Sodium and Sulphur Content in Plants after Lime, Charcoal, and Loam Application to Soil Contaminated with Fluorine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pot Experiment
2.2. Plant Material
- 0, 20, 40, and 60 mg F kg−1 of soil for narrow-leaf lupine.
- 0, 100, 200, and 300 mg F kg−1 of soil for yellow lupine, winter oilseed rape, spring triticale, black radish, and phacelia.
2.3. Methods of Laboratory Analysis
- Texture composition—laser diffraction apparatus Mastersizer 2000 Hydro G dispersion unit–Malvern, UK [24].
- pHKCl—potentiometric method [25].
- Hydrolytic acidity (HAC)—the Kappen method [25].
- Total organic carbon (TOC)—Shimadzu TOC-L CSH/CNS analyzer (Kyoto, Japan) [26].
- Total nitrogen—the Kjeldahl method [27].
- Available phosphorus and potassium—the Egner–Riehm method [28].
- Available magnesium—the Shachtschabel method [28].
- Total fluorine—the X-ray fluorescence spectrometry method (XRF), Philips WD-XRF PW 2004 (Philips Research Corporation, Eindhoven, The Netherlands).
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Banerjee, A.; Roychoudhury, A. Fluorine: A biohazardous agent for plants and phytoremediation strategies for its removal from the environment. Biol. Plant. 2019, 63, 104–112. [Google Scholar] [CrossRef]
- Szostek, R.; Ciećko, Z. Content of fluorine in biomass of crops depending on soil contamination by this element. Fluoride 2014, 47, 294–306. [Google Scholar]
- Technavio. Global Fluorochemicals Market for 2016–2020; Infiniti Research Limited: London, UK, 2016. [Google Scholar]
- Polish Geological Institute. The Balance of Mineral Resources Deposits in Poland and World 2013; Polish Geological Institute-National Research Institute: Warsaw, Poland, 2015. (In Polish) [Google Scholar]
- Santos, A.J.G.; Mazzilli, B.P.; Favaro, D.I.T.; Silvap, S.C. Partitioning of radionuclides and trace elements in phosphogypsum and its source materials based on sequential extraction methods. J. Environ. Radioact. 2006, 87, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, A.; Brown, J.E.; Szymańska, M.; Ciupek, K. Application of an environmental impact assessment methodology for areas exhibiting enhanced levels of NORM in Norway and Poland. Radioprotection 2011, 46, 759–764. [Google Scholar] [CrossRef] [Green Version]
- Nowak, W. Biological reclamation of a phosphogypsum dump at the Chemical Plant “Wizów” S. A. Sci. J. Univ. Life Sci. Wroc. 2006, 545, 195–203. (In Polish) [Google Scholar]
- Romar, A.; Gago, C.; Fernandez-Marcos, L.M.; Alvarez, E. Influence of fluoride addition on the composition of solutions in Equilibrium with acid soils. Pedosphere 2009, 19, 60–70. [Google Scholar] [CrossRef]
- Kau, P.M.H.; Smith, D.W.; Binning, P. Fluoride retention by kaolin loam. J. Contam. Hydrol. 1997, 28, 267–288. [Google Scholar] [CrossRef]
- Kau, P.M.H.; Smith, D.W.; Binning, P. Experimental sorption of fluoride by kaolinite and bentonite. Geoderma 1998, 84, 89–108. [Google Scholar] [CrossRef]
- Kau, P.M.H.; Binning, P.; Hitchcock, P.W.; Smith, D.W. Experimental analysis of fluoride diffusion and sorption in loam. J. Contam. Hydrol. 1999, 36, 131–151. [Google Scholar] [CrossRef]
- Telesiński, A.; Biczak, R.; Stręk, M.; Płatkowski, M.; Pawłowska, B.; Emin, N. A study on the fluoride content and the enzymatic activity in soil exposed to inorganic ammonium salt and quaternary ammonium salts with hexafluorophosphate anions. Fluoride 2018, 51, 206–219. [Google Scholar]
- Yu, L.; Zhang, J.; Du, C.; Yang, H.; Ye, B.-C. Distribution and pollution evaluation of fluoride in a soil–water–plant system in Shihezi, Xinjiang, China. Hum. Ecol. Risk Assess. Int. J. 2018, 24, 445–455. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Patra, P.K.; Mandal, B.; Mahato, D. Effect of sodium fluoride on germination, seedling growth and biochemistry of bengal gram (Cicer arietinum). Fluoride 2012, 45, 257–262. [Google Scholar]
