The Alteration of Giglio Island Granite: Relevance to the Conservation of Monumental Architecture
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Sampling and Macroscopic Description
- -
- fresh cut grey colour;
- -
- essentially massive structure with absence of foliation;
- -
- medium grained;
- -
- relatively rich in K-feldspar megacrysts.
- type A—unweathered rock;
- type Aa—compact rock with some fractures and slightly ochre colour;
- type B—friable rock of ochre colour. The apparent structure is similar to the compact rock of type Aa, but the sample can be broken by hand with a simple pressure;
- type C—rock with loss of coherence;
- type Cc—soil that generally contains organic material.
3.2. Analytical Methods
- -
- Petrographic study in the thin section with a polarising ZEISS Axioscope A1 microscope (on all types except for the Cc because it is inconsistent). Anorthite (An) content in plagioclase was determined under microscope according to the Michel–Lévy method [20]. The petrographic classification of the rock was carried out by modal analysis on the 9 samples of type A, from three orthogonal thin sections for each sample, according to the Streckeisen’s classification [21].
- -
- Determination of clay mineral composition by X-ray diffraction according to Cipriani’s methods [22] (on all samples), utilising a PHILIPS PW 1729 diffractometer operating at 40 KV, 20 mA with a CuK α1= 1,545Å radiation, a scanning speed= 2◦/min in a range of 2Ɵ = 3−20°. The diffractometer analysis was performed on the <4 µm clay fraction of the bulk samples, previously crushed and powdered, extracted after washing and settling according to the Stokes law. The slide of the <4 µm clay fraction was analysed untreated, after a treatment with ethylene glycol, and after heating at 450 °C and 600 °C.
- -
- Determination of the chemical composition of conventional major and minor elements by X-ray fluorescence spectrometry (on all samples) on pressed powder pellets, adopting a Philips PW 1480 wavelength-dispersive spectrometer; major and minor elements were determined using a Rh anode and corrected for the matrix effect according to the method of Franzini et al. [23]. Error was evaluated to be less than 1% for the major elements and 5% for the minor elements. LOI (loss on ignition) was determined by measuring the mass loss in the sample powders heated at 950 °C for 1 hour. FeO was determined by volumetric titration according to the method of Shapiro and Brannock [24]. The chemical compositional was expressed as oxide weight (%) normalised to 100%.
- -
- Determination of the following physical parameters: total open porosity (P%), imbibition coefficient (CIv%), and saturation index (IS%) [25]. The equipment used to determine these parameters were a Quanta Chrome helium pycnometer, a Chandler Engineering mercury pycnometer, and analytical balance. CIv % was determined by total immersion of the specimens in water [26]. These physical investigations were carried out on types A, Aa, and B on 5 specimens for each sample, and the average is reported in the results. On the C and Cc types, it was not possible to carry out such investigations due to the inconsistency of the material.
- -
- The most common phototrophic colonisers and their effect on the granite were mainly observed in situ by using different magnification lenses, and only the black patina alteration was sampled for microscopic analysis, the identification being made according to the specific morphological characteristics of different phototrophic organisms [27,28].
