Recent Trends on Domestic, Agricultural and Industrial Wastewaters Treatment Using Microalgae Biorefinery System
Abstract
:1. Introduction
- Wastewater treatment by microalgae: In this section we present the physicochemical properties of domestic wastewater that have been used in domestic wastewater treatment by microalgae, followed by the pretreatment of domestic wastewater before microalgae cultivation, as well as pollutant removals such as chemical oxygen demand (COD), total nitrate (TN) and total phosphate (TP) removals, biomass generation and the productivity of biomolecules after microalgae cultivation, using different species that have been tested in the literature. The same parameters have been explored for both agricultural wastewater and industrial wastewater.
- Microalgal mechanisms for wastewater bioremediation: As the biodegradation response of microalgae to contaminants varies from one pollutant to another, we focus on the following mechanisms in this section: CO2 fixation, nitrogen sources assimilation, phosphate sources assimilation and heavy metals biodegradation mechanisms.
- Economic analysis of microalgae wastewater treatment technologies: In this section we compared microalgae wastewater treatment technologies with co-culture technologies such as microalgae-bacteria, microalgae-fungi, microalgae-yeast and microalgae-Nanoparticle. Furthermore, we discussed a life cycle assessment (LCA) and a techno economic assessment (TEA) of microalgae-based wastewater treatment process.
- Challenges and prospects: We have proposed strategies to overcome the challenges that the microalgae-based wastewater treatment process is facing.
2. Wastewater Treatment by Microalgae
2.1. Domestic Wastewater
2.1.1. Physicochemical Properties
Type | pH | TSS (mg L−1) | TOC (mg L−1) | COD (mg L−1) | NO3-N (mg L−1) | NO2-N (mg L−1) | NH4-N (mg L−1) | NH3-N (mg L−1) | PO4-P (mg L−1) | TN (mg L−1) | TP (mg L−1) | References |
Secondarily Treated Sewage | 7.63 | - | 5.5 | - | 7.67 | 0.01 | 0.17 | - | 0.02 | 8.9 | 0.04 | [13] |
7.2 | 352 | - | 328 | - | - | - | - | - | 18 | 7 | [14] | |
Raw Sewage | 8.77 | 740 | - | 784 | 30.25 | - | - | - | 1.7 | - | - | [12] |
- | - | 310–560 | 1000–1100 | - | - | - | - | - | 230–260 | 15 | [15] | |
7.80 | - | - | 702 | 10.72 | - | - | 33.1 | 2.25 | - | - | [16] | |
7.1 | - | - | 252 | - | - | 205 | - | - | 265 | 17.1 | [17] | |
7.8 | - | - | 104 | - | - | 26.3 | - | - | 33 | 0.6 | [18] | |
6.6–7.6 | - | - | 190–230 | - | - | - | 20–35 | - | 40–60 | 4.5–5.6 | [19] | |
7.82 | - | - | 426 | 1.156 | - | 46.2 | - | - | - | 3.22 | [20] | |
7.7 | 3500 | - | 286 | 197 | - | 992 | - | - | - | 286 | [21] | |
7.86 | - | - | 618 | - | - | 54 | - | - | 80 | 4.2 | [22] | |
7.56 | - | 154 | 496 | 2.45 | - | 12.5 | - | 7.1 | 24.45 | 9.6 | [23] | |
- | - | 208.15 | 446.25 | 16.58 | - | 37.64 | - | - | 61.47 | 7.42 | [24] | |
6.9–7.5 | - | - | - | 2–5 | - | 36–47 | - | - | - | 12–19 | [25] | |
7.9–8.2 | - | - | 296–858 | 1.5–5.6 | - | 58.2–136.9 | - | - | - | 7.9–27.7 | [26] | |
8.81 | - | 20.58 | - | 0.07 | - | 30.02 | - | - | 30.46 | 2.6 | [27] | |
7.2 | - | - | 129 | - | - | - | 37 | - | 48 | 9 | [28] | |
7.4–7.6 | 95.8 | 201–311 | 190–310 | - | - | 45.6 | - | - | 57.9 | 4.4 | [29] | |
8.2 | 32 | 22.1 | 97 | 10 | - | 136 | - | 62 | 146 | - | [30] | |
- | - | - | - | - | - | - | - | - | 315 | 10.15 | [31] | |
8.55 | - | 343.07 | - | - | - | - | - | - | 0.22 | 2.28 | [32] | |
Kitchen | 6.85 | 980 | - | 560 | 52.962 | - | - | - | 2.037 | - | - | [12] |
Toilet | 7.1 | - | - | 506.8 | - | - | 157.5 | - | 16.4 | 203.6 | 22.3 | [33] |
Type | Chloride (mg L−1) | Na (mg L−1) | F (mg L−1) | Fe (mg L−1) | Cu (mg L−1) | Zn (mg L−1) | Mg (mg L−1) | Ca (mg L−1) | K (mg L−1) | Pb (mg L−1) | Turbidity NTU | References |
Secondarily Treated Sewage | - | 65 | - | - | - | 0.05 | 3 | - | 27 | - | - | [14] |
Sewage | 58.25 | 110 | - | - | - | - | - | 160 | 135 | - | - | [12] |
1200 | - | - | - | <0.005 | - | 14.8 | - | - | - | - | [17] | |
268 | - | - | - | - | - | - | - | - | - | 379 | [21] | |
- | - | - | - | - | - | - | - | - | - | 182 | [23] | |
173–190 | - | - | - | - | - | 108–144 | 300–400 | - | - | - | [25] | |
410–435 | 222.5–312.1 | - | - | - | 0.1–0.18 | 52.1–65.7 | 31.1–31.9 | 8.4–9.8 | - | - | [26] | |
- | - | - | - | - | - | - | - | - | - | - | [27] | |
- | - | - | - | - | - | - | - | - | - | - | [28] | |
- | - | - | - | - | - | - | - | - | - | 140–160 | [29] | |
- | - | - | 0.098 | 0.0321 | 0.0218 | - | 52.2 | 12.16 | 0.1707 | - | [31] | |
Kitchen | 92.08 | 130 | - | - | - | - | - | 180 | 148 | - | - | [12] |
Toilet | - | - | - | - | - | - | 8.6 | 23.8 | 98.2 | - | - | [33] |
2.1.2. Pretreatment
Wastewater | Pretreatment Method | Microalgae | References |
---|---|---|---|
Domestic | Filtered (Whatman filter paper, grade 1), autoclaved | Chaetoceros sp. and Isochrysis sp. | [35] |
Municipal | Settled in flask for two hours and pretreated by passing Whatman filter paper | Chlorella minutissima | [23] |
Domestic | Filtered using a 0.2 μm nylon membrane filter | Scenedesmus sp. | [36] |
Domestic | Filtered through a mesh sieve (100 µm) | Chlorella sp. and Scenedesmus sp. | [24] |
Domestic | Pre-filtered using filter cloth (nylon monofilament, pore size 25 μm) and autoclaved at 121 °C for 20 min | Chlorella variabilis TH03 | [37] |
