Shell Waste Management and Utilization: Mitigating Organic Pollution and Enhancing Sustainability
Abstract
:1. Introduction
Methodology
2. Cleaning Shells
Sustainability Challenges
3. Environmental Applications
3.1. Water Purification/Bio-Filters
3.2. Heavy Metal Adsorbents/Soil Amendment
3.3. Acid Mine Drainage
3.4. Ocean Deacidification
3.5. Flue Gas Treatment
3.6. Road De-icing
3.7. Green Roofing
3.8. Sustainability Challenges
4. Food and Feed Additives; Nutraceuticals
4.1. Calcium Supplement
4.2. Protein Supplement
4.3. Antibacterials for Food
4.4. Bioactive Molecules/Antioxidants
4.5. Bioactive Molecules/Cholesterol Reduction
4.6. Bioactive Molecules/Blood Pressure Reduction
4.7. Sustainability Challenges
5. Biomaterials
5.1. Bone Tissue Regeneration/Bioceramic
5.2. Cosmetics
5.3. Wound Healing
5.4. Biocomposites/Biofillers
5.5. Biopackaging
5.6. Sustainability Challenges
6. Construction
Sustainability Challenges
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. World Food and Agriculture—Statistical Yearbook 2021; Food & Agriculture Organization: Rome, Italy, 2021; ISBN 978-92-5-134332-6. [Google Scholar]
- Yan, N.; Chen, X. Sustainability: Don’t Waste Seafood Waste. Nature 2015, 524, 155–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Summa, D.; Lanzoni, M.; Castaldelli, G.; Fano, E.A.; Tamburini, E. Trends and Opportunities of Bivalve Shells’ Waste Valorization in a Prospect of Circular Blue Bioeconomy. Resources 2022, 11, 48. [Google Scholar] [CrossRef]
- Tokeshi, M.; Ota, N.; Kawai, T. A Comparative Study of Morphometry in Shell-bearing Molluscs. J. Zool. 2000, 251, 31–38. [Google Scholar] [CrossRef]
- Morris, J.P.; Backeljau, T.; Chapelle, G. Shells from Aquaculture: A Valuable Biomaterial, Not a Nuisance Waste Product. Rev. Aquacult. 2019, 11, 42–57. [Google Scholar] [CrossRef] [Green Version]
- Vélez-Henao, J.A.; Weinland, F.; Reintjes, N. Life Cycle Assessment of Aquaculture Bivalve Shellfish Production—A Critical Review of Methodological Trends. Int. J. Life Cycle Assess. 2021, 26, 1943–1958. [Google Scholar] [CrossRef]
- Zhan, J.; Lu, J.; Wang, D. Review of Shell Waste Reutilization to Promote Sustainable Shellfish Aquaculture. Rev. Aquacult. 2022, 14, 477–488. [Google Scholar] [CrossRef]
- Murphy, J.N.; Kerton, F.M. Characterization and Utilization of Waste Streams from Mollusc Aquaculture and Fishing Industries. In Fuels, Chemicals and Materials from the Oceans and Aquatic Sources; Kerton, F.M., Yan, N., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2017; pp. 189–227. ISBN 978-1-119-11719-3. [Google Scholar]
- Bonnard, M.; Boury, B.; Parrot, I. Key Insights, Tools, and Future Prospects on Oyster Shell End-of-Life: A Critical Analysis of Sustainable Solutions. Environ. Sci. Technol. 2020, 54, 26–38. [Google Scholar] [CrossRef]
- Ishangulyyev, R.; Kim, S.; Lee, S. Understanding Food Loss and Waste—Why Are We Losing and Wasting Food? Foods 2019, 8, 297. [Google Scholar] [CrossRef] [Green Version]
- de Alvarenga, R.A.F.; Galindro, B.M.; de Fatima Helpa, C.; Soares, S.R. The Recycling of Oyster Shells: An Environmental Analysis Using Life Cycle Assessment. J. Environ. Manag. 2012, 106, 102–109. [Google Scholar] [CrossRef]
- Kobatake, H.; Kirihara, S. Lowering the Incineration Temperature of Fishery Waste to Optimize the Thermal Decomposition of Shells and Spines. Fish. Sci. 2019, 85, 573–579. [Google Scholar] [CrossRef]
- Hardy, B.L.; Moncel, M.-H.; Kerfant, C.; Lebon, M.; Bellot-Gurlet, L.; Mélard, N. Direct Evidence of Neanderthal Fibre Technology and Its Cognitive and Behavioral Implications. Sci. Rep. 2020, 10, 4889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arrighi, S.; Moroni, A.; Tassoni, L.; Boschin, F.; Badino, F.; Bortolini, E.; Boscato, P.; Crezzini, J.; Figus, C.; Forte, M.; et al. Bone Tools, Ornaments and Other Unusual Objects during the Middle to Upper Palaeolithic Transition in Italy. Quat. Int. 2020, 551, 169–187. [Google Scholar] [CrossRef] [Green Version]