- Joshi, M.; Bhardwaj, N. Effect of fluoride on growth parameters and its accumulation in Triticum aestivum var. Raj. 3675. Fluoride 2012, 45, 297–301. [Google Scholar]
- Saini, P.; Khan, S.; Baunthiyal, M.; Sharma, V. Organ-wise accumulation of fluoride in Prosopis juliflora and its potential for phytoremediation of fluoride contaminated soil. Chemosphere 2012, 89, 633–635. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Kumari, B.; Sinam, G.; Kriti; Kumar, N.; Mallick, S. Fluoride distribution and contamination in the water, soil and plants continuum and its remedial technologies, an Indian perspective—A review. Environ. Pollut. 2018, 239, 95–108. [Google Scholar] [CrossRef]
- Yadu, B.; Chandrakar, V.; Keshavkant, S. Responses of plants to fluoride: An overview of oxidative stress and defense mechanism. Fluoride 2016, 49, 293–302. [Google Scholar]
- Szostek, R.; Ciećko, Z. Effect of soil contamination with fluorine on the yield and content of nitrogen forms in the biomass of crops. Environ. Sci. Pollut. Res. 2017, 24, 8588–8601. [Google Scholar] [CrossRef] [Green Version]
- Szostek, R.; Ciećko, Z. The effect of soil contamination with fluorine on the contents of calcium and magnesium in the biomass of crop plants. Fluoride 2017, 50, 41–58. [Google Scholar]
- Szostek, R.; Ciećko, Z.; Rolka, E.; Wyszkowski, M. Content of amino acids in maize and yellow lupine after fluorine application to soil. Agriculture 2021, 11, 1120–1131. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014; World Soil Resources Report. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Update 2015; World Soil Resources; Reports No. 106; FAO: Rome, Italy, 2015; p. 192. Available online: https://www.fao.org/3/i3794en/I3794en.pdf (accessed on 10 November 2022).
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed; CRC Press: Boca Raton, FL, USA, 2011; p. 505. [Google Scholar]
- Research Procedure No. 29. Research Procedure. In Chemical-Agricultural Station Instruction, 2nd ed.; Chemical-Agricultural Station: Warsaw, Poland, 2008.
- Lityński, T.; Jurkowska, H.; Gorlach, E. Chemical and Agricultural Analysis; PWN Publishing House: Warsaw, Poland, 1976; pp. 129–132. [Google Scholar]
- Shimadzu. Shimadzu Analytical and Measuring Instruments; User’s Manual; Shimadzu Corporation: Kyoto, Japan, 2016. [Google Scholar]
- Bremner, J.M. Total nitrogen. In Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties (Agronomy 9); Black, C.A., Evans, D.D., Ensminger, L.E., White, J.L., Clark, F.E., Eds.; American Society of Agronomy: Madison, WI, USA, 1965; pp. 1149–1178. [Google Scholar]
- Ostrowska, A.; Gawliński, S.; Szczubiałka, Z. Methods for Analysis and Assessment of Soil and Plant Properties; Institute of Environmental Protection: Warsaw, Poland, 1997; p. 334. (In Polish) [Google Scholar]
- StatSoft, Inc. STATISTICA Data Analysis Software System; Version 12.0; Statsoft Inc.: Tulsa, OK, USA, 2012; Available online: www.statsoft.com (accessed on 23 October 2021).
- Fung, K.F.; Wong, M.H. Effects of soil pH on the uptake of Al, F and other elements by tea plants. J. Sci. Food Agric. 2001, 82, 146–152. [Google Scholar] [CrossRef]
- Arnesen, M.K.A. Availability of fluoride to plants grown in contaminated soils. Plant Soil 1997, 191, 13–25. [Google Scholar] [CrossRef]
- Reddy, P.M.; Kaur, M. Sodium fluoride induced growth and metabolic changes in Salicornia brachiata Roxb. Water Air Soil Pollut. 2008, 188, 171–179. [Google Scholar] [CrossRef]
- Aslam, A.; Nawaz, H.; Khan, A.; Ghaffar, R.; Abbas, G. Effect of exogenous application of citric acid on growth of maize (Zea mays L.) under sodium fluoride stress. Fluoride. Available online: https://www.fluorideresearch.online/epub/files/188.pdf (accessed on 10 November 2022).
