New Method to Determine Dynamic Meshing Force for Spur Gears Considering the Meshing State of Multiple Pairs of Teeth
Abstract
:1. Introduction
2. Dynamic Model Analysis
2.1. Dynamic Model of Spur Gear Pair Considering the Meshing State of Multiple Pairs of Teeth
2.2. Comparative Analysis of Simulation Results and Experimental Results
3. Comparative Analysis of Dynamic Meshing Force
4. Effects of Different Factors on Dynamic Meshing Force
4.1. Influence of Different Deviations on Dynamic Meshing Force
4.2. Influence of Different Speeds on Dynamic Meshing Force
4.3. Influence of Different Loads on Dynamic Meshing Force
4.4. Influence of Different Damping Ratios on Dynamic Meshing Force
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
th mesh harmonic amplitude of dynamic transmission error | |
equivalent root-mean-square amplitude of dynamic transmission error | |
comprehensive backlash | |
backlash of , and pair of teeth | |
comprehensive damping | |
damping of , and pair of teeth | |
comprehensive meshing error | |
meshing error of , and pair of teeth | |
profile form deviation of driving wheel | |
profile slope deviation of driving wheel | |
number of sine periods over the profile evaluation range of driving wheel | |
equivalent applied load | |
total dynamic meshing force | |
dynamic meshing force of , and pair of teeth | |
, | rotary inertia of driving and driven wheels |
average meshing stiffness | |
comprehensive meshing stiffness | |
meshing stiffness of , and pair of teeth | |
nominal dimension | |
equivalent mass | |
the number of teeth on gear | |
dimensionless transmission error | |
, | radius of the base circle of driving and driven wheels |
shaft order index | |
contact ratio | |
meshing period | |
meshing time of a pair of teeth from engagement to disengagement | |
, | torque of driving and driven wheels |
nominal frequency | |
meshing frequency | |
one-sided discrete autopower spectra | |
comprehensive internal incentive | |
() | dimensionless comprehensive internal incentive |
rotation angle of the driving and driven wheels | |
dimensionless time | |
dimensionless frequency | |
damping ratio | |
damping ratio of a single pair of teeth | |
function of the number of meshing pairs | |
analysis bandwidth |
References
- Litvin, F.L.; Jian, L.; Townsend, D.P.; Howkins, M. Computerized simulation of meshing of conventional helical involute gears and modification of geometry. Mechanism and Machine Theory. Mech. Mach. Theory 1997, 34, 123–147. [Google Scholar] [CrossRef] [Green Version]
- Litvin, F.L.; Fan, Q.; Vecchiato, D.; Demenego, A.; Handschuh, R.F.; Thomas, M. Computerized generation and simulation of meshing of modified spur and helical gears manufactured by shaving. Comput. Method Appl. M 2001, 190, 5037–5055. [Google Scholar] [CrossRef]
- Litvin, F.L.; Fuentes, A.; Gonzalez-Perez, I.; Carvenali, L.; Kawasaki, K.; Handschuh, R.F. Modified involute helical gears: Computerized design, simulation of meshing and stress analysis. Comput. Method Appl. M 2003, 192, 3619–3655. [Google Scholar] [CrossRef] [Green Version]
- Litvin, F.L.; Fuentes, A. Gear Geometry and Applied Theory, 2nd ed.; Cambridge University Press: New York, NY, USA, 2004; pp. 241–265. [Google Scholar]
- Litvin, F.L.; Sheveleva, G.I.; Vecchiato, D.; Gonzalez-Perez, I.; Fuentes, A. Modified approach for tooth contact analysis of gear drives and automatic determination of guess values. Comput. Method Appl. M 2005, 194, 2927–2946. [Google Scholar] [CrossRef]
- Litvin, F.L.; Vecchiato, D.; Yukishima, K.; Fuentes, A.; Gonzalez-Perez, I.; Hayasaka, K. Reduction of noise of loaded and unloaded misaligned gear drives. Comput. Method Appl. M 2006, 195, 5523–5536. [Google Scholar] [CrossRef]
- Simon, V. Computer simulation of tooth contact analysis of mismatched spiral bevel gears. Mech. Mach. Theory 2007, 42, 365–381. [Google Scholar] [CrossRef]
- Lin, C.H.; Fong, Z.H. Numerical tooth contact analysis of a bevel gear set by using measured tooth geometry data. Mech. Mach. Theory 2015, 84, 1–24. [Google Scholar] [CrossRef]