- Douka, K.; Spinapolice, E.E. Neanderthal Shell Tool Production: Evidence from Middle Palaeolithic Italy and Greece. J. World Prehist. 2012, 25, 45–79. [Google Scholar] [CrossRef]
- Gamble, L.H. The Origin and Use of Shell Bead Money in California. J. Anthropol. Archaeol. 2020, 60, 101237. [Google Scholar] [CrossRef]
- Maurer, B. Primitive and Nonmetallic Money. In Handbook of the History of Money and Currency; Battilossi, S., Cassis, Y., Yago, K., Eds.; Springer: Singapore, 2020; pp. 87–104. ISBN 9789811305955. [Google Scholar]
- Guo, P. Marriage-Related Exchanges and the Agency of Women among the Langalanga, Solomon Islands. Oceania 2020, 90, 273–291. [Google Scholar] [CrossRef]
- Silva Mota, E.L.; Nóbrega Alves, R.R.; Pereira Dias, T.L. Fishing, Trade, and Local Ecological Knowledge of the Marine Gastropod, Cassis Tuberosa—A Target Species of the International Shell Trade. Ethnobiol. Conserv. 2020, 9, 23. [Google Scholar] [CrossRef]
- Nijman, V.; Spaan, D.; Nekaris, K.A.-I. Large-Scale Trade in Legally Protected Marine Mollusc Shells from Java and Bali, Indonesia. PLoS ONE 2015, 10, e0140593. [Google Scholar] [CrossRef]
- Watson, G.J.; Bonner, A.; Murray, J.M.; Hebblethwaite, Z. Offsetting the Impact of the Marine Ornamental Trade: A Case Study of Two Temperate Top Shells (Osilinus Lineatus and Gibbula Umbilicalis) as Potential Clean-up Crew: TEMPERATE GASTROPOD CLEAN-UP CREW. Aquat. Conserv. Mar. Freshw. Ecosyst. 2012, 22, 731–742. [Google Scholar] [CrossRef]
- Eziefula, U.G. Developments in Utilisation of Agricultural and Aquaculture By-Products as Aggregate in Concrete—A Review. Environ. Technol. Rev. 2018, 7, 19–45. [Google Scholar] [CrossRef]
- Her, S.; Park, T.; Zalnezhad, E.; Bae, S. Synthesis and Characterization of Cement Clinker Using Recycled Pulverized Oyster and Scallop Shell as Limestone Substitutes. J. Clean. Prod. 2021, 278, 123987. [Google Scholar] [CrossRef]
- Barros, M.C.; Bello, P.M.; Bao, M.; Torrado, J.J. From Waste to Commodity: Transforming Shells into High Purity Calcium Carbonate. J. Clean. Prod. 2009, 17, 400–407. [Google Scholar] [CrossRef]
- Deng, J.-J.; Zhang, M.-S.; Li, Z.-W.; Lu, D.-L.; Mao, H.-H.; Zhu, M.-J.; Li, J.-Z.; Luo, X.-C. One-Step Processing of Shrimp Shell Waste with a Chitinase Fused to a Carbohydrate-Binding Module. Green Chem. 2020, 22, 6862–6873. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, Y.; Ma, M.; Oh, D.-H.; Fu, X. Characterization of Chitinase from Exiguobacterium Antarcticum and Its Bioconversion of Crayfish Shell into Chitin Oligosaccharides. Food Res. Int. 2022, 158, 111517. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Lin, X.; Duan, L.; Liu, D.; Han, Z. Ammonia Nitrogen Removal in a Biological Nitrifying System Using Oyster Shells as Alkalinity-Releasing Filling Materials. In Proceedings of the 2016 ASABE International Meeting; American Society of Agricultural and Biological Engineers, Orlando, FL, USA, 17–20 July 2016. [Google Scholar]
- Chilakala, R.; Thannaree, C.; Shin, E.J.; Thenepalli, T.; Ahn, J.W. Sustainable Solutions for Oyster Shell Waste Recycling in Thailand and the Philippines. Recycling 2019, 4, 35. [Google Scholar] [CrossRef] [Green Version]
- Boey, P.-L.; Maniam, G.P.; Hamid, S.A. Biodiesel Production via Transesterification of Palm Olein Using Waste Mud Crab (Scylla Serrata) Shell as a Heterogeneous Catalyst. Bioresour. Technol. 2009, 100, 6362–6368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, M.I.; Barakat, H.; Patterson, D.A. Production of Hydroxyapatite from Waste Mussel Shells. IOP Conf. Ser. Mater. Sci. Eng. 2011, 18, 192002. [Google Scholar] [CrossRef]
