Scholar] [CrossRef]
- Levine, S.; Pastor, P.; Krizhevsky, A.; Ibarz, J.; Quillen, D. Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. Int. J. Robot. Res. 2018, 37, 421–436. [Google Scholar] [CrossRef]
- Pinto, L.; Gupta, A. Supersizing self-supervision: Learning to grasp from 50k tries and 700 robot hours. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 3406–3413. [Google Scholar]
- Wang, L.; Qian, L. Research on Robot Hand-Eye Calibration Method Based on Three-Dimensional Calibration Block. Laser Optoelectron. Prog. 2021, 58, 539–547. [Google Scholar]
- Muis, A.; Ohnishi, K. Eye-to-hand approach on eye-in-hand configuration within real-time visual servoing. IEEE/ASME Trans. Mechatron. 2005, 10, 404–410. [Google Scholar] [CrossRef]
- Liang, P.; Lin, W.; Luo, G.; Zhang, C. Research of Hand–Eye System with 3D Vision towards Flexible Assembly Application. Electronics 2022, 11, 354. [Google Scholar] [CrossRef]
- Juarez-Salazar, R.; Zheng, J.; Diaz-Ramirez, V.H. Distorted pinhole camera modeling and calibration. Appl. Opt. 2020, 59, 11310–11318. [Google Scholar] [CrossRef]
- Zhang, Z.; Luo, B. Research and implementation of robot vision positioning. J. Harbin Inst. Technol. 1997, 29, 85–89. [Google Scholar]
- Tang, W. Design and Implementation of Visual Localization Algorithm for Demo System of Construction Robots. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2020. [Google Scholar]
- Ying, J.; Chen, W.; Yang, H. Research on Parking spaces recognization and counting algorithm based on affine transformation and template matching. Appl. Res. Comput. 2022, 39, 919–924. [Google Scholar]
- Han, J. Higher Institutional Science; Mechanical Industry Press: Beijing, China, 2004. [Google Scholar]
- Dainis, A.; Juberts, M. Accurate remote measurement of robot trajectory motion. In Proceedings of the 1985 IEEE International Conference on Robotics and Automation, St. Louis, MO, USA, 25–28 March 1985; pp. 92–99. [Google Scholar]
- Ganapathy, S. Decomposition of transformation matrices for robot vision. Pattern Recognit. Lett. 1984, 2, 401–412. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, Z. Computer Vision: Basics of Computing Theory and Algorithms; Science Press: Beijing, China, 1998. [Google Scholar]
- Wang, T.; Wang, L.; Zhang, W.; Duan, X.; Wang, W. Design of infrared target system with Zhang Zhenyou calibration method. Opt. Precis. Eng. 2019, 27, 1828–1835. [Google Scholar] [CrossRef]
- Feng, W. Research and Implementation of Image Barrel Distortion Correction. Master’s Thesis, North China University of Technology, Beijing, China, 2011. [Google Scholar]
- Zhang, Y.; Qiu, Z.; Zhang, X. Calibration method for hand-eye system with rotation and translation couplings. Appl. Opt. 2019, 58, 5375–5387. [Google Scholar] [CrossRef]
- Wu, A.; He, W.; Ouyang, X. A method of hand-eye calibration for palletizing robot based on openCV. Manuf. Technol. Mach. Tool 2018, 6, 45–49. [Google Scholar]
Model | Dimensions (mm) | Checker Side Length (mm) | Pattern Array | Accuracy (mm) |
---|---|---|---|---|
LGP500-300 | 500 × 500 | 30 | 13 × 12 | ±0.02 |
Height (mm) | Corner Position | Robot Coordinate System (mm) | Image Coordinate System (Pixel) | ||
---|---|---|---|---|---|
15 | A | −1449.7 | 1585.93 | 1284.804 | 432.0025 |
B | 549.17 | 1604.26 | 1290.65 | 3296.744 | |
C | 536.96 | 2804.99 | 3015.627 | 3293.224 | |
D | −1462.22 | 2785.86 | 3009.781 | 428.4819 | |
45 | A | −1414.15 | 1530.26 | 1191.118 | 470.0939 |
B | 584.55 | 1561.77 | 1218.606 | 3365.488 | |
C | 564.22 | 2762.3 | 2958.563 | 3348.97 | |
D | −1434.56 | 2729.52 | 2931.075 | 453.5752 | |
75 | A | −1417.77 | 1522.52 | 1165.935 | 453.0028 |
B | 581.1 | 1536.81 | 1170.013 | 3373.189 | |
C | 571.3 | 2737.35 | 2925.071 | 3370.738 | |