Septic tank | Centrifuged at 5000 rpm for 15 min, filtered by 0.45 μm polyester filters and sterilized by an autoclave for 20 min at 121 °C | Chlorella pyrenoidosa (FACHB-9) | [33] |
Municipal | Filtered using LLG-filter papers (pore size 5 µm to 13 µm) | Chlorella sorokiniana (UTEX 1230) | [22] |
Municipal | Filtered with a 2 μm filter | Phaeodactylum tricornutum | [28] |
Domestic | Filtered using nylon mesh with pore size ∼50 μm | Botryococcus sp. | [14] |
Domestic | Filtered | Chlorella sp. | [12] |
Domestic | Autoclaved at 121 °C for 30 min | Chlorella pyrenoidosa | [19] |
Municipal | Filtered and autoclaved at 121 °C for 20 min | Chlorella zofingiensis | [31] |
Municipal | Filtered through glass microfiber filters with 0.6-μm pores and autoclaved at 121 °C under 15 psi for 20 min | Dunaliella salina | [38] |
Domestic | Autoclaved at 121 °C for 30 min | Chlorella pyrenoidosa | [20] |
Municipal | Filtered and sterilized using vacuum filtration unit and autoclaved at 121 °C for 15 min | Nannochloropsis oceanica | [32] |
Domestic | Filtered and sterilized by autoclaving at 15 psi for 30 min | Chlorella vulgaris and Nannochloropsis oculata | [34] |
2.1.3. Microalgae Treatment of Domestic Wastewater
Algae Used | Wastewater Type | Conditions of Culture | Nutrient Concentration | Average Nutrient Removal Rate | References |
---|---|---|---|---|---|
Acutodesmus obliquus | Municipal and poultry litter | 25 °C; 80 μE m−2 s−1; 16:8 light: dark | PO4-P: 21.05 mg L−1; NO3-N: 13.25 mg L−1; NH4-N: 108.0 mg L−1; | NO3-N: 79.51%; NH4-N: 81.82%; PO4-P: 80.52% | [42] |
Botryococcus Braunii | Secondary treated sewage | 25 °C; 3000 lx; 1% CO2 (50 mL min−1) | TN: 8.9 mg L−1; TP: 0.04 mg L−1 | TN:86%; TP:50% | [13] |
Botryococcus sp. | Domestic | 25 °C; 30 μE m−2 s−1; 16:8 light: dark | TN:18 mg L−1; COD: 328 mg L−1; PO4-P: 7 mg L−1 | nr | [14] |
Chaetoceros sp. | Municipal | 25 °C; 100 μE m−2 s−1; 12:l2 light: dark | nr | NO2-N: 0.63%; TP: 83–84%; COD: 157 mg L−1 | [35] |
Chlorella minutissima | Municipal | 24 °C | COD: 496.0 mg L−1; TN: 24.45 mg L−1; TP: 9.6 mg L−1 | TN: 28.46%; TP: 12.68%; COD: 61.69% | [23] |
Chlorella pyrenoidosa | Sewage treatment plant | 26 °C; 1500 lx | PO4-P: 2.25 mg L−1; NO3-N: 10.72 mg L−1; COD: 702 mg L−1 | NO3-N: 99.2%; PO4-P: 70.1%; COD: 61.0% | [16] |
Domestic | Open pond systems using direct sunlight: 18–31 °C (day) and 6–15 °C (night); the insolation 9 h a day | NH4-N: 46.2 mg L−1; TP: 3.22 mg L−1; COD: 426 mg L−1 | NH4-N: 95%; TP: 81%; COD: 78% | [20] | |
Raw domestic | Continuous illumination of 1800 lx | TN: 197 mg L−1; NH4-N: 992 mg L−1; TP: 286 mg L−1 | NH4-N: 99%; TP: 96%; TN: 80% | [21] | |
Chlorella pyrenoidosa (FACHB-9) | Municipal | 23.2 °C; 4000 lx; 24:0 light: dark | TN: 33 g L−1; TP: 0.6 g L−1; COD: 104 g L−1 | nr | [18] |
Municipal | nr | TN: 50 mg L−1; NH4– N: 40 mg L−1; TP: 5 mg L−1; COD: 240 mg L−1 | nr | [43] | |
Septic tank effluents (toilet) | 25 °C, 260 μE m−2 s−1; 12:12 light: dark | TN: 203.6 mg L−1; NH4-N: 157.5 mg L−1; TP: 22.3 mg L−1; COD: 5200 mg L−1 | NH4-N: 90.8%; TP: 62.9%; COD: 61.3% | [33] | |
Chlorella Sorokiniana MCC33 | Municipal | 25 °C; | COD: 496.0 mg L−1; TN: 24.45 mg L−1; TP: 9.6 mg L−1 | TN: 40%; TP: 20.83%; COD: 72.17% | [23] |
Chlorella sp. | Kitchen | 26 °C; 4000 lx; 12:12 light: dark | PO4-P: 2.037 mg L−1; NO3-N: 52.962 mg L−1; COD: 560 mg L−1 | NO3-N: 38%; PO4-P: 75%; COD: 32.14% | [12] |
Sewage | 26 °C; 4000 lx; 12:12 light: dark | PO4-P: 1.7 mg L−1; NO3-N: 30.25 mg L−1; COD: 784 mg L−1 | NO3-N: 67%; PO4-P: 88% | [12] | |
Primary effluent treatement plant | 20 °C; 16:8 light: dark; 60 μE m−2 s−1 | COD: 93 mg L−1; TN: 36.1 mg L−1; TP: 4.0 mg L−1 | TN: 95.7%; TP: 96.4% | [44] | |
Raw centrate from municipal wastewater | 25 °C; 50 μE m−2 s−1 | COD: 2304 mg L−1; TN: 116.1 mg L−1; TP: 212.0 mg L−1 | TN: 89.1%; TP: 80.9%; COD: 90.8% | [45] | |
Chlorella sp. IM-01 | Municipal | 27 °C; 2000 lx | NO2-N 1222.1 mg L−1; NO3-N: 112.7 mg L−1; NH4-N: 282.4 mg L−1; TP: 1.51 mg L−1 | NO2-N: 70.42%; NO3-N: 97.81%; NH4-N: 98.35%; TP: 89.39% | [46] |
Chlorella variabilisTH03 | Domestic | 25.5–35 °C; 12,670 lx to 107,695 lx (outdoor) | nr | COD: 64.7% to 90.7%; TN: 85.1–96.8%; TP: 99.7% to 100% | [37] |
Chlorella vulgaris | Municipal | 1200 lx; 16:8 light: dark | COD: 145 mg L−1; NH4-N: 48 mg L−1 | (>94% of COD and NH4-N) | [39] |
Chlorella vulgaris (FC-16) | Municipal + glycerol | 25 °C, 100 μE m−2 s−1; 12:12 light: dark | TN: 45.1 mg L−1 | TN: 69.04% | [34] |
Chlorella vulgaris Wu-G22 | Domestic (unsterilized) + Glycerol (50 mM) | 25 °C; 174 μE m−2 s−1; 12:12 light: dark 2.5% CO2 | COD: 6195.6 mg L−1; TN: 46.78 mg L−1; PO4-P: 9.79 mg L−1 | COD: 448.47 mg L−1; TN: 3.39 mg L−1; PO4-P: 0.75 mg L−1 | [40] |
Chlorella zofingiensis | Municipal + effluent from anaerobic digestion of piggery waste (92% + 8%) | 25 °C, 150 μE m−2 s−1; 12:12 light: dark; 5% CO2; (Indoor); 5–6% CO2 (Outdoor) | TN: 76.34 mg L−1; TP: 16.56 mg L−1 | TN: ~93%, TP: ~90% | [31] |
Dunaliella salina | 75% Municipal + 25% saline water | 20 °C; 120 μE m−2 s−1 | NO3-N: 40.7 mg L−1; NH4-N: 0.95 mg L−1; PO4-P: 3.8 mg L−1 | NO3-N: 84.2%; NH4-N: 71.0%; PO4-P: 47.5% | [38] |
Haematococcus pluvialis | Raw primary effluent | 25 °C, 3000 lx (Green stage)/35,400 lx (Red stage); 12:12 light: dark; 5% CO2 | TN: 20.1 mg L−1; TP: 2.2 mg L−1 | TN: 90%; TP: 99% | [47] |