- Yamada, M.; Kuroda, C.; Fujiyama, H. Function of sodium and potassium in growth of sodium loving Amaranthaceae species. Soil Sci. Plant. Nutr. 2016, 62, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Ranjith, M.; Sridevi, S.; Jeevanrao, K.; Tamesh, T.; Bhave, M.H.V. Fluoride content of agricultural soils and it’s relation with physicochemical properties in Kalwakurthy mandal, Mahabubnagar district, Telangana State. Int. J. Pure. Biosci. 2017, 5, 1588–1598. [Google Scholar] [CrossRef]
- Anbuvel, D.; Kumaresan, S.; Jothibai Margret, R. Fluoride analysis of soil in cultivated areas of Thovalai channel in Kanyakumari district, Tamilnadu, India: Correlation with physico-chemical parameters. Int. J. Basic. Appl. Chem. Sci. 2014, 4, 20–29. [Google Scholar]
- Shekhar, S.; Mohiddin, S.K.; Singh, P.N. Variation in concentration of fluoride in the groundwater of south-west district, NCT Delhi—A case study. In Assessment of Groundwater Resources and Management; Ramanathan, A.L., Bhattacharya, P., Keshari, A., Bundschuh, K., Chandrashekharan, D., Singh, S.K., Eds.; IK International: New Delhi, India, 2006; pp. 370–376. [Google Scholar]
- Dąbrowski, J.; Seniczak, S. The arboreal oribatid mites (Acari, Oribatida) of young Sots pine forests in the region polluted by the Luboń Chemical Factory near Poznań. Anim. Sci. 1965, 204, 77–85. [Google Scholar]
- Zbierska, J. The content of macroelements and fluorine in the grassland soil and sward in the region of a Phosphate Fertilizer Plant in Luboń. Work. Comm. Agric. Sci. Comm. For. Sci. 1996, 81, 227–234. [Google Scholar]
- Ciećko, Z.; Wyszkowski, M.; Rolka, E. Effect of cadmium soil contamination and addition of neutralizing substances on the sodium content in plants. Ecol. Chem. Eng. 2006, 13, 883–890. [Google Scholar]
- Sivitskaya, V.; Wyszkowski, M. Changes in the content of some macroelements in maize (Zea Mays L.) after application of fuel oil and different neutralizing substances to soil. J. Elem. 2013, 18, 706–714. [Google Scholar] [CrossRef]
- Kosiorek, M.; Wyszkowski, M. Macroelement content in plants after amendment application to cobalt-contaminated soil. J. Soils Sediments 2021, 21, 1769–1784. [Google Scholar] [CrossRef]
- Żołnowski, A.C.; Wyszkowski, M.; Rolka, E.; Sawicka, M. Mineral materials as a neutralizing agent used on soil contaminated with copper. Materials 2021, 14, 6830. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Sinha, R.; Sharma, P.K.; Ivy, N.; Kumar, P.; Kant, N.; Jha, A.; Jha, P.K.; Gupta, P.K.; Sharma, P.; et al. Bioaccumulation of fluoride in plants and its microbially assisted remediation: A review of biological processes and technological performance. Processes 2021, 9, 2154. [Google Scholar] [CrossRef]
