An Improved Particle Swarm Optimization Algorithm for Data Classification
Abstract
:1. Introduction
- To propose a novel initialisation population method using a Quasi-random sequence (Faure) to create the initialisation of the swarm, and through the opposition-based method, an opposite swarm is generated and the proposed Opposition rank-based inertia weight approach adjusts the inertia weights of particles;
- To find the best accuracy and compare its result with the previous state-of-the art approaches.
2. Materials and Methods
2.1. Related Work
2.2. Research Methodology
2.3. Random Number Generator
2.4. Quasi-Random Sequence
2.4.1. Sobol
2.4.2. Halton
2.4.3. Gaussian
2.4.4. Lognormal
2.4.5. Faure
2.5. Opposition Based Learning
2.6. Opposition Rank Base Inertia Weight
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiao, Z.; Hu, P.; Xu, H.; Wang, Q. Machine learning and deep learning in chemical health and safety: A systematic review of techniques and applications. J. Chem. Health Saf. 2020, 27, 316–334. [Google Scholar] [CrossRef]
- Thanga Selvi, R.; Muthulakshmi, I. An optimal artificial neural network based big data application for heart disease diagnosis and classification model. J. Ambient Intell. Humaniz. Comput. 2021, 12, 6129–6139. [Google Scholar] [CrossRef]
- Bangyal, W.H.; Ahmad, J.; Shafi, I.; Abbas, Q. A forward only counter propagation network-based approach for contraceptive method choice classification task. J. Exp. Theor. Artif. Intell. 2012, 24, 211–218. [Google Scholar] [CrossRef]
- Sethi, I.K.; Li, X.; Cheng, L.; Yadavalli, S.; Zhang, L. Nature-Inspired Computing and Optimization—Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2017; p. 494. [Google Scholar]
- Slowik, A.; Kwasnicka, H. Nature inspired methods and their industry applications-swarm intelligence algorithms. IEEE Trans. Ind. Inform. 2018, 14, 1004–1015. [Google Scholar] [CrossRef]
- Selvaraj, S.; Choi, E. Survey of swarm intelligence algorithms. In Proceedings of the 3rd International Conference on Software Engineering and Information Management, Sydney, NSW, Australia, 12–15 January 2020. [Google Scholar]
- Rostami, M.; Berahmand, K.; Nasiri, E.; Forouzande, S. Review of Swarm Intelligence-Based Feature Selection Methods. Eng. Appl. Artif. Intell. 2021, 100, 104210. [Google Scholar] [CrossRef]
- Eberhart, R.; Kennedy, J. New Optimizer Using Particle Swarm Theory. In Proceedings of the 6th International Symposium on Micro Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43. [Google Scholar]
- Chu, S.C.; Tsai, P.W.; Pan, J.S. Cat swarm optimization. In Pacific Rim International Conference on Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4099, pp. 584–588. [Google Scholar]
- Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial Bee Colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [Google Scholar] [CrossRef]
- Yang, X.S.; Deb, S. Cuckoo Search via Lévy Flights. In Proceedings of the 2009 World Congress on Nature and Biologically Inspired Computing (NaBIC), New Delhi, India, 9–11 December 2009; pp. 210–214. [Google Scholar]
- Yang, X.-S. A new metaheuristic bat-inspired algorithm. In Nature Inspired Cooperative Strategies for Optimization (NICSO); Springer: Berlin/Heidelberg, Germany, 2010; pp. 65–74. [Google Scholar]
- Salaria, U.A.; Menhas, M.I.; Manzoor, S. Quasi Oppositional population based global particle swarm optimizer with inertial weights (Qpgpso-w) for solving economic load dispatch problem. IEEE Access 2021, 9, 134081–134095. [Google Scholar] [CrossRef]
- Zhang, J.; Sheng, J.; Lu, J.; Shen, L. UCPSO: A uniform initialized particle swarm optimization algorithm with cosine inertia weight. Comput. Intell. Neurosci. 2021, 2021, 1–18. [Google Scholar] [CrossRef]
- Biswas, A.; Majumdar, A.; Das, S.; Baishnab, K.L. OCSO-CA: Opposition based competitive swarm optimizer in energy efficient IoT clustering. Front. Comput. Sci. 2022, 16, 1–11. [Google Scholar] [CrossRef]