Domestic secondary effluent | 25 °C, 55–60 μE m−2 s−1; 14:10 light: dark | TN: 7.0 mg L−1; TP: 0.46 mg L−1 | TN: 93.8%; TP: 97.3% | [48] | |
Isochrysis sp. | Municipal | 25 °C; 100 μE m−2 s−1; 12:12 light: dark | nr | NO2-N: 5.57%; TP: 84–94%; COD: 93% | [35] |
80% Municipal | 25 °C; 100 μE m−2 s−1; 12:12 light: dark | nr | TP: 94% | ||
Micractinium reisseri | Influent (Municipal) | 27 °C; 40 μE m−2 s−1 | TN: 15 mg L−1; TP: 3 mg L−1 | TN: 86%; TP: 95% | [49] |
Secondary effluent | 27 °C; 40 μE m−2 s−1 | TN: 13 mg L−1; TP: 2 mg L−1 | TN: 85%; TP: 96% | ||
Tertiary effluent | 27 °C; 40 μE m−2 s−1 | TN: 11 mg L−1; TP: 1.6 mg L−1 | TN: 89%; TP: 95% | ||
Micractinium sp. | Primary effluent | 20 °C; 60 μE m−2 s−1; 16:8 light: dark | TN: 36.1 mg L−1; TP: 4.0 mg L−1 | TN: 93.9%; TP: 96.1% | [44] |
Nannochloropsis oceanica | Municipal sewage | 25 °C; 60 μE m−2 s−1 | TN:0.22 mg L−1; TP: 2.28 mg L−1 | nr | [32] |
Nannochloropsis oculata | Municipal + glycerol | 25 °C; 100 μE m−2 s−1; 12:12 light: dark | TN: 45.1 mg L−1; | TN: 80.6% | [34] |
75% of treated municipal | 24 °C;150 rpm mixing; Continuous illumination | TN: 3.77 mg L−1; | nr | [50] | |
Municipal | 70–100 μE m−2 s−1 | TP: 4.4 mg L−1; TN: 57.9 mg L−1; | TN: 86%; TP: 81% | [51] | |
Phaeodactylum tricornutum | Municipal and seawater (1:1) | 18 °C; 120 μE m−2 s−1; 12:12 light: dark | COD: 129 mg L−1; TN: 48 mg L−1; TP: 9 mg L−1; NH4-N: 37 mg L−1 | COD: 87.7%; TN: 86.7%; TP: 97.0%; NH4-N: 84.2% | [28] |
Scenedesmus abundans | Raw domestic | Continuous illumination of 1800 lx; | TN: 197 mg L−1; NH4-N: 992 mg L−1; TP: 286 mg L−1 | NH4-N: 98%; TP: 95%; TN: 83% | [21] |
Scenedesmus obliquus | Municipal | 25 °C; 40 ± 10 μE m−2 s−1 | TN: 30.46 mg L−1; TP: 2.60 mg L−1 | TN: 46.85%; TP: 34.18% | [27] |
Municipal + 1 g L−1 of sodium acetate | 25 °C; 40 ± 10 μE m−2 s−1 | TN: 30.46 mg L−1; TP: 2.60 mg L−1 | TN: 82.20%; TP: 76.35% | ||
Scenedesmus sp. | 15% Fresh leachate from transfer station | 25 °C; 75 μE m−2 s−1; 14:10 light: dark | NH4-N: 507 mg L−1; PO4-P: 109 mg L−1; NO2-N: 0.9 mg L−1 | NH4-N: 94%; PO4-P: 96%; NO2-N: 100% | [41] |
Domestic | 20 °C; 12:12 light: dark | NO3-N: 2.39 mg mL−1; PO4-P: 18.53 mg mL−1; COD: 257 mg mL−1 | NO3-N: 71.2%; PO4-P: 89.6%; COD: 86.38% | [25] | |
Primary urban | nr | PO4-P: 7.9–27.7 mg L−1; NH4-N: 58.2–136.9 mg L−1 | PO4-P: 0.65 mg m−2 d−1; NH4-N: 99%; | [26] | |
Domestic | 24 °C; 60 μE m−2 s−1; 12:12 light: dark | TP: 98.3 mg L−1; NO2-N: 303.3 mg L−1; NO3-N: 131.4 mg L−1 | TP: 32 mg L−1; NO2-N: 2.36 mg L−1; NO3-N: 18.1 mg L−1; | [36] | |
Tetraselmis suecica | 25% of treated municipal | 24 °C;150 rpm mixing; Continuous illumination | TN: 3.77 mg L−1 | nr | [50] |
Algae Used | Wastewater Type | Growth Rate or Volumetric Productivity | Final Biomass Concentration | Production of Target Metabolites | References |
---|---|---|---|---|---|
Acutodesmus obliquus | Municipal and poultry litter | 140.36 mg L−1 d−1 | 1.9 g L−1 | Lipids: 38.49 mg L−1 d−1; Carbohydrates: 49.55 mg L−1 d−1 | [42] |
Botryococcus Braunii | Secondary treated sewage | nr | 0.34 g L−1 | Hydrocarbon content: 53% | [13] |
Botryococcus sp. | Domestic | 200 mg L−1 d−1 | 3.32 g L−1 | Carbohydrates: 1.12 g L−1; Lipids: 0.736 g L−1; | [14] |
Chaetoceros sp. | Municipal | 2.79 g L−1 d−1 | 90.6 × 105 cells mL−1 | Lipids: 0.05 g L−1 d−1; Carbohydrates: 1.9 mg g−1 | [35] |
Chlorella minutissima | Municipal | 0.196 d−1 | 191.66 mg L−1 d−1 | Lipids: 36.66 mg L−1 d−1 | [23] |
Chlorella pyrenoidosa | Sewage treatment plant | nr | 4.5 g L−1 | nr | [16] |
Domestic | nr | 1.71 g L−1 | nr | [20] | |
Raw domestic | nr | 11.33 mg L−1; | nr | [21] | |
Chlorella pyrenoidosa (FACHB-9) | Municipal | nr | 0.54 g L−1–0.67 g L−1 | Lipids: 30.61% | [18] |
Municipal | nr | 0.6167 g L−1 | Lipids: 0.1083 g L−1; | [43] | |
Septic tank effluents (toilet) | 0.54 d−1 | 1.68 g L−1 | Chlorophyll a: 4.3%; Lipids: 11.9%; Proteins: 57.2%; Carbohydrates: 19.3% | [33] | |
Chlorella Sorokiniana MCC33 | Municipal | 0.269 d−1 | 208.35 mg L−1 d−1 | Lipids: 48.33 mg L−1 d−1 | [23] |
Chlorella sp. | Kitchen | nr | 0.45 g L−1 | nr | [12] |
Sewage | nr | 0.6 g L−1 | nr | [12] | |
Primary effluent | 0.11 d−1 | nr | nr | [44] | |
Raw centrate municipal | 0.677 d−1 | 0.92 g L−1 | FAMEs: 11.04%; | [45] | |
Chlorella sp. IM-01 | Municipal | nr | nr | Carbohydrates: 61–94 µg mg−1 | [46] |
Chlorella variabilisTH03 | Domestic | 0.41 d−1 | 1.67–1.85 g L−1 | nr | [37] |
Chlorella vulgaris | Municipal | 0.32 d−1 | 0.89 g L−1 | Lipids: 0.16 g L−1 | [39] |
Chlorella vulgaris (FC-16) | Municipal + glycerol | nr | 0.056 g L−1 d−1 | Lipids: 15.11% | [34] |
Chlorella vulgaris Wu-G22 | Domestic (unsterilized) + Glycerol (50 mM) | nr | 1.65 g L−1 | Lipids: 15.7%; Carbohydrates: 7.3%; Proteins: 70% | [40] |
Chlorella zofingiensis | Municipal + effluent from anaerobic digestion of piggery waste (92% + 8%) | 0.63 g L−1 d−1 | 2.51 g L−1 (indoor), 1.7 g L−1 (outdoor) | Lipids: 25.46% (indoor) 21.6% (outdoor); Carbohydrates: 21.2% (indoor) 26.9% (outdoor); | [31] |
Desmodesmus sp. | Municipal (Ultrasound pretreatment) | nr | 75 g L−1 | Proteins: 97%; Carbohydrates: 89%; Lipids: 73%; | [52] |
Municipal (Ozone pretreatment) | nr | 25 g L−1 | Carbohydrates: 85%; Lipids: 48%; Proteins: 25%; | ||
Untreated Municipal | nr | nr | Lipids: 3.8%; Proteins: 8.23%; Carbohydrates: 37% | ||
Dunaliella salina | 75% Municipal + 25% saline water | nr | 169.5 mg L−1 | nr | [38] |