- Ogundola, A.F.; Bvenura, C.; Afolayan, A.J. Nutrient and antinutrient compositions and heave metal uptake and accumulation in S. nigrum cultivated on different soil types. Sci. World. J. 2018, 2018, 5703929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodowska, M.S.; Wyszkowski, M.; Kordala, N. Use of organic materials to limit the potential negative effect of nitrogen on maize in different soils. Materials 2022, 15, 5755. [Google Scholar] [CrossRef]
- International Plant Nutrition Institute. Calcium. Nutrifacts. Agronomic Fact Sheets on Crop Nutrients; North American Edition; International Plant Nutrition Institute: Norcross, GA, USA, 2015; Volume 5, pp. 1–2. [Google Scholar]
- Kosiorek, M.; Wyszkowski, M. Content of macronutrients in oat (Avena sativa L.) after remediation of soil polluted with cobalt. Environ. Mon. Assess. 2019, 191, 389. [Google Scholar] [CrossRef]
Material | Element (g kg−1 DM) | |||||
---|---|---|---|---|---|---|
F | P | K | Mg | Ca | Na | |
Lime (CaO) | 0.50 | 0.12 | 0.75 | 2.55 | 339.21 | 0.09 |
Charcoal | 2.00 | 0.71 | 9.30 | 2.62 | 7.33 | 0.79 |
Loam | 0.088 | 0.40 | 21.0 | 17.7 | 23.92 | 7.99 |
Fluorine Dose in mg kg−1 of Soil | Type of Neutralizing Substance | Mean | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Without Neutralizing Substance | Lime | Charcoal | Loam | |||||||
Aerial Parts | Roots | Aerial Parts | Roots | Aerial Parts | Roots | Aerial Parts | Roots | Aerial Parts | Roots | |
Yellow lupine | ||||||||||
0 | 5.12 | 1.86 | 4.23 | 1.96 | 3.65 | 1.07 | 4.97 | 1.23 | 4.49 | 1.06 |
100 | 4.50 | 1.56 | 4.19 | 1.35 | 3.43 | 0.87 | 4.84 | 0.98 | 4.24 | 1.19 |
200 | 4.42 | 1.34 | 4.07 | 1.24 | 3.17 | 0.77 | 4.80 | 0.90 | 4.12 | 0.98 |
300 | 4.38 | 0.86 | 3.93 | 1.19 | 2.94 | 0.71 | 4.75 | 0.85 | 4.00 | 0.90 |
Mean | 4.61 | 1.41 | 4.10 | 1.43 | 3.30 | 0.85 | 4.84 | 0.99 | - | - |
r | −0.83 ** | −0.99 ** | −0.87 ** | −0.87 ** | −0.91 ** | −0.94 ** | −0.65 * | −0.93 ** | - | - |
LSD for: | aerial parts a—0.09; b—0.09; a∙b—0.18; roots a—0.02; b—0.02; a∙b—0.04 | |||||||||
Winter oilseed rape | ||||||||||
0 | 2.46 | 11.13 | 2.00 | 11.72 | 1.47 | 7.57 | 1.96 | 11.28 | 1.97 | 10.43 |
100 | 1.63 | 9.79 | 1.68 | 9.79 | 1.41 | 6.23 | 1.64 | 9.94 | 1.59 | 8.94 |
200 | 1.59 | 9.05 | 1.64 | 8.83 | 1.37 | 5.86 | 1.59 | 7.42 | 1.55 | 7.79 |
300 | 1.60 | 8.01 | 1.60 | 8.24 | 1.30 | 5.19 | 1.55 | 7.12 | 1.51 | 7.14 |
Mean | 1.82 | 9.50 | 1.73 | 9.64 | 1.39 | 6.21 | 1.68 | 8.94 | - | - |
r | −0.79 ** | −0.98 ** | −0.86 ** | −0.96 ** | −0.76 ** | −0.94 ** | −0.87 ** | −0.96 ** | - | - |
LSD for: | aerial parts a—0.03; b—0.03; a∙b—0.07; roots a—0.18; b—0.18; a∙b—0.36 | |||||||||
Narrow-leaf lupine | ||||||||||
0 | 1.72 | 1.63 | 2.02 | 1.34 | 2.03 | 1.86 | 1.82 | 1.42 | 1.90 | 1.56 |
20 | 1.87 | 1.13 | 2.23 | 0.82 | 2.11 | 0.96 | 1.71 | 1.16 | 1.98 | 1.02 |
40 | 1.96 | 0.89 | 2.08 | 0.78 | 1.84 | 0.86 | 1.47 | 1.11 | 1.84 | 0.91 |
60 | 1.44 | 0.74 | 1.60 | 0.74 | 1.62 | 0.61 | 1.37 | 1.05 | 1.51 | 0.79 |