- Bangyal, W.H.; Nisar, K.; Ibrahim, A.A.B.A.; Haque, M.R.; Rodrigues, J.J.P.C.; Rawat, D.B. Comparative analysis of low discrepancy sequence-based initialization approaches using population-based algorithms for solving the global optimization problems. Appl. Sci. 2021, 11, 7591. [Google Scholar] [CrossRef]
- Bangyal, W.H.; Hameed, A.; Alosaimi, W.; Alyami, H. A new initialization approach in particle swarm optimization for global optimization problems. Comput. Intell. Neurosci. 2021, 2021, 1–17. [Google Scholar] [CrossRef]
- Pervaiz, S.; Ul-Qayyum, Z.; Bangyal, W.H.; Gao, L.; Ahmad, J. A systematic literature review on particle swarm optimization techniques for medical diseases detection. Comput. Math. Methods Med. 2021, 2021, 10. [Google Scholar] [CrossRef]
- Ashraf, A.; Almazroi, A.A.; Bangyal, W.H.; Alqarni, M.A. Particle swarm optimization with new initializing technique to solve global optimization problems. Intell. Autom. Soft Comput. 2022, 31, 191–206. [Google Scholar] [CrossRef]
- Shayeghi, H.; Mahdavi, M.; Bagheri, A. An improved DPSO with mutation based on similarity algorithm for optimization of transmission lines loading. Energy Convers. Manag. 2010, 51, 2715–2723. [Google Scholar] [CrossRef]
- Jarboui, B.; Cheikh, M.; Siarry, P.; Rebai, A. Combinatorial particle swarm optimization (CPSO) for partitional clustering problem. Appl. Math. Comput. 2007, 192, 337–345. [Google Scholar] [CrossRef]
- Mahmoud, A.; Yuan, X.; Kheimi, M.; Almadani, M.A.; Hajilounezhad, T.; Yuan, Y. An improved multi-objective particle swarm optimization with TOPSIS and fuzzy logic for optimizing trapezoidal labyrinth weir. IEEE Access 2021, 9, 25458–25472. [Google Scholar] [CrossRef]
- Nshimirimana, R.; Abraham, A.; Nothnagel, G. A Multi-Objective Particle Swarm for Constraint and Unconstrained Problems; Springer: London, UK, 2021; Volume 33, ISBN 0123456789. [Google Scholar]
- Chen, X.; Li, K. Collective information-based particle swarm optimization for multi-fuel CHP economic dispatch problem. Knowl. Based Syst. 2022, 248, 108902. [Google Scholar] [CrossRef]
- Zdiri, S.; Chrouta, J.; Zaafouri, A. An expanded heterogeneous particle swarm optimization based on adaptive inertia weight. Math. Probl. Eng. 2021, 2021. [Google Scholar] [CrossRef]
- Khan, R.A.; Yang, S.; Khan, S.; Fahad, S. A multimodal improved particle swarm optimization for high dimensional problems in electromagnetic devices. Energies 2021, 14, 8575. [Google Scholar] [CrossRef]
- Tizhoosh, H.R. Opposition-based learning: A new scheme for machine intelligence. In Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, Vienna, Austria, 28–30 November 2005; pp. 695–701. [Google Scholar]
- Waseem, Q.; Alshamrani, S.S.; Nisar, K.; Isni, W.; Wan, S. Future technology: Software-defined network (SDN) forensic. Futur. Technol. Softw. Defin. Netw. Forensic. Symmetry 2021, 13, 767. [Google Scholar] [CrossRef]
- Bangyal, W.H.; Ahmad, J.; Abbas, Q. Recognition of off-line isolated handwritten character using counter propagation network. Int. J. Eng. Technol. 2013, 5, 227–230. [Google Scholar] [CrossRef] [Green Version]
- Bangyal, W.H.; Qasim, R.; Rehman, N.; Ahmad, Z.; Dar, H.; Rukhsar, L.; Aman, Z.; Ahmad, J. Detection of fake news text classification on COVID-19 using deep learning approaches. Comput. Math. Methods Med. 2021, 2021, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Nisar, K.; Sabir, Z.; Zahoor Raja, M.A.; Ibrahim, A.A.A.; Rodrigues, J.J.P.C.; Khan, A.S.; Gupta, M.; Kamal, A.; Rawat, D.B. Evolutionary integrated heuristic with gudermannian neural networks for second kind of lane–emden nonlinear singular models. Appl. Sci. 2021, 11, 4725. [Google Scholar] [CrossRef]