Haematococcus pluvialis | Raw primary effluent | 0.34 d−1 | nr | Astaxanthin: 3.26 mg L−1 | [47] |
Domestic secondary effluent | 27.8 mg L−1 d−1 | 207 mg L−1 | Lipids: 43% | [48] | |
Isochrysis sp. | 50% Municipal | 0.022 g L−1 d−1 | 110.5 × 105 cells mL−1 | Lipids: 0.02 g L−1 d−1; Carbohydrates: 2.6 mg g−1 | [35] |
80% Municipal | 1.27 g L−1 d−1 | nr | Lipids: 1.11 g L−1 d−1 | ||
Micractinium reisseri | Municipal (Influent) | 1.15 d−1 | 0.22 g L−1 | Lipids: 23% | [49] |
Municipal (Secondary effluent) | 1.04 d−1 | 0.19 g L−1 | Lipids: 30% | ||
Municipal (Tertiary effluent) | 1.01 d−1 | 0.14 g L−1 | Lipids: 40% | ||
Micractinium sp. | Primary effluent | 0.11 d−1 | nr | nr | [44] |
Nannochloropsis gaditana | Municipal | 0.167 g L−1 d−1 | 2.33 g L−1 | Carbohydrates: 17.7% | [53] |
Treatment plant | 0.15 mg L−1 d−1 | 72 mg L−1 | nr | [54] | |
Nannochloropsis oceanica | Municipal sewage | 21.78 mg L−1 d−1 | nr | Lipids: 26.91% | [32] |
Nannochloropsis oculata | Municipal + glycerol | nr | 0.044 g L−1 d−1 | Lipids: 8.91% | [34] |
75% of treated municipal | 0.5430 d−1 | 1.285 g L−1 | Carbohydrates: 2.39% | [50] | |
Municipal | nr | 406 mg L−1 | nr | [51] | |
Phaeodactylum tricornutum | Municipal and seawater (1:1) | 1.01 d−1 | 0.97 g L−1 | Lipids: 54.76 mg L−1 d−1 | [28] |
Scenedesmus abundans | Raw domestic | nr | 7.23 mg L−1 | nr | [21] |
Scenedesmus obliquus | Municipal | nr | 0.48 mg L−1 | Lipids: 9.02 mg L−1 d−1 | [27] |
Municipal + 1 g L−1 of sodium acetate | nr | 0.2 mg L−1 | Lipids: 22.08 mg L−1 d−1 | ||
Scenedesmus sp. | 15% Fresh leachate from transfer station | 0.17 d−1 | 133 mg L−1 d−1 | nr | [41] |
Domestic | nr | 0.95 g L−1 | Lipids: 30.5% | [25] | |
Primary urban | nr | 22.2 g m−2 d−1 | nr | [26] | |
Domestic | nr | 0.84 g L−1 | Lipid productivity: 8.6 mg L−1 d−1 | [36] | |
Tetraselmis suecica | 25% of treated municipal | 0.4778 d−1 | 0.76 g L−1 | Carbohydrates: 4.24% | [50] |
2.2. Agricultural Wastewater
2.2.1. Physicochemical Properties
Type | pH | TSS (mg L−1) | TOC (mg L−1) | COD (mg L−1) | NO3-N (mg L−1) | NO2-N (mg L−1) | NH4-N (mg L−1) | NH3-N (mg L−1) | PO4-P (mg L−1) | TN (mg L−1) | TP (mg L−1) | References |
Raw Poultry Litter Extract | 7.45 | 34.40 | - | 482.2 | 13.25 | - | - | 108.0 | 21.05 | - | - | [42] |
Anaerobically Digested Poultry Litter | 9–10 | - | 500–1000 | 400–900 | - | - | 2000–3000 | - | - | 2900–3200 | 20–25 | [56] |
Pretreated Piggery | 7.5–9.3 | - | 1409–3935 | 430–11,100 | 2–352 | 10 | 70–644 | 1388 | 129 | 981–1356.75 | 20–168 | [66,67,68,69,70] |
Swine | 6.83–8.1 | 2375–7120 | 20,075 | 419.88–85,600 | 1.19–334 | - | 260–5351 | 578.27 | 36.7–6608 | 163.40–5685 | 26.2–284 | [30,57,58,60,61,62] |
Nejayote | 9.80 | 9060 | - | 9153.30 | - | - | - | - | - | 120.69 | 41.16 | [62] |
Cattle | 6.11 | - | - | 674 | 3041 | - | 22,358 | - | 760 | - | - | [71] |
Dairy Farm | 6.05–8.18 | 32.15–65.65 | - - | 119.21–2593 | 1.45–5.44 | - | 0.75–181.50 | - | 4.33–7.01 | 283 | 115.90 | [72,73] |
Swine Lagoon | 5.5 | - | - | 2386 | 4.33 | - | 336.2 | - | - | 348.2 | 26.62 | [74] |
Aerated Swine Lagoon | 8.9 | - | - | 2328 | 103 | - | 22.3 | - | - | 177.9 | 19.48 | [74] |
Minkery | 8.84 | - | - | 1200 | 10 | 10 | 3250 | - | - | - | 1400 | [75] |
Paddy-Soaked | 6 | 7255 | 2900 | 2250 | - | - | - | 265.30 | 211.50 | - | - | [76] |
Shrimp Culture | 8.18 | 32,951.5 | - | 73.5–367.39 | 12.9–73.67 | 7.58 | 8.07–109.91 | - | 15.59 | 21.9 | <0.4 | [63,64] |
Fish Farm | 7.82–8.5 | - | - | 30.30–112 | 3.93–12 | 0.08 | 5.6 | - | - | 4.12–60 | 0.16–6.8 | [60,65] |
Anaerobically Digested Abattoir Effluent | 7.1–7.4 | - | - | 302–514 | 0–8 | 0–7.5 | - | 200–210 | 70–80 | - | - | [77] |
Type | Chloride (mg L−1) | Na (mg L−1) | F (mg L−1) | Fe (mg L−1) | Cu (mg L−1) | Zn (mg L−1) | Mg (mg L−1) | Ca (mg L−1) | K (mg L−1) | Pb (mg L−1) | Turbidity NTU | References |
Anaerobically Digested Poultry Litter | - | - | - | 0.085 | 0.085 | - | - | 0.044 | 1314.24 | - | - | [56] |
Pretreated Piggery | 52,524 | 139.55 | - | 1.62 | 0.026 | 0.14 | 54.75–81 | 28.55–105 | 400.75 | 0.0025 | - | [66,67,70] |
Swine | 154.7 | 66.24–583.8 | - | 0.52–0.728 | 0.0015–0.94 | 0.087–1.7 | 8.3–37.49 | 3.89–63.88 | 229.9–666.7 | - | - | [58,59,61,62] |
Dairy Farm | - | 121–165 | - | 0.02–0.03 | 0.004–0.007 | 0.001–0.003 | - | - | - | - | - | [72,73] |
2.2.2. Pretreatment
Wastewater | Pretreatment Method | Microalgae | References |
---|---|---|---|
Swine | Settled for 24 h, then centrifuged at 8000 rpm for 10 min | Chlorella sp. HL | [79] |
Swine | Centrifuged at 7000 rpm (8656× g) for 5 min, filtered with filter of pore diameter 8 µm | Scenedesmus sp. | [30] |
Cattle | Filtered using Whatman filter paper 42 | Chlorella thermophila (MF179624) | [71] |
Poultry litter extract | Acid pretreatment using 5 M of HCl or H2SO4 | Acutodesmus obliquus | [42] |
Swine | Natural precipitation method for 1 day; and added with 5% sodium hypochlorite for 1 day. | Chlorella vulgaris MBFJNU-1 | [57] |
Aquaculture | Filtered using a filter pump (pore size: 22 μm), then filtered with GF/C Whatman glass microfiber filters (pore size: 1.2 μm). | Tetraselmis sp. | [78] |
Fishery | Sterilized in an autoclave at 121 °C and 150 kPa for 30 min. | Thalassiosira pseudonana and Isochrysis galbana | [81] |
Poultry slaughterhouse | Acid precipitation (H2SO4) at pH 4 | Chlorella vulgaris | [80] |