4. Results and Discussion
4.1. Petrographic Study
4.2. Study of the Mineralogical Composition of the Clay Fraction
4.3. Geochemical Data
4.4. Physical Characteristics
4.5. Biocolonisation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lazzarini, L. The granits of the Italian monuments and their problems of decay I graniti dei monumenti italiani e i loro problemi di deterioramento. In Stone Materials: Studies on Decay and Conservation Materiali Lapidei: Problemi Relativi allo Studio del Degrado e della Conservazione; Istituto Poligrafico e Zecca dello Stato, Libreria dello Stato: Rome, Italy, 1987; pp. 157–172. [Google Scholar]
- De Vecchi, G.; Lazzarini, L.; Lünel, T.; Mignucci, A.; Visonà, D. The genesis and characterisation of ‘Marmor Misium’ from Kozak (Turkey), a granite used in antiquity. J. Cult. Herit. 2000, 1, 145–153. [Google Scholar] [CrossRef]
- Esbert Alemany, R.M. Alteration of granite stone used in building construction. Mater. Constr. 2007, 57, 77–89. [Google Scholar] [CrossRef]
- Matias, J.M.S.; Alves, C.A.S. The influence of petrographic, architectural and environmental factors in decay patterns and durability of granite stones in Braga monuments (NW Portugal). In Geological Society; Special Publications: London, UK, 2002; Volume 205, pp. 273–281. [Google Scholar]
- Lee, C.H.; Lee, M.S.; Suh, M.; Choi, S.W. Weathering and deterioration of rock properties of the Dabotap pagoda (World Cultural Heritage), Republic of Korea. Environ. Geol. 2005, 47, 547–557. [Google Scholar] [CrossRef]
- Tomás, R.; Cano, M.; Pulgarín, L.F.; Brotóns, V.; Benavente, D.; Miranda, T.; Vasconcelos, G. Thermal effect of high temperatures on the physical and mechanical properties of a granite used in UNESCO World Heritage sites in north Portugal. J. Build. Eng. 2021, 43, 102823. [Google Scholar] [CrossRef]
- Navarro, R.; Monterrubio, S.; Pereira, D. The Importance of Preserving Small Heritage Sites: The Case of La Tuiza Sanctuary (Zamora, Spain). Geoheritage 2022, 14, 47. [Google Scholar] [CrossRef]
- Storta, E.; Borghi, A.; Perotti, L.; Palomba, M.; Deodato, A. Minero-petrographic characterization of stone materials used for the roman amphitheater of Eporedia (Ivrea, To): A scientific-dissemination proposal in the Cultural Heritage. Resour. Policy 2022, 77, 102668. [Google Scholar] [CrossRef]
- Columbu, S.; Marchi, M.; Palomba, M.; Sitzia, F. Alteration of stone materials on Sardinian medieval monuments: Physical, chemical and petrographic analysis for their restoration and preservation. In Proceedings of the 19th International Conference on Cultural Heritage and New Technologies 2014 (CHNT 19, 2014), Vienna, Austria, 3–5 November 2014; Börner, W., Uhlirz, S., Eds.; Museen der Stadt Wien—Stadtarchäologie: Vienna, Austria, 2014. [Google Scholar]
- Careddu, N.; Cuccuru, S.; Grillo, S.M. Sardinian granitoids: 4000 years of geoheritage and dimension stones. Resour. Policy 2021, 74, 102339. [Google Scholar] [CrossRef]
- Bugini, R.; Pavese, A.; Borroni, S.; Folli, L. White granites used in lombard architecture. In Proceedings of the 9th International Congress on Deterioration and Conservation of Stone; Fassina, V., Ed.; Elsevier Science B.V.: Amsterdam, The Netherlands, 2000; pp. 41–48. [Google Scholar]
- Forgione, G. Il Complesso dei Girolamini Artisti e Committenti Nella Napoli del Seicento. Ph.D. Thesis, Università degli Studi di Napoli “Federico II”, Naples, Italy, 2014; p. 397. [Google Scholar]