D | −1427.86 | 2722.06 | 2920.992 | 450.5518 | |
105 | A | −1429.65 | 1529.60 | 1163.014 | 423.642 |
B | 569.51 | 1530.36 | 145.789 | 3368.993 | |
C | 568.25 | 2730.58 | 2916.097 | 3379.346 | |
D | −1431.17 | 2729.40 | 2933.322 | 433.995 |
Height (mm) | ||||||
---|---|---|---|---|---|---|
15 | −0.00574 | 0.697815001 | −1743.855103 | 0.695863008 | 0.005118 | 689.4714355 |
30 | −0.00531 | 0.694389999 | −1738.144653 | 0.692277014 | 0.004842 | 699.4268799 |
45 | −0.00515 | 0.69036603 | −1732.568604 | 0.689655006 | 0.004555 | 706.3405762 |
55 | −0.00428 | 0.688233972 | −1729.682251 | 0.687260985 | 0.003596 | 713.5334473 |
75 | −0.00471 | 0.684557021 | −1722.456787 | 0.683767021 | 0.00411 | 723.1809692 |
85 | −0.00460 | 0.682471991 | −1718.754883 | 0.681801021 | 0.003916 | 728.6638184 |
95 | −0.00443 | 0.680664003 | −1716.002808 | 0.679901004 | 0.003839 | 733.9542236 |
105 | −0.00475 | 0.678767979 | −1711.740601 | 0.677829027 | 0.004294 | 739.3514404 |
A11 | A12 | Tx | A21 | A22 | Ty | |
---|---|---|---|---|---|---|
Linear Fitting | Y = A + B × X | |||||
Plot | A11 values | A12 Values | Tx values | A21 Values | A22 Values | Ty values |
Weight | No Weighting | |||||
Intercept | −0.00561 ±2.8386 × 10−4 | 0.70041 ±3.91838× 10−4 | −1748.81438 ±0.28725 | 0.69845 ±2.05966× 10−4 | 0.005 ±3.34172× 10−4 | 682.24144 ±0.62448 |
Slope | 1.16124 × 10−5 ±4.06162 × 10−6 | −2.09957× 10−4 ±5.60664 × 10−6 | 0.35111 ±0.00411 | −1.96476× 10−4 ±2.94707 × 10−6 | −1.13693 × 10−5 ±4.78151 × 10−6 | 0.54652 ±0.00894 |
Residual Sum of Squares | 7.12351 × 10−7 | 1.35738 × 10−6 | 0.72949 | 3.75039 × 10−7 | 9.87247 × 10−7 | 3.44764 |
Pearson’s r | 0.75941 | −0.99787 | 0.99959 | −0.99933 | −0.69652 | 0.9992 |
R−Square (COD) | 0.5767 | 0.99574 | 0.99918 | 0.99865 | 0.48515 | 0.9984 |
Adj.R−Square | 0.50615 | 0.99503 | 0.99904 | 0.99843 | 0.39934 | 0.99813 |
Height (mm) | Workpiece Size (mm) | Image Size (Pixel) | ||
---|---|---|---|---|
15 | 2000 × 1200 | 2865 × 1724 | 1.432374 | 1.437484 |
30 | 2879 × 1734 | 1.439345 | 1.444716 | |
45 | 2896 × 1740 | 1.447762 | 1.45003 | |
55 | 2906 × 1746 | 1.452295 | 1.454739 | |
75 | 2920 × 1755 | 1.460094 | 1.46255 | |
85 | 2929 × 1760 | 1.464606 | 1.466992 | |
95 | 2937 × 1765 | 1.4685 | 1.470833 | |
105 | 2945 × 1770 | 1.4727 | 1.475282 |
Height (mm) | Results of Testing (mm) | Calculation Results (mm) | ||||
---|---|---|---|---|---|---|
X | Y | Error | Error | |||
20 | 691.07 | 1983.25 | 691.2215 | 0.0219% | 1982.9732 | 0.0139% |
55 | −1487.95 | 1901.81 | −1488.0752 | 0.0084% | 1901.3576 | 0.0238% |
88 | −1419.21 | 2504.49 | −1419.7325 | 0.0368% | 2503.8941 | 0.0238% |
105 | 537.27 | 2542.82 | 537.6739 | 0.0752% | 2543.1803 | 0.0142% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, S.; Gao, S.; Zhang, D.; Wang, W. Research on the Hand–Eye Calibration Method of Variable Height and Analysis of Experimental Results Based on Rigid Transformation. Appl. Sci. 2022, 12, 4415. https://doi.org/10.3390/app12094415
Su S, Gao S, Zhang D, Wang W. Research on the Hand–Eye Calibration Method of Variable Height and Analysis of Experimental Results Based on Rigid Transformation. Applied Sciences. 2022; 12(9):4415. https://doi.org/10.3390/app12094415
Chicago/Turabian StyleSu, Shaohui, Shang Gao, Dongyang Zhang, and Wanqiang Wang. 2022. "Research on the Hand–Eye Calibration Method of Variable Height and Analysis of Experimental Results Based on Rigid Transformation" Applied Sciences 12, no. 9: 4415. https://doi.org/10.3390/app12094415
APA StyleSu, S., Gao, S., Zhang, D., & Wang, W. (2022). Research on the Hand–Eye Calibration Method of Variable Height and Analysis of Experimental Results Based on Rigid Transformation. Applied Sciences, 12(9), 4415. https://doi.org/10.3390/app12094415