Swine | Sedimentation for 2 days, and anaerobically digested at 55 °C for 10 days | Chlorella pyrenoidosa | [59] |
Swine | Filtered with a sieve of mesh number 140 (100 μm) | Chlorella sorokiniana AK-1 | [58] |
Anaerobic digested swine | Sterilized in an autoclave at 121 °C and 150 kPa for 30 min. | Chlorella zofingiensis | [60] |
Fishery | Sterilized in an autoclave at 121 °C and 150 kPa for 30 min. | Chlorella zofingiensis | [60] |
Piggery | Centrifuged at 10,000× g for 10 min at 4 °C and pre-autoclaved at 121 °C for 20 min | Chlorella sp. GD | [59] |
Minkery | Filtered through a filter cloth then filtered using 1.5 µm glass microfiber filters, autoclaved at 121 °C and 15 psi for 20 min. | Haematococcus pluvialis | [75] |
Aquaculture | Centrifuged at 3000× g for 5 min. | Chlorella Sorokiniana MB-1-M12 | [64] |
Piggery | Sedimented and sterilized by passing through a 0.45 μm filter | Chlorella pyrenoidosa | [62] |
Piggery | Flocculated and filtered through 0.2 µm cellulose acetate membranes followed by stripping with air using an acrylic column (ID 5 cm × H 100 cm) | Acutodesmus obliquus | [66] |
Aquaculture | Centrifuged at 3000× g for 10 min | Chlorella sp. GD | [65] |
Aquaculture | Filtered using 0.45 mm Whatman GF/C filter papers followed by autoclaving | Chlorella sp. | [82] |
Piggery | Autoclaved for 30 min at 121 °C then centrifuged (3000× g for 10 min) | Chlorella sp. GD | [69] |
2.2.3. Microalgae Treatment of Agricultural Wastewater
Algae Used | Wastewater Type | Conditions of Culture | Nutrient Concentration | Average Nutrient Removal Rate | References |
---|---|---|---|---|---|
Acutodesmus obliquus | Piggery | 25 °C for 138 h | COD: 11,100 mg L−1; TN: 981 mg L−1; TP: 81 mg L−1 | TN: 175 mg g−1 d−1; TP: 1.5 mg g−1 d−1 COD: 1923 mg g−1 d−1) | [66] |
Arthrospira maxima | 10% Nejayote | 21 °C; 1.5 L m−2 min−1 of aeration; 12:12 light: dark | COD: 9153.3 mg L−1; TN: 120.69 mg L−1; TP: 41.16 mg L−1 | COD: 96%; TN: 92%; TP: 75% | [62] |
Arthrospira platensis | Dairy farm | 30 °C; 160 μE m−2 s−1 (from initial today 6) and 300 μE m−2 s−1 (from day 7); 12:12 light: dark | COD: 131.691 mg L−1; NO3-N: 3.452 mg L−1; NH4-N: 2.998 mg L−1; PO4-P: 5.672 mg L−1 | COD: 98.4%; NO3-N: 99.6%; NH4-N: ~100%; PO4-P: 98.8% | [72] |
Botryococcus braunii | Aerated swine | 25 °C; 10 μE m−2 s−1 | TN: 177.9 mg L−1; TP: 19.48 mg L−1 | TN: 40.8%; TP: 93.3% | [74] |
Chlamydomonas sp. JSC4 | Swine | 26 °C; 150 μE m−2 s−1; 16:8 light: dark; 5% CO2 at an aeration rate of 0.2 L min−1 | TN: 600 mg L−1; TP: 26.2 mg L−1 | TN: 92%; TP: 98% | [61] |
Chlorella pyrenoidosa | Paddy-soaked | 33 °C to 37 °C; 3826–4240 μE m−2 s−1 | PO4-P: 211.50 mg L−1; NH4-N: 265.30 mg L−1 | NH3-N: 75.89%; PO4-P: 73.71% | [76] |
Five times diluted anaerobically Digested swine | 25 °C; 80 μE m−2 s−1; 12:12 light: dark | NH4-N: 134.17 mg L−1; NO3-N: 14.49 mg L−1; TP: 6.65 mg L−1; COD: 116.10 mg L−1 | NH4-N: 94.1%; NO3-N: 85.2%; TP: 84.0%; COD: 86.8% | [59] | |
Piggery | 25 °C to 27 °C; 63 μE m−2 s−1 | TN: 980 mg L−1; TP: 158 mg L−1; COD: 1000 mg L−1 | TN: 74.6%; TP: 77.7%; COD: 55.4% | [68] | |
Chlorella sorokiniana AK-1 | 50% Swine | 27 °C, 150 μE m−2 s−1 | TN: 510 mg L−1; TP: 76.1 mg L−1; COD: 506.8 mg L−1 | : 97.0%; TP: 92.8%; COD: 90.1% | [58] |
Chlorella sorokiniana MB-1-M12 | Shrimp culture | 26 °C; 150 μE m−2 s−1 | TN: 21.9 ppm; TP < 0.4 ppm; COD: 73.5 ppm | nr | [64] |
Chlorella sorokinianaSVMBIOEN2 | Dairy farm | 25 °C; 100 μE m−2 s−1; 12:12 light: dark | COD: 2000 mg L−1 | COD: 85%; | [85] |
Chlorella sp. | Aquaculture | 28 °C | NH4-N: 0.91 mg L−1; PO4-P: 2.6 mg L−1 | NH4-N: 98.7%; PO4-P: 92.2%; | [82] |
Aquaculture | 25 °C; 3350 Lm | TP: 6.75 mg L−1 | TP: 99.15% | [86] | |
Chlorella sp. GD | Aquaculture | 26 °C; 300 μE m−2 s−1; aerated with boiler flue gas (approximately 8% CO2) | pH: 8.5; COD: 112 mg L−1; TN: 60 mg L−1; TP: 6.8 mg L−1 | nr | [65] |
Piggery | 26 °C; 300 μE m−2 s−1; 2% CO2 aeration rate of 0.2 vvm | pH: 8.5; COD: 430 mg L−1;TN: 550 mg L−1; TP: 20 mg L−1 | nr | [69] | |
Chlorella sp. HL | Swine wastewater | 25 °C; 60 μE m−2 s−1; 16:8 light: dark | TP: 74.61 mg L−1; COD: 12,431.9 mg L−1 | TP: 69.13%; COD: 72.95% | [79] |
Chlorella sp. MM3 | Mixed piggery and winery (20:80 ratio) | 23 °C; | TN: 284 mg L−1; TP: 11 mg L−1 | TN: 89.36%; TP: 56.56% | [70] |
Chlorella thermophila MF179624 | 2.5% Cattle | 25 °C; 100 μE m−2 s−1; aeration 0.5 vvm | pH: 6.11, NH4-N: 22,358 mg L−1; NO3-N: 3041 mg L−1; PO4-P: 760 mg L−1 | NH4-N: 53.74 mg L−1 d−1; NO3-N: 6.96 mg L−1 d−1; PO4-P: more than 99% | [71] |
Chlorella vulgaris | 10% swine | 21 °C; 12:12 light: dark; 1.5 L m−2 min−1 of aeration | COD: 10.933 mg L−1; TN: 163.40 mg L−1; TP: 147.0 mg L−1 | COD: 96%; TN: 91%; TP: 85% | [62] |
Poultry slaughterhouse | First stage: acid precipitation of wastewater; Second stage: batch conditions: 25–27 °C; continuous illumination 440 μE m−2 s−1; Continuous process: 25 °C; continuous illumination 440 μE m−2 s−1 | COD: 2185–7313 mg L−1 | COD (first step): 80%; COD (second step): more than 83% | [80] | |
Chlorella vulgaris MBFJNU-1 | Swine | Outdoor: (sunlight) | pH: 5.5–6.0; COD: 492.4–500.7 mg L−1; TN: 472.5–547.8 mg L−1;TP: 31.8–42.6 mg L−1 | COD: 8.47 mg L−1 d−1; TN: 16.84 mg L−1 d−1; TP: 1.40 mg L−1 d−1 | [57] |
Desmodesmus sp. PW1 | Piggery | 25 °C; 4000 lx. | TN: 296.7 mg L−1; TP: 28.6 mg L−1 | TN:90%; TP:70% | [83] |