- Damaševičius, R.; Maskeliūnas, R. Agent state flipping based hybridization of heuristic optimization algorithms: A case of bat algorithm and krill herd hybrid algorithm. Algorithms 2021, 14, 358. [Google Scholar] [CrossRef]
- Bangyal, W.H.; Hameed, A.; Ahmad, J.; Nisar, K.; Haque, M.R.; Ibrahim, A.A.A.; Rodrigues, J.J.P.C.; Khan, M.A.; Rawat, D.B.; Etengu, R. New modified controlled bat algorithm for numerical optimization problem. Comput. Mater. Contin. 2022, 70, 2241–2259. [Google Scholar]
- Hassan, N.U.; Bangyal, W.H.; Khan, M.S.A.; Nisar, K.; Asri, A.; Ibrahim, A.; Rawat, D.B. Improved opposition-based particle swarm optimization algorithm for global optimization. Symmetry 2021, 13, 2280. [Google Scholar] [CrossRef]
- Dubey, S.M.; Dubey, H.M.; Salkuti, S.R. Modified quasi-opposition-based grey wolf optimization for mathematical and electrical benchmark problems. Energies 2022, 15, 5704. [Google Scholar] [CrossRef]
- Cui, Y.; He, H.; Dong, W.; Liu, L.; Liu, H. The opposition-based learning parameter adjusting harmony search algorithm research on radars optimal deployment. Math. Probl. Eng. 2022, 2022, 1–30. [Google Scholar] [CrossRef]
- Wang, W.; Wang, H.; Sun, H.; Rahnamayan, S. Using opposition-based learning to enhance differential evolution: A comparative study. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 71–77. [Google Scholar]
- Ashraf, A.; Pervaiz, S.; Bangyal, W.H.; Nisar, K.; Ibrahim, A.A.A.; Rodrigues, J.J.P.C.; Rawat, D.B. Studying the impact of initialization for population-based algorithms with low-discrepancy sequences. Appl. Sci. 2021, 11, 8190. [Google Scholar] [CrossRef]
- James, F. A review of pseudorandom number generators. Comput. Phys. Commun. 1990, 60, 329–344. [Google Scholar] [CrossRef] [Green Version]
- Bangyal, W.H.; Ahmad, J.; Abbas, Q. Analysis of learning rate using CPN algorithm for hand written character recognition application. Int. J. Eng. Technol. 2013, 5, 187–190. [Google Scholar] [CrossRef]
- Garro, B.A.; Vázquez, R.A. Designing artificial neural networks using particle swarm optimization algorithms. Comput. Intell. Neurosci. 2015, 2015, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Surono, S.; Goh, K.W.; Onn, C.W.; Nurraihan, A.; Siregar, N.S.; Borumand Saeid, A.; Wijaya, T.T. Optimization of Markov weighted fuzzy time series forecasting using genetic algorithm (GA) and particle swarm optimization (PSO). Emerg. Sci. J. 2022, 6, 1375–1393. [Google Scholar] [CrossRef]
- Tarkhaneh, O.; Shen, H. Training of feedforward neural networks for data classification using hybrid particle swarm optimization, mantegna lévy flight and neighborhood search. Heliyon 2019, 5, e01275. [Google Scholar] [CrossRef] [Green Version]
- Si, T.; Dutta, R. Partial opposition based particle swarm optimizer in artificial neural network training for medical data classification. Int. J. Inf. Technol. Decis. Mak. 2019, 18, 1717–1750. [Google Scholar] [CrossRef]
- Chatterjee, S.; Hore, S.; Dey, N. Dengue fever classification using gene expression data: A PSO Based artificial neural network approach. In Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications; Springer: Singapore, 2017; pp. 331–341. [Google Scholar]
- Feshki, M.G.; Shijani, O.S. Improving the heart disease diagnosis by evolutionary algorithm of PSO and feed forward neural network. In Proceedings of the 2016 Artificial Intelligence and Robotics (IRANOPEN), Qazvin, Iran, 9 April 2016; pp. 48–53. [Google Scholar]
- Bas, E.; Egrioglu, E.; Kolemen, E. Training simple recurrent deep artificial neural network for forecasting using particle swarm optimization. Granul. Comput. 2021, 2, 1–10. [Google Scholar] [CrossRef]
- Khan, T.A.; Zain-Ul-Abideen, K.; Ling, S.H. A hybrid advanced PSO-neural network system. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; pp. 1626–1630. [Google Scholar]