- Vivet, M.; Tamarozzi, T.; Desmet, W.; Mundo, D. On the modelling of gear alignment errors in the tooth contact analysis of spiral bevel gears. Mech. Mach. Theory 2021, 155, 104065. [Google Scholar] [CrossRef]
- Kubo, A.; Umezawa, K. On the power transmitting characteristics of helical gears with manufacturing and alignment errors (1st Report). Trans. Jpn. Soc. Mech. Eng. 1997, 43, 2771–2779. [Google Scholar] [CrossRef] [Green Version]
- Kubo, A. Stress condition, vibrational exciting force, and contact pattern of helical gears with manufacturing and alignment error. J. Mech. Design 1978, 100, 77–84. [Google Scholar] [CrossRef]
- Kahraman, A.; Singh, R. Non-linear dynamics of a spur gear pair. J. Sound Vib. 1990, 142, 49–75. [Google Scholar] [CrossRef]
- Kahraman, A.; Singh, R. Interactions between time-varying mesh stiffness and clearance non-linearities in a geared system. J. Sound Vib. 1991, 146, 135–156. [Google Scholar] [CrossRef]
- Kahraman, A.; Blankenship, G.W. Experiments on nonlinear dynamic behavior of an oscillator with clearance and periodically time-varying parameters. J. Appl. Mech-T. Asme 1997, 64, 217–226. [Google Scholar] [CrossRef]
- Kahraman, A.; Blankenship, G.W. Effect of involute contact ratio on spur gear dynamics. J. Mech. Design 1999, 121, 112–118. [Google Scholar] [CrossRef]
- Mucchi, E.; Dalpiaz, G.; Rivola, A. Elastodynamic analysis of a gear pump. Part II: Meshing phenomena and simulation results. Mech. Syst. Signal Pr. 2010, 24, 2180–2197. [Google Scholar] [CrossRef]
- Fernández, A.; Iglesias, M.; de-Juan, A.; Garcia, P.; Sancibrian, R.; Viadero, F. Gear transmission dynamic: Effects of tooth profile deviations and support flexibility. Appl. Acoust. 2014, 77, 138–149. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Y.; Tian, W.; Wu, Y.M.; Chen, Y.L. An improved nonlinear dynamic model of gear pair with tooth surface microscopic features. Nonlinear Dynam. 2019, 96, 1615–1634. [Google Scholar] [CrossRef]
- Suh, S.H.; Jih, W.S.; Hong, H.D.; Chung, D.H. Sculptured surface machining of spiral bevel gears with CNC milling. Int. J. Mach. Tools Manuf. 2001, 41, 833–850. [Google Scholar] [CrossRef]
- Bouzakis, K.D.; Lili, E.; Michailidis, N.; Friderikos, O. Manufacturing of cylindrical gears by generating cutting processes: A critical synthesis of analysis methods. CIRP Ann. 2008, 57, 676–696. [Google Scholar] [CrossRef]
- Pasternak, S.; Danylchenko, Y. Cutting forces in gear machining by disk milling cutters. J. Mech. Adv. Technol. 2018, 1, 5–11. [Google Scholar] [CrossRef]
- Gołebski, R. Parametric programming of CNC machine tools. In Proceedings of the 4th International Conference on Computing and Solutions in Manufacturing Engineering 2016, Brasov, Romania, 3–4 November 2016. [Google Scholar]
- Piotrowski, A.; Gołebski, R.; Boral, P. Geometric Analysis of Composite Hobs. Trans. FAMENA 2020, 44, 43–54. [Google Scholar] [CrossRef]
- Gołebski, R.; Boral, P. Study of machining of gears with regular and modified outline using CNC machine tools. Materials 2021, 14, 2913. [Google Scholar] [CrossRef] [PubMed]
- Marimuthu, P.; Muthuveerappan, G. Investigation of load carrying capacity of asymmetric high contact ratio spur gear based on load sharing using direct gear design approach. Mech. Mach. Theory 2016, 96, 52–74. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, P.; Dou, D. Investigation of Load Capacity of High-Contact-Ratio Internal Spur Gear Drive with Arc Path of Contact. Appl. Sci. 2022, 12, 3345. [Google Scholar] [CrossRef]
- Pimsarn, M.; Kazerounian, K. Efficient evaluation of spur gear tooth mesh load using pseudo-interference stiffness estimation method. Mech. Mach. Theory 2002, 37, 769–786. [Google Scholar] [CrossRef]
- Fernández Del Rincon, A.; Viadero, F.; Iglesias, M.; García, P.; De-Juan, A.; Sancibrian, R. A model for the study of meshing stiffness in spur gear transmissions. Mech. Mach. Theory 2013, 61, 30–58. [Google Scholar] [CrossRef]