Dunaliella FACHB-558 | Anaerobically digested poultry litter | 25 °C; 200 μE m−2 s−1; 12:12 light: dark | TN: 100–120 mg L−1; TP: 15–20 mg L−1; TOC: 400–500 mg L−1 | TN:63.8%; TP: 87.2%; TOC: 64.1% | [56] |
Haematococcus pluvialis | 1% Minkery | Green stage: 20 °C; 50 μE m−2 s−1 continuous light; Red stage: 20 °C; 200 μE m−2 s−1 continuous light | NH4-N: 32.5 mg L−1; NO3-N: 0.1 mg L−1; NO2-N: 0.1 mg L−1; TP: 14.0 mg L−1 | TN: 24.8%, TP: 99.7% | [75] |
1.5% Minkery | Green stage: 20 °C; 50 μE m−2 s−1 continuous light; Red stage: 20 °C; 200 μE m−2 s−1 continuous light | NH4-N: 48.75 mg L−1; NO3-N: 0.15 mg L−1; NO2-N: 0.15 mg L−1 TP: 21.0 mg L−1 | TN: 20.7%, TP: 99.8% | ||
Scenedesmus obliquus SXND-02 | Chicken farm + (7 g L−1) sodium acetate | 25 °C; 120 μE m−2 s−1; 12:12 light: dark; | nr | TN: 80%; TP: 68%; COD: 89% | [87] |
Scenedesmus sp. MUR 272 | Anaerobically digested abattoir | Micro-ponds: 20 cm depth; pH 6.5; CO2 addition on demand; batch mode; 7.3–39.8 °C; 427.6–815.8 W m−2 | NH4-N: 45 mg L−1; PO4-P: 6.3 mg L−1 | NH4-N: 86%; PO4-P: 89% | [77] |
Anaerobically digested piggery | 175 ± 25 μE m−2 s−1; 12:12 light: dark | nr | TN: up to 99%; TP: up to 73% | [84] | |
Tetraselmis sp. | Synthetic mariculture | 23 °C; 1500 μE m−2 s−1; 12:12 light: dark | NO3-N: 45 mg L−1; NO2-N: 10 mg L−1; Orthophosphates: 17 mg L−1; NH4-N: 30 mg L−1; COD: 270 mg L−1; | TN:95.5%; Orthophosphates: 94.4%; COD: 61.4% | [63] |
Aquaculture | 24 °C; 50 μE m−2 s−1 | NH4-N: 7.7 mg L−1; NO2-N: 3.1 mg L−1; PO4-P: 2 mg L−1; | NH4-N: 0.08 mg L−1; NO2-N: 0.1 mg L−1; PO4-P: 0.17 mg L−1 | [78] |
Algae Used | Wastewater Type | Growth Rate or Volumetric Productivity | Final Biomass Concentration | Production of Target Metabolites | References |
---|---|---|---|---|---|
Acutodesmus obliquus | Piggery | 1850 mg-cell L−1 d−1 | nr | nr | [66] |
Arthrospira maxima | 10% Nejayote | 0.27 d−1 | 32 × 104 cell mL−1 | nr | [62] |
Arthrospira platensis | Dairy farm | 0.50 g L−1 d−1 | 4.98 g L−1 | Lipids: 30.23% | [72] |
Botryococcus Braunii | Aerated swine | nr | 0,94 mg L−1 | Hydrocarbon: 23.8% | [74] |
Chlamydomonas sp. JSC4 | Swine | 49.70 g m−2 d−1 | 37.73 mg L−1 | Carbohydrates: 3920% Lipids: 17.67% Protein: 33.94% | [61] |
Chlorella pyrenoidosa | Paddy-soaked | 0.42 d−1 | 1.56 g L−1 | Chlorophyll: 15.57 mg L−1 Lipids: 27.47% Carbohydrates: 23.77% Proteins: 46.12% | [76] |
Five times diluted anaerobically Digested swine | 4.21 g m−2 d−1 | 42.20 g m−2 | Proteins: 57.30% Extracellular polysaccharides: 14.87% Crude fibre: 3.08% Crude ash: 5.57% | [59] | |
Piggery | nr | nr | Lipids: 6.3 mg L−1 d−1 | [68] | |
Chlorella sorokiniana AK-1 | 50% Swine | nr | 5.45 g L−1 | Proteins: 0.27 g L −1 d−1 | [58] |
Chlorella sorokiniana MB-1-M12 | Shrimp culture | nr | 1.9 g L−1 d−1 | Lutein: 5.19 mg g−1 | [64] |
Chlorella sorokiniana SVMBIOEN2 | Dairy farm | nr | 2.33 g L−1 | Carbohydrates: 10.2 mg g−1 Proteins: 14 mg g−1 | [85] |
Chlorella sp | Aquaculture | nr | 213 cell mL−1 d−1 | nr | [82] |
Aquaculture | nr | nr | nr | [86] | |
Chlorella sp. GD | Aquaculture | 0.487 d−1 | 17.4 g L−1 | Lipids: 21.3% | [65] |
Piggery | 0.839 d−1 | 0.681 g L−1 d−1 | Lipids: 21% | [69] | |
Chlorella sp. HL | Swine | 0.51 d−1 | 2.43 × 107 cells mL−1 | nr | [79] |
Chlorella sp. MM3 | Mixed piggery and winery (20:80 ratio) | nr | 4.4 × 106 cells mL−1 | Lipids: 51% | [70] |
Chlorella thermophila MF179624 | 2.5% Cattle | nr | 2.17 g L−1 | Lipids: 18.27% Carbohydrates: 29.39% Proteins: 44.91% | [71] |
Chlorella vulgaris | 10% swine | 0.57 d−1 | 128 × 106 cells mL−1 | nr | [62] |
Poultry slaughterhouse | nr | 1.2 g L−1 | nr | [80] | |
Chlorella vulgaris MBFJNU-1 | Swine | 0.11 d−1 | 36 mg L−1 d−1 | nr | [57] |
Desmodesmus sp. PW1 | Piggery | nr | 1.76 g L−1 | 7.2% | [83] |
Dunaliella FACHB-558 | Anaerobically digested poultry litter | nr | 678 mg L−1 | β-carotene: 4.02 mg L−1 | [56] |
Haematococcus pluvialis | 1% Minkery | 0.399 mg L−1 d−1 | 681 mg L−1 | Astaxanthin: 39.72 mg L−1 | [75] |
1.5% Minkery | 0.451 mg L−1 d−1 | 906.33 mg L−1 | Astaxanthin: 16.64 mg L−1 | ||
Scenedesmus obliquus SXND-02 | Chicken farm + (7 g L−1) sodium acetate | nr | 2.18 g L−1 | Lipids: 50.22% | [87] |
Scenedesmus sp. (MUR 272) | Anaerobically digested abattoir | nr | 19.24 g m−2 d−1 | nr | [77] |
Anaerobically digested piggery | nr | 59.8 mg L−1 d−1 | Lipids: 25 mg L−1 d−1 Carbohydrates: 6.5 mg L−1 d−1 | [84] | |
Tetraselmis sp. | Synthetic mariculture | 0.067 d−1 | 1.19 g L−1 | Lipids: 62.16 mg g−1 | [63] |
2.3. Industrial Wastewater
2.3.1. Physicochemical Properties
Type | pH | TSS (mg L−1) | TOC (mg L−1) | COD (mg L−1) | NO3-N (mg L−1) | NO2-N (mg L−1) | NH4-N (mg L−1) | NH3-N (mg L−1) | PO4-P (mg L−1) | TN (mg L−1) | TP (mg L−1) | References |
Olive Oil Mill | 4–5.37 | 41,220–83,160 | - | 56,740–124,600 | 99.13 | - | 2.3 | 360 | 130–190 | 350 | [91,92] | |
Textile | 10.5–10.9 | 1050 | - | 1378.2–4458 | 16.12 | - | 28.35 | - | 2.1–22.3 | 40 | - | [99,100] |
Olive Oil Washing | 6.29 | - | 191.5 | 1362 | - | - | <4 | - | - | 7.49 | 1.63 | [17] |
Starch | 2.13–7.3 | 1000–92,000 | 8770 | 792.28–7426 | 606 | 108 | 2.7–503 | - | 1.2–336 | 265.10–379.5 | 28.34–67.9 | [101,102,103,104,105] |
Digested Starch | 7.3–7.5 | - | - | 702.4–102.5 | - | - | 217.6–334.7 | - | 19.3–32.9 | 240.3–382.7 | 22.7–40.2 | [106] |
Alcohol | 3.2–4.5 | - | - | 45,638.06–65,000 | - | - | 214.56–279.72 | - | 19.71 | 618.68–725.34 | 47.16–64.38 | [104,105] |