- Vaszquez-Nion, D.; Silva, B.; Prieto, B. Influence of the properties of granitic rocks on their bioreceptivity to subaerial phototrophic biofilms. Sci. Total Environ. 2018, 610–611, 44–54. [Google Scholar] [CrossRef]
- Elter, P.; Giglia, G.; Tongiorgi, M.; Trevisan, L. Tensional and compressional areas in the recent (Tortonian to present) evolution of the Northern Appennines. Boll. Geof. Teorica ed Appl. 1975, 17, 3–18. [Google Scholar]
- Funicello, R.; Locardi, E.; Parotto, M. Geological outlines of the eastern Sabatine area. Boll. Soc. Geol. Ital. 1977, 95, 831–849. [Google Scholar]
- Ferrara, G.; Tonarini, S. Radiometric geochronology in Tuscany: Results and problems. Rend. Soc. Ital. Mineral. Petrol. 1985, 40, 111–124. [Google Scholar]
- Westerman, D.S.; Innocenti, F.; Tonarini, S.; Ferrara, G. The Pliocene intrusion of Giglio Island. Mem. Soc. Geol. It. 1993, 49, 345–363. [Google Scholar]
- Lazzarotto, A.; Mazzanti, R.; Mazzoncini, F. Geology of the Argentario Promontory (Grosseto) and the Franco Promontory (Isola del Giglio-Grosseto). Boll. Soc. Geol. Ital. 1964, 83, 1–124. [Google Scholar]
- Boccaletti, M.; Coli, M.; Decandia, F.A.; Giannini, E.; Lazzarotto, A. Evolution of the Northern Apennines according to a new structural model. Mem. Soc. Geol. It. 1980, 21, 359–374. [Google Scholar]
- Nesse, W.D. Introduction to Mineralogy; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Streickeisen, A. Classification and nomenclature of igneus rocks. N. Jb. Miner. Abh. 1973, 112, 144–214. [Google Scholar]
- Cipriani, C. Research on sandstone minerals: II) On the mineralogical composition of the clay fraction of some sandstones Macigno. Atti Soc. Toscana Scienze Nat. 1958, 65, 86–106. [Google Scholar]
- Franzini, M.; Leoni, L. A full matrix correction in X ray fluorescenze analysis of rock samples. Atti Soc. Toscana. Scienze Nat. Mem. 1972, 79, 7–22. [Google Scholar]
- Shapiro, B. Rapid analysis of silicate carbonate and phosphate rocks. Bull. U. S. Geol. Survey 1962, 1144. [Google Scholar]
- Barsottelli, M.; Cellai, G.F.; Fratini, F.; Manganelli Del Fà, C. The hygrometric behaviour of some artificial stone materials. Mater. Struct. 2001, 34, 211–216. [Google Scholar] [CrossRef]
- NORMAL DOC 7/81. Water Absorption through Total Immersion—Imbibition Capacity; CNR-ICR, Centro stampa ICR: Roma, Italy, 1981. [Google Scholar]
- Nimis, P.L.; Pinna, D.; Salvadori, O. Lichens and Conservation of Monuments; Club Bologna-Cooperativa Libraria Universitaria Editrice Bologna: Bologna, Italy, 1992. [Google Scholar]
- Bolivar-Galiano, F.; Cuzman, O.A.; Abad-Ruiz, C.; Sánchez-Castillo, P. Facing phototrophic microorganisms that colonize artistic fountains and other wet stone surfaces: Identification Keys. Appl. Sci. 2021, 11, 8787. [Google Scholar] [CrossRef]
- Streckeisen, A.; La Maitre, R.W. A chemical approximation to the modal QAPF classification of the igneus rocks. N. Jb. Miner. Abh. 1979, 136, 169–206. [Google Scholar]
- Pierattini, P. Intrusive Manifestations in Southern Tuscany: Petrographic and Geochemical Study of the Giglio Island Pluton. Ph.D. Thesis, Università di Firenze, Florence, Italy, 1989. [Google Scholar]
- Chappel, B.W.; White, A.J.R. Two contrasting granites types. Pac. Geol. 1974, 8, 173–174. [Google Scholar]
- Parker, A. An index of weathering for silicate rocks. Geol. Mag. 1970, 107, 501–504. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Ng, C.W.W.; Guan, P.; Shang, Y.J. Weathering mechanisms and indices of the igenous rocks of Hong Kong. Q. J. Eng. Geol. Hydroge. 2001, 34, 133–151. [Google Scholar] [CrossRef]