Mean | 1.75 | 1.10 | 1.98 | 0.92 | 1.90 | 1.07 | 1.59 | 1.18 | - | - |
r | −0.42 | −0.96 ** | −0.67 * | −0.84 ** | −0.83 ** | −0.91 ** | −0.97 ** | −0.91 ** | - | - |
LSD for: | aerial parts a—0.04; b—0.04; a∙b—0.08; roots a—0.02; b—0.02; a∙b—0.04 |
Fluorine Dose in mg kg−1 of Soil | Type of Neutralizing Substance | Mean | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Without Neutralizing Substance | LIME | Charcoal | Loam | ||||||||||||
Aerial Parts | Roots | Aerial Parts | Roots | Aerial Parts | Roots | Aerial Parts | Roots | Aerial Parts | Roots | ||||||
Black radish | |||||||||||||||
0 | 3.21 | 1.28 | 2.54 | 1.19 | 2.61 | 1.12 | 3.26 | 1.51 | 2.91 | 1.25 | |||||
100 | 2.87 | 1.26 | 2.40 | 1.12 | 2.61 | 1.09 | 2.88 | 1.37 | 2.69 | 1.21 | |||||
200 | 2.73 | 1.22 | 2.25 | 1.06 | 2.23 | 1.01 | 2.70 | 1.20 | 2.48 | 1.12 | |||||
300 | 2.69 | 1.16 | 1.93 | 1.00 | 1.98 | 0.98 | 2.63 | 1.10 | 2.31 | 1.06 | |||||
Mean | 2.87 | 1.23 | 2.28 | 1.09 | 2.36 | 1.05 | 2.87 | 1.30 | - | - | |||||
r | −0.90 ** | −0.88 ** | −0.97 ** | −0.97 ** | −0.91 ** | −0.81 ** | −0.93 ** | −0.98 ** | - | - | |||||
LSD for: | aerial parts a—0.06; b—0.06; a∙b—0.12; roots a—0.02; b—0.02; a∙b—0.05 | ||||||||||||||
Phacelia | |||||||||||||||
0 | 0.33 | 7.05 | 0.28 | 7.12 | 0.27 | 6.83 | 0.47 | 7.42 | 0.34 | 7.10 | |||||
100 | 0.33 | 6.23 | 0.28 | 6.23 | 0.27 | 5.94 | 0.54 | 5.94 | 0.35 | 6.08 | |||||
200 | 0.39 | 5.29 | 0.28 | 5.27 | 0.28 | 5.19 | 0.53 | 5.49 | 0.37 | 5.31 | |||||
300 | 0.42 | 5.22 | 0.32 | 5.27 | 0.24 | 4.45 | 0.38 | 4.79 | 0.34 | 5.93 | |||||
Mean | 0.37 | 5.95 | 0.29 | 5.97 | 0.26 | 5.60 | 0.48 | 5.91 | - | - | |||||
r | 0.93 ** | −0.95 ** | 0.76 ** | −0.94 ** | −0.49 | −0.98 ** | −0.49 | −0.96 ** | - | - | |||||
LSD for: | aerial parts a—0.008; b—0.008; a∙b—0.016; roots a—0.13; b—0.13; a∙b—0.26 | ||||||||||||||
Spring triticale | |||||||||||||||
grain | straw | roots | grain | straw | roots | grain | straw | roots | grain | straw | roots | grain | straw | roots | |
0 | 0.01 | 0.29 | 0.19 | 0.01 | 0.37 | 0.16 | 0.01 | 0.36 | 0.18 | 0.01 | 0.30 | 0.17 | 0.01 | 0.33 | 0.17 |
100 | 0.01 | 0.32 | 0.22 | 0.02 | 0.37 | 0.22 | 0.01 | 0.38 | 0.21 | 0.01 | 0.33 | 0.22 | 0.01 | 0.35 | 0.22 |
200 | 0.01 | 0.33 | 0.22 | 0.01 | 0.40 | 0.21 | 0.01 | 0.43 | 0.22 | 0.01 | 0.38 | 0.21 | 0.01 | 0.38 | 0.21 |
300 | 0.03 | 0.52 | 0.22 | 0.03 | 0.52 | 0.22 | 0.03 | 0.52 | 0.23 | 0.03 | 0.42 | 0.22 | 0.03 | 0.50 | 0.22 |
Mean | 0.02 | 0.36 | 0.21 | 0.02 | 0.42 | 0.20 | 0.02 | 0.42 | 0.21 | 0.02 | 0.36 | 0.20 | - | - | - |
r | 0.77 ** | 0.86 ** | 0.74 ** | 0.67 * | 0.86 ** | 0.76 ** | 0.77 ** | 0.92 ** | 0.87 ** | 0.77 ** | 0.99 ** | 0.75 ** | - | - | - |
LSD for: | seed a—0.004; b—0.004; a∙b—0.009; straw a—0.01; b—0.01; a∙b—0.02; roots a—0.05; b—0.05; a∙b—0.1 |
Fluorine Dose in mg kg−1 of Soil | Type of Neutralizing Substance | Mean | ||||
---|---|---|---|---|---|---|