- Duong, H.Q.; Nguyen, Q.H.; Nguyen, D.T.; Van Nguyen, L. PSO based hybrid PID-FLC sugeno control for excitation system of large synchronous motor. Emerg. Sci. J. 2022, 6, 201–216. [Google Scholar] [CrossRef]
- Yadav, A.; Peesapati, R.; Kumar, N. Electricity price forecasting and classification through wavelet—Dynamic weighted. IEEE Syst. J. 2017, 12, 3075–3084. [Google Scholar]
- Beheshti, Z.; Mariyam, S.; Shamsuddin, H.; Beheshti, E.; Sophiayati, S. Enhancement of artificial neural network learning using centripetal accelerated particle swarm optimization for medical diseases diagnosis. Soft Comput. 2014, 18, 2253–2270. [Google Scholar] [CrossRef]
- Wahab, M.A.; Nguyen, H.X.; Roeck, G. Damage detection in structures using particle swarm optimization combined with artificial neural network. Smart Struct. Syst. 2021, 1, 1–12. [Google Scholar]
- Matsumoto, M. Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput. Simul. 1998, 8, 3–30. [Google Scholar] [CrossRef] [Green Version]
- Mahdavi, S.; Rahnamayan, S.; Deb, K. Opposition based learning: A literature review. Swarm Evol. Comput. 2017, 39, 1–23. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, L.; Wang, N.; Hei, X.; Zhao, L. A review of opposition-based learning from 2005 to 2012. Eng. Appl. Artif. Intell. 2014, 29, 1–12. [Google Scholar] [CrossRef]
- Bansal, J.C.; Singh, P.K.; Saraswat, M.; Verma, A.; Jadon, S.S.; Abraham, A. Inertia weight strategies in particle swarm optimization. In Proceedings of the 2011 Third World Congress on Nature and Biologically Inspired Computing, Salamanca, Spain, 19–21 October 2011; pp. 633–640. [Google Scholar]
Sr. No | Dataset | No of Attributes | Number of Labels | Number of Records |
---|---|---|---|---|
1 | Iris | 4 | 3 | 150 |
2 | Wheat seed | 7 | 3 | 210 |
3 | Pima India Diabetes | 8 | 2 | 768 |
4 | Heart Disease | 13 | 2 | 270 |
5 | Wisconsin Breast Cancer | 10 | 2 | 699 |
6 | Vertebral | 6 | 2 | 310 |
7 | Wine | 13 | 3 | 178 |
8 | Haberman’s survival | 3 | 2 | 306 |
9 | Balance scale | 4 | 3 | 625 |
10 | Blood Transfusion | 4 | 2 | 748 |
11 | Sonar | 60 | 2 | 208 |
12 | Bank Note Authentication | 4 | 2 | 1372 |
13 | Ionosphere | 34 | 2 | 351 |
14 | Liver Disorder | 6 | 2 | 345 |
15 | Car Evaluation | 6 | 4 | 1728 |
Parameter | Relation | Sum of Squares | df | Mean Square | F | Significance |
---|---|---|---|---|---|---|
Testing Accuracy | Between groups | 903.2158 | 5 | 180.6432 | 2.334319 | 0.049042 |
Parameter | Relation | Sum of Squares | df | Mean Square | F | Significance |
---|---|---|---|---|---|---|
Testing Accuracy | Between groups | 818.691 | 5 | 163.738 | 2.334012 | 0.0494 |
Parameter | Relation | Sum of Squares | df | Mean Square | F | Significance |
---|---|---|---|---|---|---|
Testing Accuracy | Between groups | 818.095 | 5 | 163.619 | 2.334622 | 0.04804 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bangyal, W.H.; Nisar, K.; Soomro, T.R.; Ag Ibrahim, A.A.; Mallah, G.A.; Hassan, N.U.; Rehman, N.U. An Improved Particle Swarm Optimization Algorithm for Data Classification. Appl. Sci. 2023, 13, 283. https://doi.org/10.3390/app13010283
Bangyal WH, Nisar K, Soomro TR, Ag Ibrahim AA, Mallah GA, Hassan NU, Rehman NU. An Improved Particle Swarm Optimization Algorithm for Data Classification. Applied Sciences. 2023; 13(1):283. https://doi.org/10.3390/app13010283
Chicago/Turabian StyleBangyal, Waqas Haider, Kashif Nisar, Tariq Rahim Soomro, Ag Asri Ag Ibrahim, Ghulam Ali Mallah, Nafees Ul Hassan, and Najeeb Ur Rehman. 2023. "An Improved Particle Swarm Optimization Algorithm for Data Classification" Applied Sciences 13, no. 1: 283. https://doi.org/10.3390/app13010283
APA StyleBangyal, W. H., Nisar, K., Soomro, T. R., Ag Ibrahim, A. A., Mallah, G. A., Hassan, N. U., & Rehman, N. U. (2023). An Improved Particle Swarm Optimization Algorithm for Data Classification. Applied Sciences, 13(1), 283. https://doi.org/10.3390/app13010283