- Mohanraj, J.; Pandi, M.U.; Ranjan, R.; Shunmugara, T. Marine Mollusc Is an Excellent Ornament. Res. J. Appl. Sci. 2011, 6, 92–98. [Google Scholar] [CrossRef] [Green Version]
- Illanes, A. (Ed.) Enzyme Biocatalysis: Principles and Applications; Springer: Dordrecht, The Netherlands, 2008; ISBN 978-1-4020-8360-0. [Google Scholar]
- Oladoja, N.A.; Adelagun, R.O.A.; Ahmad, A.L.; Ololade, I.A. Phosphorus Recovery from Aquaculture Wastewater Using Thermally Treated Gastropod Shell. Process Saf. Environ. Prot. 2015, 98, 296–308. [Google Scholar] [CrossRef]
- Jones, M.I.; Wang, L.Y.; Abeynaike, A.; Patterson, D.A. Utilisation of Waste Material for Environmental Applications: Calcination of Mussel Shells for Waste Water Treatment. Adv. Appl. Ceram. 2011, 110, 280–286. [Google Scholar] [CrossRef]
- Morse, G.; Brett, S.; Guy, J.; Lester, J. Review: Phosphorus Removal and Recovery Technologies. Sci. Total Environ. 1998, 212, 69–81. [Google Scholar] [CrossRef]
- Abeynaike, A.; Wang, L.; Jones, M.I.; Patterson, D.A. Pyrolysed Powdered Mussel Shells for Eutrophication Control: Effect of Particle Size and Powder Concentration on the Mechanism and Extent of Phosphate Removal. Asia-Pac. J. Chem. Eng. 2011, 6, 231–243. [Google Scholar] [CrossRef]
- Martins, M.C.; Santos, E.B.H.; Marques, C.R. First Study on Oyster-Shell-Based Phosphorous Removal in Saltwater—A Proxy to Effluent Bioremediation of Marine Aquaculture. Sci. Total Environ. 2017, 574, 605–615. [Google Scholar] [CrossRef] [PubMed]
- von Ahnen, M.; Pedersen, P.B.; Dalsgaard, J. Nitrate Removal from Aquaculture Effluents Using Woodchip Bioreactors Improved by Adding Sulfur Granules and Crushed Seashells. Water Sci. Technol. 2018, 77, 2301–2310. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, S.; Ergas, S.J.; Lopez-Luna, E.; Sahu, A.K.; Palaniswamy, K. Autotrophic Biological Denitrification for Complete Removal of Nitrogen from Septic System Wastewater. Water Air Soil Pollut. Focus 2006, 6, 111–126. [Google Scholar] [CrossRef]
- Murphy, J.N.; Schneider, C.M.; Hawboldt, K.; Kerton, F.M. Hard to Soft: Biogenic Absorbent Sponge-like Material from Waste Mussel Shells. Matter 2020, 3, 2029–2041. [Google Scholar] [CrossRef]
- Zuo, Y.; Zhan, J.; Costa, N. Use of Shell Chitin Extracted from Seafood Processing Waste in Recycling of Industrial Wastewater; Gupta, S.M., Ed.; SPIE: Boston, MA, USA, 2001; pp. 403–412. [Google Scholar]
- Singh, R.; Upadhyay, S.; Singh, M.; Sharma, I.; Sharma, P.; Kamboj, P.; Saini, A.; Voraha, R.; Sharma, A.; Upadhyay, T.; et al. Chitin, Chitinases and Chitin Derivatives in Biopharmaceutical, Agricultural and Environmental Perspective. Biointerface Res. Appl. Chem. 2020, 11, 9985–10005. [Google Scholar] [CrossRef]
- Tsai, H.-C.; Lo, S.-L.; Kuo, J. Using Pretreated Waste Oyster and Clam Shells and Microwave Hydrothermal Treatment to Recover Boron from Concentrated Wastewater. Bioresour. Technol. 2011, 102, 7802–7806. [Google Scholar] [CrossRef]
- Farm, C. Metal Sorption to Natural Filter Substrates for Storm Water Treatment—Column Studies. Sci. Total Environ. 2002, 298, 17–24. [Google Scholar] [CrossRef]
- Tudor, H.E.A.; Gryte, C.C.; Harris, C.C. Seashells: Detoxifying Agents for Metal-Contaminated Waters. Water Air Soil Pollut. 2006, 173, 209–242. [Google Scholar] [CrossRef]
- Du, Y.; Lian, F.; Zhu, L. Biosorption of Divalent Pb, Cd and Zn on Aragonite and Calcite Mollusk Shells. Environ. Pollut. 2011, 159, 1763–1768. [Google Scholar] [CrossRef]