- Li, S. Effects of misalignment error, tooth modifications and transmitted torque on tooth engagements of a pair of spur gears. Mech. Mach. Theory 2015, 83, 125–136. [Google Scholar] [CrossRef]
- Ye, S.Y.; Tsai, S.J. A computerized method for loaded tooth contact analysis of high-contact-ratio spur gears with or without flank modification considering tip corner contact and shaft misalignment. Mech. Mach. Theory 2016, 97, 190–214. [Google Scholar] [CrossRef]
- Marimuthu, P.; Muthuveerappan, G. Design of asymmetric normal contact ratio spur gear drive through direct design to enhance the load carrying capacity. Mech. Mach. Theory 2016, 95, 22–34. [Google Scholar] [CrossRef]
- Sánchez, M.B.; Pleguezuelos, M.; Pedrero, J.I. Approximate equations for the meshing stiffness and the load sharing ratio of spur gears including hertzian effects. Mech. Mach. Theory 2017, 109, 231–249. [Google Scholar] [CrossRef]
- Chen, S.Y.; Tang, J.Y.; Luo, C.W.; Wang, Q.B. Nonlinear dynamic characteristics of geared rotor bearing systems with dynamic backlash and friction. Mech. Mach. Theory 2011, 46, 466–478. [Google Scholar]
- Xiang, L.; Jia, Y.; Hu, A. Bifurcation and chaos analysis for multi-freedom gear-bearing system with time-varying stiffness. Appl. Math. Model. 2016, 40, 10506–10520. [Google Scholar] [CrossRef]
- Xia, Y.; Wan, Y.; Liu, Z. Bifurcation and chaos analysis for a spur gear pair system with friction. J. Braz. Soc. Mech. Sci. 2018, 40, 529. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, C.; Liu, H.; Gu, Z. Mesh stiffness and nonlinear dynamic response of a spur gear pair considering tribo-dynamic effect. Mech. Mach. Theory 2020, 153, 103989. [Google Scholar] [CrossRef]
- Doğan, O.; Karpat, F.; Kopmaz, O.; Ekwaro-Osire, S. Influences of gear design parameters on dynamic tooth loads and time-varying mesh stiffness of involute spur gears. Sadhana-Acad. P. Eng. S. 2020, 45, 258. [Google Scholar] [CrossRef]
- Liu, P.; Zhu, L.; Gou, X.; Shi, J.; Jin, G. Modeling and analyzing of nonlinear dynamics for spur gear pair with pitch deviation under multi-state meshing. Mech. Mach. Theory 2021, 163, 104378. [Google Scholar] [CrossRef]
- Amabili, M.; Fregolent, A. A method to identify modal parameters and gear errors by vibrations of a spur gear pair. J. Sound Vib. 1998, 214, 339–357. [Google Scholar] [CrossRef]
- Shi, Z.Y.; Kang, Y.; Lin, J.C. Comprehensive Dynamics Model and Dynamic Response Analysis of a Spur Gear Pair Based on Gear Pair Integrated Error. Chin. J. Mech. Eng. 2010, 46, 55–61. [Google Scholar] [CrossRef]
- Xu, R.; Zhang, J.; Wang, J.; Li, R.J. Research on nonlinear dynamic model and characteristics of a spur gear pair considering the meshing state of multiple pairs of teeth. J. Adv. Mech. Des. Syst. 2021, 15, JAMDSM0068. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Driving/Driven Wheel | |
Number of teeth | 50 |
Module (mm) | 3 |
Pressure angle (°) | 20 |
Base diameter [mm] | 140.95 |
Tooth thickness at pitch diameter [mm] | 4.64 |
Outer diameter [mm] | 156 |
Root diameter [mm] | 140.68 |
Face width [mm] | 20 |
Mass [kg] | 2.52 |
Inertia [kg·m2] | 0.0074 |
Young’s modulus [MPa] | 206,000 |
Poisson’s coefficient | 0.3 |
Center distance [mm] | 150 |
Backlash [mm] | 0.145 |
Backlash on line of action [mm] | 0.136 |
Contact ratio [-] | 1.7547 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, R.; Zhang, J.; Wang, J.; Wang, Z.; Xi, L.; Li, R.; Li, H. New Method to Determine Dynamic Meshing Force for Spur Gears Considering the Meshing State of Multiple Pairs of Teeth. Appl. Sci. 2022, 12, 4690. https://doi.org/10.3390/app12094690
Xu R, Zhang J, Wang J, Wang Z, Xi L, Li R, Li H. New Method to Determine Dynamic Meshing Force for Spur Gears Considering the Meshing State of Multiple Pairs of Teeth. Applied Sciences. 2022; 12(9):4690. https://doi.org/10.3390/app12094690
Chicago/Turabian StyleXu, Rui, Jing Zhang, Jiugen Wang, Zihui Wang, Lin Xi, Renjun Li, and Hao Li. 2022. "New Method to Determine Dynamic Meshing Force for Spur Gears Considering the Meshing State of Multiple Pairs of Teeth" Applied Sciences 12, no. 9: 4690. https://doi.org/10.3390/app12094690