Reeling | 7.39 | - | - | 11 | - | - | - | - | - | 2.43 | 1.07 | [107] |
Cooking Cocoon | 7.52 | - | - | 2925 | - | - | - | - | - | 267.5 | 23.1 | [107] |
Frigon | >12 | - | - | 14,820 | - | - | - | - | - | 910.9 | 92.8 | [107] |
Seafood | 7.92 | - | - | 1220.8 | 6.99 | 0.73 | 117.22 | - | - | 121.07 | 57.32 | [108] |
Brewery | 5.5–6 | 300–320 | 1400–1500 | 2000–3000 | - | - | - | - | - | 30–45 | 12–16 | [109] |
Rose Oil | 6.05–6.14 | - | - | 1200–2087 | 13.5 | - | 12.36 | - | <0.05 | - | - | [110] |
Rolling Mill Industry | 6.05 | - | - | - | 11.5 | - | - | - | - | - | - | [111] |
Vinegar | 5.6 | - | - | 740 | - | - | - | 17.7 | - | 20.5 | 7.4 | [112] |
Dairy Industrial | 3.69–9.11 | 111–1510 | 143.3–722 | 342–7110 | 64 | 5.03 | 18.45–46.5 | 31.4–90.4 | 5.58–31.0 | 65.06–103.6 | 8–105.1 | [113,114,115,116,117,118] |
Winery | 3.51–4.2 | 9780 | - | 119,300 | - | - | - | - | - | 12.14 | 3.46 | [70,119] |
Soy Sauce | 6.548 | - | 992 | 3263.33 | - | - | 168.44 | - | - | 173.53 | 10.21 | [120] |
Palm Oil Mill | 7–8 | 880–3900 | 1400 | 2898.72–4395.6 | - | - | 254 | - | 273 | 5.06–376 | 39.4–58 | [98,121,122,123] |
Lactic Acid | 5.3 | - | - | 12,571 | - | - | - | 169 | - | 651 | 28.2 | [124] |
Instant Coffee | 4.54 | 1000 | 7600 | 4940 | - | - | - | - | - | 75.63 | 7.81 | [125] |
Dairy Products | 10.26 | 60 | 7420 | 190 | - | - | - | - | - | 18.04 | 2.63 | [125] |
Pesticides Industry | 9.2 | - | 480.93 | - | - | - | - | - | - | 0.23 | 0.52 | [32] |
Pharmaceutical Industry | 11.88 | - | 7185.93 | - | - | - | - | - | - | 0.02 | 1.01 | [32] |
Petroleum Industry | 7.97 | - | 288.60 | - | - | - | - | - | - | 0.5 | 0.58 | [32] |
Soybean | 4.2–6 | - | - | 5320–22,700 | - | - | 3–52.1 | 15.25 | 100 | 267.1–950 | 23.28–56.3 | [93,94,95,96] |
Type | Chloride (mg L−1) | Na (mg L−1) | F (mg L−1) | Fe (mg L−1) | Cu (mg L−1) | Zn (mg L−1) | Mg (mg L−1) | Ca (mg L−1) | K (mg L−1) | Pb (mg L−1) | Turbidity NTU | References |
Textile | 1019.46 | - | - | - | - | - | - | - | - | - | 43.57 | [99] |
Olive Oil Washing | 172 | - | - | - | 1.6 | - | 62.4 | - | - | - | - | [17] |
Starch | - | 315.21–719.40 | - | 0.94–32.86 | - | 0.86–1.24 | 3.711–181.16 | 98.40–126.36 | 112.34–174.47 | - | - | [102,104,105] |
Digested Starch | - | 417.6–790.1 | - | 0.9–3.6 | 0.09–0.21 | - | 97.6–166.9 | 72.8–102.3 | - | - | - | [106] |
Alcohol | - | 226.17–787.74 | - | 1.47–2.3 | - | 0.06–0.1 | 49.12–152.20 | 16.95–96.14 | 127.63–157.75 | - | - | [104,105] |
Rolling Mill Industry | 172.3 | 60 | - | 3.51 | 8.5 | 0.75 | - | - | - | 2.48 | - | [111] |
Vinegar Production | - | - | - | - | - | - | 13.9 | 39.5 | 69.9 | - | - | [112] |
Dairy Industrial | 199–385 | 42 | 6 | - | - | - | 9.85 | 564 | - | - | - | [113,118] |
Winery | - | 84.54 | - | 2.037 | 0.0059 | 0.6087 | 15.14 | 39.5 | 235.7 | 0.0004 | - | [70,119] |
Palm Oil Mill | - | 2.99 | - | 1.67 | <0.01 | <0.01 | 3.8–672.22 | 0.8 | 3072.03–4393.89 | - | 244 | [98,121] |
Instant Coffee | - | 0.059 | - | 9.762 | - | 0.032 | 28.10 | - | - | - | - | [125] |
Dairy Products | - | 0.067 | - | - | - | 0.017 | 2.72 | - | - | - | - | [125] |
Cassava Flour/Starch | - | 0.003 | - | - | 0.021 | 0.358 | 45.83 | - | - | - | - | [125] |
Soybean Curd | 961 | 1387 | - | 5.16–41 | 0.55 | 6.91 | 35–173.5 | 51.47–366 | 1280 | - | - | [93,94,95] |
2.3.2. Pretreatment
Wastewater | Pretreatment Method | Microalgae | References |
---|---|---|---|
Tobacco | Filter-sterilized by a 0.22 μm membrane filter (Millipore, USA) | Chlorella pyrenoidosa (No.FACHB-863) | [8] |
Palm oil mill (POME) | Filtered through a microfiber mesh and sterilized in an autoclave | Chlorella zofingiensis | [98] |
Cassava processing | Autoclaved at 121 °C for 15 min, then filtered on filter paper | Arthrospira platensis | [101] |
Palm oil mill (POME) | Filtered with filter cloth and re-filtered through glass microfibers filter (Whatman, Grade GF/C 1.2 mm) and autoclaved at 121 °C and at a pressure of 15 psi for 20–30 min | Nannochloropsis sp. | [121] |
Soy sauce | Centrifuged (1644× g 5 min), then autoclaved at 121 °C for 30 min | Spirulina NCU-Sm | [120] |
Potato | Acidified with sulfuric acid to pH 5, then autoclaved at 121 °C for 30 min | Scenedesmus sp. HXY5 | [126] |
Olive oil washing | Centrifuged and filtered–sterilized through a glass wool pre-filter and cellulose nitrate membrane (0.45 μm) | Chlorella pyrenoidosa | [17] |
Soybean processing | Centrifuged (5000 rpm), and filtered by a microporous filter membrane (0.45 μm), then sterilized by high-pressure steam at 121 °C | Chlorella sp. L166 | [96] |
Vinegar production | Centrifuged for 10 min at 5000 rpm, and sterilized at 121 °C and 120 kPa for 20 min | Chlorella sp. | [112] |
Soybean processing | Filtrated then autoclaved at 120 °C for 30 min | Chlorella L166 | [94] |
Anaerobic palm oil mill | Centrifuged at 8000 rpm for 10 min | Scenedesmus sp. and Chlorella sp. | [122] |
Starch processing plant | Filtered through 0.45 mm polyester filters and sterilized through UV-B radiation (UV doses 810 mJ cm−2 at a distance of 10 cm) | Chlorella pyrenoidosa (FACHB-9) | [102] |
Cassava | Sterilized at 121 °C for 10 min | Desmodesmus aramatus | [103] |
Anaerobically digested starch | Allowed to settle for 5–7 h in several tanks and filtered using polyester filters (1 μm) | Chlorella pyrenoidosa (FACHB-9) | [104] |