- Santás-Miguel, V.; Campillo-Cora, C.; Núñez-Delgado, A.; Fernández-Calviño, D.; Arias-Estévez, M. Utilization of Mussel Shell to Remediate Soils Polluted with Heavy Metals. In Biomass-Derived Materials for Environmental Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 221–242. ISBN 978-0-323-91914-2. [Google Scholar]
- Ok, Y.S.; Oh, S.-E.; Ahmad, M.; Hyun, S.; Kim, K.-R.; Moon, D.H.; Lee, S.S.; Lim, K.J.; Jeon, W.-T.; Yang, J.E. Effects of Natural and Calcined Oyster Shells on Cd and Pb Immobilization in Contaminated Soils. Environ. Earth Sci. 2010, 61, 1301–1308. [Google Scholar] [CrossRef]
- Bi, D.; Yuan, G.; Wei, J.; Xiao, L.; Feng, L. Conversion of Oyster Shell Waste to Amendment for Immobilising Cadmium and Arsenic in Agricultural Soil. Bull. Environ. Contam. Toxicol. 2020, 105, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Remonsellez, F.; Zarrias, N.; Bol, R.; Fuentes, B. Characterization and Low-Cost Treatment of an Industrial Arid Soil Polluted with Lead Sulfide in Northern Chile. Environ. Earth Sci. 2017, 76, 294. [Google Scholar] [CrossRef]
- Garrido-Rodríguez, B.; Fernández-Calviño, D.; Nóvoa Muñoz, J.C.; Arias-Estévez, M.; Díaz-Raviña, M.; Álvarez-Rodríguez, E.; Fernández-Sanjurjo, M.J.; Núñez-Delgado, A. PH-Dependent Copper Release in Acid Soils Treated with Crushed Mussel Shell. Int. J. Environ. Sci. Technol. 2013, 10, 983–994. [Google Scholar] [CrossRef] [Green Version]
- Núñez-Gómez, D.; Lapolli, F.R.; Nagel-Hassemer, M.E.; Lobo-Recio, M.Á. Optimization of Acid Mine Drainage Remediation with Central Composite Rotatable Design Model. Energy Procedia 2017, 136, 233–238. [Google Scholar] [CrossRef]
- Núñez-Gómez, D.; Lapolli, F.R.; Nagel-Hassemer, M.E.; Lobo-Recio, M.Á. Optimization of Fe and Mn Removal from Coal Acid Mine Drainage (AMD) with Waste Biomaterials: Statistical Modeling and Kinetic Study. Waste Biomass Valorization 2020, 11, 1143–1157. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Huang, H.; Nguyen, T.A.H.; Soda, S. Recycling Clamshell as Substrate in Lab-Scale Constructed Wetlands for Heavy Metal Removal from Simulated Acid Mine Drainage. Process Saf. Environ. Prot. 2022, 165, 950–958. [Google Scholar] [CrossRef]
- Pat-Espadas, A.; Loredo Portales, R.; Amabilis-Sosa, L.; Gómez, G.; Vidal, G. Review of Constructed Wetlands for Acid Mine Drainage Treatment. Water 2018, 10, 1685. [Google Scholar] [CrossRef] [Green Version]
- Yu, G.; Wang, G.; Chi, T.; Du, C.; Wang, J.; Li, P.; Zhang, Y.; Wang, S.; Yang, K.; Long, Y.; et al. Enhanced Removal of Heavy Metals and Metalloids by Constructed Wetlands: A Review of Approaches and Mechanisms. Sci. Total Environ. 2022, 821, 153516. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Soda, S.; Horiuchi, K. Removal of Heavy Metals from Acid Mine Drainage with Lab-Scale Constructed Wetlands Filled with Oyster Shells. Water 2022, 14, 3325. [Google Scholar] [CrossRef]
- Steckbauer, A.; Klein, S.G.; Duarte, C.M. Additive Impacts of Deoxygenation and Acidification Threaten Marine Biota. Glob. Chang. Biol. 2020, 26, 5602–5612. [Google Scholar] [CrossRef]
- Clements, J.C.; Chopin, T. Ocean Acidification and Marine Aquaculture in North America: Potential Impacts and Mitigation Strategies. Rev. Aquacult. 2017, 9, 326–341. [Google Scholar] [CrossRef]
- Leung, J.Y.S.; Zhang, S.; Connell, S.D. Is Ocean Acidification Really a Threat to Marine Calcifiers? A Systematic Review and Meta-Analysis of 980+ Studies Spanning Two Decades. Small 2022, 18, 2107407. [Google Scholar] [CrossRef] [PubMed]
- Ericson, J.A.; Ragg, N.L.C. Effects of Crushed Mussel, Perna Canaliculus, Shell Enrichment on Seawater Carbonate Buffering and Development of Conspecific Larvae Exposed to Near-future Ocean Acidification. J. World Aquac. Soc. 2022, 53, 271–289. [Google Scholar] [CrossRef]