Without Neutralizing Substance | Lime | Charcoal | Loam | |||
Yellow lupine | ||||||
0 | 3.6 | 3.8 | 4.4 | 3.9 | 3.9 | |
100 | 3.6 | 3.6 | 4.3 | 3.8 | 3.8 | |
200 | 3.5 | 3.4 | 4.3 | 3.6 | 3.7 | |
300 | 3.3 | 3.3 | 4.3 | 3.6 | 3.6 | |
Mean | 3.5 | 3.5 | 4.3 | 3.7 | - | |
r | −0.82 ** | −0.96 ** | −0.20 | −0.83 ** | - | - |
LSD for: | aerial parts a—0.09; b—0.09; a∙b—n.s. | |||||
Winter oilseed rape | ||||||
seed | seed | seed | seed | seed | ||
0 | 3.9 | 4.0 | 4.3 | 3.1 | 3.8 | |
100 | 3.5 | 3.9 | 4.2 | 3.1 | 3.7 | |
200 | 3.4 | 3.9 | 4.1 | 3.1 | 3.6 | |
300 | 3.3 | 3.7 | 4.1 | 3.0 | 3.5 | |
Mean | 3.5 | 3.9 | 4.2 | 3.1 | - | |
r | −0.90 ** | −0.82 ** | −0.44 | −0.47 | - | |
LSD for: | aerial parts a—0.09; b—0.09; a∙b—0.19 | |||||
Narrow-leaf lupine | ||||||
0 | 2.8 | 2.6 | 2.6 | 2.4 | 2.6 | |
20 | 2.8 | 2.7 | 2.7 | 2.8 | 2.8 | |
40 | 3.0 | 3.0 | 3.0 | 2.7 | 2.9 | |
60 | 2.8 | 2.7 | 2.7 | 2.7 | 2.8 | |
Mean | 2.8 | 2.8 | 2.8 | 2.7 | - | |
r | 0.22 | 0.43 | 0.43 | 0.57 * | - | |
LSD for: | aerial parts a—0.07; b—0.07; a∙b—0.14 |
Fluorine Dose in mg kg−1 of Soil | Type of Neutralizing Substance | Mean | |||
---|---|---|---|---|---|
Without Neutralizing Substance | Lime | Charcoal | Loam | ||
Phacelia aerial parts | |||||
0 | 2.5 | 2.2 | 2.8 | 2.6 | 2.5 |
100 | 2.4 | 2.1 | 2.5 | 2.4 | 2.3 |
200 | 2.4 | 2.0 | 2.3 | 2.4 | 2.3 |
300 | 2.3 | 2.0 | 2.3 | 2.4 | 2.2 |
Mean | 2.4 | 2.1 | 2.5 | 2.4 | - |
r | −0.81 ** | −0.89 ** | −0.83 ** | −0.69 * | - |
LSD for: | aerial parts a—0.05; b—0.05; a∙b—0.11 | ||||
Spring triticale grain | |||||
0 | 1.3 | 1.3 | 1.3 | 1.3 | 1.3 |
100 | 1.4 | 1.5 | 1.6 | 1.4 | 1.5 |
200 | 1.6 | 1.5 | 1.5 | 1.3 | 1.5 |
300 | 1.6 | 1.5 | 1.4 | 1.4 | 1.5 |
Mean | 1.5 | 1.5 | 1.5 | 1.4 | - |
r | 0.93 ** | 0.75 ** | 0.18 | 0.40 | - |
LSD for: | seed a—0.03; b—0.03; a∙b—0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szostek, R.; Wyszkowski, M.; Ciećko, Z.; Rolka, E. Sodium and Sulphur Content in Plants after Lime, Charcoal, and Loam Application to Soil Contaminated with Fluorine. Appl. Sci. 2023, 13, 169. https://doi.org/10.3390/app13010169
Szostek R, Wyszkowski M, Ciećko Z, Rolka E. Sodium and Sulphur Content in Plants after Lime, Charcoal, and Loam Application to Soil Contaminated with Fluorine. Applied Sciences. 2023; 13(1):169. https://doi.org/10.3390/app13010169
Chicago/Turabian StyleSzostek, Radosław, Mirosław Wyszkowski, Zdzisław Ciećko, and Elżbieta Rolka. 2023. "Sodium and Sulphur Content in Plants after Lime, Charcoal, and Loam Application to Soil Contaminated with Fluorine" Applied Sciences 13, no. 1: 169. https://doi.org/10.3390/app13010169
APA StyleSzostek, R., Wyszkowski, M., Ciećko, Z., & Rolka, E. (2023). Sodium and Sulphur Content in Plants after Lime, Charcoal, and Loam Application to Soil Contaminated with Fluorine. Applied Sciences, 13(1), 169. https://doi.org/10.3390/app13010169