- Koralay, T.; Çelik, S.B. Minero-petrographical, physical, and mechanical properties of moderately welded ignimbrite as a traditional building stone from Uşak Region (SW Turkey). Arab. J. Geosci. 2019, 12, 732. [Google Scholar] [CrossRef]
- Deniz, B.E.; Topal, T. A new durability assessment method of the tuffs used in some historical buildings of Cappadocia (Turkey). Environ. Earth Sci. 2021, 80, 266. [Google Scholar] [CrossRef]
Cl | K | ClV | ISm | |
---|---|---|---|---|
A | ++++ | ++++ | - | - |
Aa | + | + | - | - |
B | + | + | ++ | +++ |
C | + | ++ | +++ | ++ |
Cc | ++ | +++ | + | + |
SiO2 | TiO2 | Al2O3 | Fe2O3 | FeO * | MnO | MgO | CaO | Na2O | K2O | P2O5 | LOI ** | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | M | 68.44 | 0.63 | 15.27 | 0.69 | 2.79 | 0.06 | 1.29 | 2.21 | 2.69 | 4.73 | 0.18 | 1.02 |
s | 1.46 | 0.08 | 0.45 | 0.17 | 0.35 | 0.01 | 0.25 | 0.34 | 0.14 | 0.32 | 0.03 | 0.28 | |
Aa | M | 68.99 | 0.59 | 15.28 | 1.15 | 2.23 | 0.06 | 1.09 | 1.88 | 2.50 | 4.88 | 0.17 | 1.12 |
s | 1.09 | 0.11 | 0.29 | 0.35 | 0.31 | 0.01 | 0.28 | 0.34 | 0.20 | 0.29 | 0.02 | 0.20 | |
B | M | 68.22 | 0.64 | 15.79 | 1.85 | 1.85 | 0.06 | 1.11 | 1.61 | 2.46 | 4.67 | 0.19 | 1.60 |
s | 0.79 | 0.09 | 0.45 | 0. 8 | 0.75 | 0.01 | 0.21 | 0.22 | 0.14 | 0.27 | 0.02 | 0.35 | |
C | M | 67.25 | 0.65 | 16.16 | 2.80 | 1.30 | 0.05 | 1.11 | 1.36 | 2.27 | 4.42 | 0.17 | 2.46 |
s | 1.06 | 0.08 | 0.51 | 0.90 | 0.79 | 0.01 | 0.18 | 0.30 | 0.12 | 0.47 | 0.03 | 0.62 | |
Cc | M | 64.86 | 0.68 | 17.25 | 3.19 | 1.10 | 0.06 | 1.05 | 1.26 | 2.14 | 4.42 | 0.16 | 3.82 |
s | 2.15 | 0.11 | 0.84 | 1.13 | 0.40 | 0.01 | 0.11 | 0.11 | 0.22 | 0.27 | 0.03 | 1.05 |
Chemical Weathering Index | Key | Formula | Reference |
---|---|---|---|
Parker index | Wp | [(2Na2O/0.35) + (MgO/0.90) + (2K2O/0.25) + (CaO/0.70)]*100 | [32] |
Chemical index of alteration | CIA | [(Al2O3)/(Al2O3 + CaO + Na2O + K2O)]*100 | [33] |
Leaching coefficient | Lc | SiO2/(K2O + Na2O + CaO + MgO) | [34] |
Chemical Weathering Index | A | Aa | B | C | Cc |
---|---|---|---|---|---|
Wp | 74.39 | 72.09 | 69.50 | 65.80 | 64.40 |
CIA | 52.78 | 54.48 | 56.74 | 59.23 | 61.52 |
Lc | 6.93 | 7.54 | 7.80 | 8.19 | 8.19 |
P % | CIv % | IS% | ||
---|---|---|---|---|
A | M | 2.2 | 1.5 | 68 |
s | 0.4 | 0.2 | 12 | |
Aa | M | 4.1 | 3.0 | 73 |
s | 1.8 | 1.5 | 7 | |
B | M | 8.6 | 6.3 | 73 |
s | 1.1 | 1.3 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fratini, F.; Rescic, S.; Cuzman, O.A.; Pierattini, P. The Alteration of Giglio Island Granite: Relevance to the Conservation of Monumental Architecture. Appl. Sci. 2022, 12, 4588. https://doi.org/10.3390/app12094588
Fratini F, Rescic S, Cuzman OA, Pierattini P. The Alteration of Giglio Island Granite: Relevance to the Conservation of Monumental Architecture. Applied Sciences. 2022; 12(9):4588. https://doi.org/10.3390/app12094588
Chicago/Turabian StyleFratini, Fabio, Silvia Rescic, Oana Adriana Cuzman, and Paolo Pierattini. 2022. "The Alteration of Giglio Island Granite: Relevance to the Conservation of Monumental Architecture" Applied Sciences 12, no. 9: 4588. https://doi.org/10.3390/app12094588
APA StyleFratini, F., Rescic, S., Cuzman, O. A., & Pierattini, P. (2022). The Alteration of Giglio Island Granite: Relevance to the Conservation of Monumental Architecture. Applied Sciences, 12(9), 4588. https://doi.org/10.3390/app12094588