- Bergstrom, E.; Silva, J.; Martins, C.; Horta, P. Seagrass Can Mitigate Negative Ocean Acidification Effects on Calcifying Algae. Sci. Rep. 2019, 9, 1932. [Google Scholar] [CrossRef] [Green Version]
- Blanc, J.M.; Molinet, C.; Subiabre, R.; Díaz, P.A. Cadmium Determination in Chilean Blue Mussels Mytilus Chilensis: Implications for Environmental and Agronomic Interest. Mar. Pollut. Bull. 2018, 129, 913–917. [Google Scholar] [CrossRef]
- Casado-Coy, N.; Martínez-García, E.; Sánchez-Jerez, P.; Sanz-Lázaro, C. Mollusc-Shell Debris Can Mitigate the Deleterious Effects of Organic Pollution on Marine Sediments. J. Appl. Ecol. 2017, 54, 547–556. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, J.L.; Jones, C.G.; Strayer, D.L.; Iribarne, O.O. Mollusks as Ecosystem Engineers: The Role of Shell Production in Aquatic Habitats. Oikos 2003, 101, 79–90. [Google Scholar] [CrossRef]
- Hassoun, A.E.R.; Bantelman, A.; Canu, D.; Comeau, S.; Galdies, C.; Gattuso, J.-P.; Giani, M.; Grelaud, M.; Hendriks, I.E.; Ibello, V.; et al. Ocean Acidification Research in the Mediterranean Sea: Status, Trends and next Steps. Front. Mar. Sci. 2022, 9, 892670. [Google Scholar] [CrossRef]
- Lim, J.; Cho, H.; Kim, J. Optimization of Wet Flue Gas Desulfurization System Using Recycled Waste Oyster Shell as High-Grade Limestone Substitutes. J. Clean. Prod. 2021, 318, 128492. [Google Scholar] [CrossRef]
- Jung, J.H.; Yoo, K.S.; Kim, H.G.; Lee, H.K.; Shon, B.H. Reuse of Waste Oyster Shells as a SO2/NOx Removal Absorbent. J. Ind. Eng. Chem. 2007, 13, 512–517. [Google Scholar]
- Huang, Y.-F.; Lee, Y.-T.; Chiueh, P.-T.; Lo, S.-L. Microwave Calcination of Waste Oyster Shells for CO2 Capture. Energy Procedia 2018, 152, 1242–1247. [Google Scholar] [CrossRef]
- O’Neil, D.D.; Gillikin, D.P. Do Freshwater Mussel Shells Record Road-Salt Pollution? Sci. Rep. 2015, 4, 7168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fay, L.; Shi, X. Laboratory Investigation of Performance and Impacts of Snow and Ice Control Chemicals for Winter Road Service. J. Cold Reg. Eng. 2011, 25, 89–114. [Google Scholar] [CrossRef]
- Schade, J.; Lidelöw, S.; Lönnqvist, J. The Thermal Performance of a Green Roof on a Highly Insulated Building in a Sub-Arctic Climate. Energy Build. 2021, 241, 110961. [Google Scholar] [CrossRef]
- Hanumesh, M.; Claverie, R.; Séré, G. A Roof of Greenery, but a Sky of Unexplored Relations—Meta-Analysis of Factors and Properties That Affect Green Roof Hydrological and Thermal Performances. Sustainability 2021, 13, 10017. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and Chitosan: Properties and Applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Silva, T.H.; Mesquita-Guimarães, J.; Henriques, B.; Silva, F.S.; Fredel, M.C. The Potential Use of Oyster Shell Waste in New Value-Added By-Product. Resources 2019, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Fujita, T.; Fukase, M.; Miyamoto, H.; Matsumoto, T.; Ohue, T. Increase of Bone Mineral Density by Calcium Supplement with Oyster Shell Electrolysate. Bone Miner. 1990, 11, 85–91. [Google Scholar] [CrossRef]
- Malaweera, B.O.; Wijesundara, W.M.N.M. Use of Seafood Processing By-Products in the Animal Feed Industry. In Seafood Processing By-Products; Kim, S.-K., Ed.; Springer: New York, NY, USA, 2014; pp. 315–339. ISBN 978-1-4614-9589-5. [Google Scholar]
- Amar, B.; Philip, R.; Bright Singh, I.S. Efficacy of Fermented Prawn Shell Waste as a Feed Ingredient for Indian White Prawn, Fenneropenaeus Indicus. Aquac. Nutr. 2006, 12, 433–442. [Google Scholar] [CrossRef]
- No, H.K.; Hur, E.Y. Control of Foam Formation by Antifoam during Demineralization of Crustacean Shell in Preparation of Chitin. J. Agric. Food Chem. 1998, 46, 3844–3846. [Google Scholar] [CrossRef]
- Paul, M.K.; Mini, K.D.; Antony, A.C.; Mathew, J. Deproteinization of Shrimp Shell Waste by Kurthia Gibsonii Mb126 Immobilized Chitinase. J. Pure Appl. Microbiol. 2022, 16, 909–923. [Google Scholar] [CrossRef]
- Coma, V. Recent Developments in Chitin and Chitosan Bio-Based Materials Used for Food Preservation. In Polysaccharide Building Blocks; Habibi, Y., Lucia, L.A., Eds.; Wiley: Hoboken, NJ, USA, 2012; pp. 143–175. ISBN 978-0-470-87419-6. [Google Scholar]
- Mellegård, H.; From, C.; Christensen, B.E.; Granum, P.E. Inhibition of Bacillus Cereus Spore Outgrowth and Multiplication by Chitosan. Int. J. Food Microbiol. 2011, 149, 218–225. [Google Scholar] [CrossRef]
- Hayes, M.; Carney, B.; Slater, J.; Brück, W. Mining Marine Shellfish Wastes for Bioactive Molecules: Chitin and Chitosan—Part B: Applications. Biotechnol. J. 2008, 3, 878–889. [Google Scholar] [CrossRef] [PubMed]
- Menon, V.V.; Lele, S.S. Nutraceuticals and Bioactive Compounds from Seafood Processing Waste; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Tran, D.V.; Dang, T.T.; Cao, T.T.T.; Hua, N.T.; Pham, H.Q. Natural Astaxanthin Extracted from Shrimp Waste for Pigment Improvement in the Orange Clownfish, Amphiprion Percula. Aquac. Res. 2022, 53, 4190–4198. [Google Scholar] [CrossRef]
- Skonberg, D.I.; Donahue, D.W.; Bayer, R.C.; Floreto, E.; Riley, J.G. Quality Evaluation of American Lobsters Fed Diets Containing Crab Processing Waste. J. Aquat. Food Prod. Technol. 2001, 10, 17–29. [Google Scholar] [CrossRef]
- Kerton, F.M.; Liu, Y.; Murphy, J.N.; Hawboldt, K. Renewable Resources from the Oceans: Adding Value to the by-Products of the Aquaculture and Fishing Industries. In Proceedings of the 2014 Oceans, St. John’s, NL, Canada, 14–19 September 2014; pp. 1–3. [Google Scholar]
- Preuss, H.; Kaats, G. Chitosan as a Dietary Supplement for Weight Loss: A Review. Curr. Nutr. Food Sci. 2006, 2, 297–311. [Google Scholar] [CrossRef]
- Kim, S.; Rajapakse, N. Enzymatic Production and Biological Activities of Chitosan Oligosaccharides (COS): A Review. Carbohydr. Polym. 2005, 62, 357–368. [Google Scholar] [CrossRef]
- Muzzarelli, R. Chitosan-Based Dietary Foods. Carbohydr. Polym. 1996, 29, 309–316. [Google Scholar] [CrossRef]
- Niaz, T.; Hafeez, Z.; Imran, M. Prospectives of Antihypertensive Nano-Ceuticals as Alternative Therapeutics. Curr. Drug Targets 2017, 18, 1269–1280. [Google Scholar] [CrossRef]
- Je, J.-Y.; Park, P.-J.; Kim, B.; Kim, S.-K. Antihypertensive Activity of Chitin Derivatives. Biopolymers 2006, 83, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Healy, M.; Green, A.; Healy, A. Bioprocessing of Marine Crustacean Shell Waste. Acta Biotechnol. 2003, 23, 151–160. [Google Scholar] [CrossRef]
- Palaniappan, M.; Selvarajan, S.; Srinivasamurthy, S.; Chandrasekaran, A. Oyster Shell Calcium Induced Parotid Swelling. J. Pharmacol. Pharmacother. 2014, 5, 256–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.-Y.; Tan, Y.-Q.; Zhang, L.; Zhang, Y.-X.; Song, Y.-H.; Ye, Y.; Xia, M.-S. Bio-Filler from Waste Shellfish Shell: Preparation, Characterization, and Its Effect on the Mechanical Properties on Polypropylene Composites. J. Hazard. Mater. 2012, 217–218, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Lamghari, M.; Almeida, M.J.; Berland, S.; Huet, H.; Laurent, A.; Milet, C.; Lopez, E. Stimulation of Bone Marrow Cells and Bone Formation by Nacre: In Vivo and in Vitro Studies. Bone 1999, 25, 91S–94S. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yao, Q.; Pu, X.; Hou, Z.; Zhang, Q. Biphasic Calcium Phosphate Macroporous Scaffolds Derived from Oyster Shells for Bone Tissue Engineering. Chem. Eng. J. 2011, 173, 837–845. [Google Scholar] [CrossRef]
- Wu, S.-C.; Kao, Y.-L.; Lu, Y.-C.; Hsu, H.-C.; Ho, W.-F. Preparation and Characterization of Microrod Hydroxyapatite Bundles Obtained from Oyster Shells through Microwave Irradiation. J. Aust. Ceram. Soc. 2021, 57, 1541–1551. [Google Scholar] [CrossRef]
- Ghazali, S.R.; Rosli, N.H.; Hassan, L.S.; Helmi Rozaini, M.Z.; Hamzah, H. Determination of New Biomaterials of Clams as An Active Ingredient in Sunscreen. J. Phys. Conf. Ser. 2021, 1874, 012075. [Google Scholar] [CrossRef]
- Ghazali, S.R.; Rosli, N.H.; Hassan, L.S.; Helmi Rozaini, M.Z.; Hamzah, H. Biocompatibility of Hydroxyapatite (HAp) Derived from Clamshell as Active Ingredients in Sunscreen Product. IOP Conf. Ser. Earth Environ. Sci. 2021, 646, 012059. [Google Scholar] [CrossRef]
- Wu, C.-S.; Wu, D.-Y.; Wang, S.-S. Antibacterial Properties of Biobased Polyester Composites Achieved through Modification with a Thermally Treated Waste Scallop Shell. ACS Appl. Bio Mater. 2019, 2, 2262–2270. [Google Scholar] [CrossRef]
- Ramakrishna, C.; Thenepalli, T.; Han, C.; Ahn, J.-W. Synthesis of Aragonite-Precipitated Calcium Carbonate from Oyster Shell Waste via a Carbonation Process and Its Applications. Korean J. Chem. Eng. 2017, 34, 225–230. [Google Scholar] [CrossRef]
- Danilovtseva, E.N.; Palshin, V.A.; Strelova, M.S.; Lopatina, I.N.; Kaneva, E.V.; Zakharova, N.V.; Annenkov, V.V. Functional Polymers for Modeling the Formation of Biogenic Calcium Carbonate and the Design of New Materials. Polym. Adv. Techs 2022, 33, 2984–3001. [Google Scholar] [CrossRef]
- Kim, S.-C. Process Technology for Development and Performance Improvement of Medical Radiation Shield Made of Eco-Friendly Oyster Shell Powder. Appl. Sci. 2022, 12, 968. [Google Scholar] [CrossRef]
- Audrézet, F.; Pochon, X.; Floerl, O.; Le Guen, M.-J.; Trochel, B.; Gambarini, V.; Lear, G.; Zaiko, A. Eco-Plastics in the Sea: Succession of Micro- and Macro-Fouling on a Biodegradable Polymer Augmented With Oyster Shell. Front. Mar. Sci. 2022, 9, 891183. [Google Scholar] [CrossRef]
- Martinez, L.M.T. Handbook of Ecomaterials; Springer: New York, NY, USA, 2019; ISBN 978-3-319-68254-9. [Google Scholar]
- Tayeh, B.A.; Hasaniyah, M.W.; Zeyad, A.M.; Yusuf, M.O. Properties of Concrete Containing Recycled Seashells as Cement Partial Replacement: A Review. J. Clean. Prod. 2019, 237, 117723. [Google Scholar] [CrossRef]
- Wang, J.; Liu, E. Upcycling Waste Seashells with Cement: Rheology and Early-Age Properties of Portland Cement Paste. Resour. Conserv. Recycl. 2020, 155, 104680. [Google Scholar] [CrossRef]
- Peceño, B.; Arenas, C.; Alonso-Fariñas, B.; Leiva, C. Substitution of Coarse Aggregates with Mollusk-Shell Waste in Acoustic-Absorbing Concrete. J. Mater. Civ. Eng. 2019, 31, 04019077. [Google Scholar] [CrossRef]
- Peceño, B.; Leiva, C.; Alonso-Fariñas, B.; Gallego-Schmid, A. Is Recycling Always the Best Option? Environmental Assessment of Recycling of Seashell as Aggregates in Noise Barriers. Processes 2020, 8, 776. [Google Scholar] [CrossRef]
- Sophia, M.; Sakthieswaran, N. Waste Shell Powders as Valuable Bio- Filler in Gypsum Plaster—Efficient Waste Management Technique by Effective Utilization. J. Clean. Prod. 2019, 220, 74–86. [Google Scholar] [CrossRef]
- Stel’makh, S.A.; Shcherban’, E.M.; Beskopylny, A.N.; Mailyan, L.R.; Meskhi, B.; Beskopylny, N.; Dotsenko, N.; Kotenko, M. Nanomodified Concrete with Enhanced Characteristics Based on River Snail Shell Powder. Appl. Sci. 2022, 12, 7839. [Google Scholar] [CrossRef]
- Wang, X.; Guo, Y.; Ji, G.; Zhang, Y.; Zhao, J.; Su, H. Effect of Biowaste on the High- and Low-Temperature Rheological Properties of Asphalt Binders. Adv. Civ. Eng. 2021, 2021, 5516546. [Google Scholar] [CrossRef]
- Wang, W.; Wei, W.; Gao, S.; Chen, G.; Yuan, J.; Li, Y. Agricultural and Aquaculture Wastes as Concrete Components: A Review. Front. Mater. 2021, 8, 762568. [Google Scholar] [CrossRef]
- Morris, J.P.; Wang, Y.; Backeljau, T.; Chapelle, G. Biomimetic and Bio-Inspired Uses of Mollusc Shells. Mar. Genom. 2016, 27, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Alonso, A.A.; Álvarez-Salgado, X.A.; Antelo, L.T. Assessing the Impact of Bivalve Aquaculture on the Carbon Circular Economy. J. Clean. Prod. 2021, 279, 123873. [Google Scholar] [CrossRef]
- Vicente, F.A.; Ventura, S.P.M.; Passos, H.; Dias, A.C.R.V.; Torres-Acosta, M.A.; Novak, U.; Likozar, B. Crustacean Waste Biorefinery as a Sustainable Cost-Effective Business Model. Chem. Eng. J. 2022, 442, 135937. [Google Scholar] [CrossRef]
Shell Type | CaCO3 | Na2O | SO3 | MgO | SiO2 | Al2O3 | SO4 | Other |
---|---|---|---|---|---|---|---|---|
River oyster | 96 | 1 | 0.7 | 0.7 | 0.3 | 0.4 | - | 1.8 |
Sea oyster | 92 | 1 | 0.7 | 0.7 | 4 | 0.4 | - | 1.2 |
Clam | 97 | 0.4 | 0.4 | 0.1 | 0.8 | 0.1 | 0.1 | 1.1 |
Green mussel | 96 | 0.4 | 0.4 | - | 0.8 | 0.1 | 0.1 | 2.2 |
Chitin Derivative | Process of Synthesis | Application |
---|---|---|
Chitosan | Deacetylation of chitin | Anticancer, antibacterial, enzyme immobilization |
Alkyl chitin | Deacetylation of chitosan | Antimicrobial |
N and O sulfated chitin | Sulfation | Anticoagulant |
Carboxymethyl chitin | Carboxymethylation | Excipients for oral drug delivery |
Chito-oligosaccharides | Acid hydrolysis and oxidative, reductive depolymerization | Nutraceutical additive |
Chitin nanofibers | Loosening of fibril bundles by removal of minerals, proteins, pigments and lipids with HCl, NaOH and ethanol | Wound dressing, cosmetics, skin health, stem cell, anticancer therapy, drug delivery, obesity treatment, anti-inflammatory |
Chitin nanowhiskers | Chitin treatment with 3 M HCl or 3 M H2SO4 | Nanotechnology, nanocomposite material for drug/gene deliver or nanoscaffolds in tissue engineering |
Chitin nanoparticles | Chitin treatment with 3 M HCl | Biocompatible, biodegradable, non-toxic |
Chitin nanocomposites | By chitin whisker and tannic acid, cross-link chitosan, or chitin nanofibers, or adding metal nanoparticles into chitin matrix | Drug encapsulation, improving the drug load, controlled release action |
Chitin hydrogels | Chitin treatment with NaOH | Bone tissue regeneration, cell scaffolds and drug delivery vehicles |
Shell Type | Replacement Component | Dosage (%) | Physical Properties/Max. % of Decrease or Increase |
---|---|---|---|
Oyster | Fine aggregate | 20–40 | Water absorption/21.60 decrease |
Cement | 5–20 | Compressive strength/23.70 increase | |
Mussel | Coarse and fine aggregate | 25–100 | Splitting tensile strength/12.50 decrease |
Cockle | Coarse aggregate | 25–75 | Compressive strength/38.00 decrease |
Scallop | Fine aggregate | 20–60 | Compressive strength/10.00 decrease |
Periwinkle | Coarse and fine aggregate | 10–50 | Compressive strength/32.00 decrease |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Topić Popović, N.; Lorencin, V.; Strunjak-Perović, I.; Čož-Rakovac, R. Shell Waste Management and Utilization: Mitigating Organic Pollution and Enhancing Sustainability. Appl. Sci. 2023, 13, 623. https://doi.org/10.3390/app13010623
Topić Popović N, Lorencin V, Strunjak-Perović I, Čož-Rakovac R. Shell Waste Management and Utilization: Mitigating Organic Pollution and Enhancing Sustainability. Applied Sciences. 2023; 13(1):623. https://doi.org/10.3390/app13010623
Chicago/Turabian StyleTopić Popović, Natalija, Vanesa Lorencin, Ivančica Strunjak-Perović, and Rozelindra Čož-Rakovac. 2023. "Shell Waste Management and Utilization: Mitigating Organic Pollution and Enhancing Sustainability" Applied Sciences 13, no. 1: 623. https://doi.org/10.3390/app13010623