Raw dairy | Filtered through a non-woven geotextile membrane (100 GSM grade) | Ascochloris sp. ADW007 | [113] |
Seafood processing | Filtered using 0.45 μm pore size GF/C glass microfiber filters | Chlorella sp. | [108] |
pesticides industry, pharmaceutical industry, petroleum industry | Filtered and sterilized using vacuum filtration unit and autoclaved at 121 °C for 15 min | Nannochloropsis oceanica | [32] |
Anaerobic digested starch | Allowed to settle for several hours and filtered using a 0.45 µm polyester filter then sterilized | Chlorella pyrenoidosa (FACHB-9) | [105] |
Anaerobic digested starch processing | Allowed to settle for 5–7 h in a settling tank and filtered with 270 mesh (53 lm) polyester filter bags | Chlorella pyrenoidosa (FACHB-9) | [127] |
Raw dairy | Settled by gravity overnight and filtered through gauze | Chlorella sp. | [73] |
Meat processing plant | Centrifuged at 8000 rpm for 10 min and sterilized at 121 °C for 30 min | Chlorella sp. | [128] |
Pulp and paper industry | Addition of 1 mL of SuperFloc C-581 flocculant per 50 mL of effluent. Setteled for 20 min then filtred through a mesh filter with pore size of 5 µm and sterilized with a 500 mL bottle top polystyrene filter with pore size of 0.22 µm. | Nannochloropsis oculata | [129] |
Raw dairy | Centrifuged (5000 rpm, 10 min) then autoclaved | Chlorella zofingiensis | [114] |
2.3.3. Microalgae Treatment of Industrial Wastewater
Algae Used | Wastewater Type | Conditions of Culture | Nutrient Concentration | Average Nutrient Removal Rate | References |
---|---|---|---|---|---|
Arthrospira platensis | Cassava | 24 °C; 30 μE m−2 s−1 | pH: 3.9; PO4-P: 0.336 g L−1; NO3-N: 0.606 g L−1; NO2-N: 0.108 g L−1; NH4-N: 0.503 g L−1 | PO4-P: 43.4%; NO3-N: 88.4%; NO2-N: 100%; NH4-N: 99.9% | [101] |
Arthrospira (Spirulina) platensis SAG 21.99 | 10% olive oil mill + 1 g L−1 NaNO3 + 5 g L−1 NaHCO3 | 30 °C; 10,000 lx; 20:4 light: dark | pH: 5.42; COD: 43.87 g L−1; TP: 0.23 g L−1; TN: 1.67 g L−1; Carbohydrates: 13.40 g L−1; Phenols: 3.12 g L−1 | COD: 65.53%; TP: 100%; Carbohydrates: 88.41%; Phénols: 100% | [91] |
Ascochloris sp. ADW007 | Raw dairy | 29–42 °C; 28,944–196,015 W m−2; | pH: 3.69; COD: 7110 g L−1;TN: 137 mg L−1; TP: 105.1 mg L−1 | COD: 95.1%; TN: 79.7%; TP: 98.1% | [113] |
Chlamydomonas sp. TRC-1 | Textile | 27 °C; 100 μE m−2 s−1; 16:8 light: dark; | COD: 1378.2 mg L−1;TDS: 8195 mg L−1; TSS:1050 mg L−1; TS: 9245 mg L−1; TN: 40 mg L−1; NO3-N: 16.129 mg L−1; PO4-P: 2.1 mg L−1; Hardness: 168.38 mg L−1; Cl: 1019.46 mg L−1; Turbidity: 43.57 NTU; Alkalinity: 1162.66 mg L−1 | COD: 83.08%; TDS: 82.11%; TSS: 87.40%; TS: 82.64%; TN: 87.15%; NO3-N: 91.75%; PO4-P: 92.36%; Cl: 41.43%; Turbidity: 72.45%; Alkalinity: 45.64% | [99] |
Chlamydomonaspolypyrenoideum | Dairy industry | 28 ± 2 °C; 10 W m−2; 12:12 light: dark | NO3-N: 48.7 mg L−1; NO2-N: 3.05 mg L−1; PO4-P: 3.9 mg L−1; COD: 6000 mg L−1 | NO3-N: 90%; NO2-N: 74%; PO4-P: 70%; COD: 64.8% | [118] |
Chlamydomonas reinhardtii CC124 | Olive mill | 28 °C; 70 μE m−2 s−1 (Acclimated for 3 weeks) | COD: 5065.35 mg L−1; TN: 7.01 mg L−1; TP: 42.94 mg L−1 | TN: 65 mg L−1 | [132] |
Chlorella L166 | 10 times diluted Soybean | 22 °C; 6000 lx | TN: 0.95 g L−1; TP: 0.12 g L−1; COD: 22.70 g L−1 | TN: 43.9%; TP: 72.8–90.4%; COD: 37.1–61.1% | [94] |
Chlorella L38 | 10 times diluted Soybean | 22 °C; 6000 lx | TN: 0.95 g L−1; TP: 0.12 g L−1; COD: 22.70 g L−1; | TN: 84.7%; TP: 97.3%; COD: 70.5%; | |
Chlorella pyrenoidosa | Dairy | 27 °C; 120 μE m−2 s−1; 150 rpm | nr | COD: 76.17%; NH4-N: 98.10%; | [133] |
90% Olive oil washing + 10% urban | 25 °C; 126.2 μE m−2 s−1, 12:12 light: dark; pH 8 | PO4-P: 6.97 mg L−1; NO3-N: 40.8 mg L−1; COD: 1251 mg L−1 | PO4-P: 56.4%; NO3-N: 49%; COD: 86.3% | [17] | |
Chlorella pyrenoidosa (FACHB-9) | A mixed acidified and secondary treated starch (1:1) | 32 °C, 127 μE m−2 s−1; 12:12 light: dark | pH: 2.7/7.2; TN: 362.6–302.4 mg L−1; NH4-N: 79.5–273.6 mg L−1; TP: 61.3–55.2 mg L−1 COD: 6196/892 mg L−1 | COD: 57.9% | [102] |
Soybean | 27 °C; 40.5 μE m−2 s−1; 14:10 light: dark; | NH4-N: 52.1 mg L−1; TP: 56.3 mg L−1; TN: 267.1 mg L−1; COD: 13,215 mg L−1 | NH4-N:89.1%; TP:70.3%; TN:88.8%; COD: 77.8% | [95] | |
Alcohol and anaerobically digested starch (1:15) | 30–32 °C; 12:12 light: dark | TN: 725.34–307.64 mg L−1; TP: 64.38–37.57 mg L−1; COD: 45,683.06–792.28 mg L−1 | COD: 405.18 mg L−1 d−1; TN: 49.15 mg L−1 d−1; TP: 6.72 mg L−1 d−1 | [104] | |
Alcohol and anaerobically digested starch (AW/ADSW = 0.053:1, v/v) | 25 °C; 127 μE m−2 s−1; 12:12 light: dark | TN: 618.68–265.10 mg L−1;TP: 47.16–28.34 mg L−1; COD: 65,000–926.3 mg L−1; | COD: 75.78%; TN: 91.64%; TP: 90.74%; | [105] | |
Anaerobic digested starch | 19.6–36.5 °C; 79,500 lx; 8.6:15.4 light: dark; | TN: 289.6 mg L−1; TP: 38.8 mg L−1 | TN: 57.9%; TP: 89.9% | [127] | |
Anaerobic digested starch | 35–39 °C; 220 μE m−2 s−1 | TN: 240.3–382.7 mg L−1; TP: 22.7–40.2 mg L−1; COD: 702.4–1026.2 mg L−1 | TN: 83.06%; TP: 96.97%; COD: 65.99% | [106] | |
Soybean | 28 °C in the dark | TN: 189.9 mg L−1; TP: 45.6 mg L−1; COD: 8087 mg L−1; | TN: 70%; TP: 92.7%; COD: 73.6% | [134] | |
Chlorella pyrenoidosa (No. FACHB-863) | Tobacco | 25 °C, 80 μE m−2 s−1; 12:12 light: dark | pH: 5; TN: 151.91 mg L−1; NH4-N: 3.58 mg L−1; TP: 6.38 mg L−1; COD: 574.16 mg L−1 | TN: 94.58 mg L−1; NH4-N: 3.44 mg L−1; TP: 3.12 mg L−1; COD: 157.5 mg L−1 | [8] |
Chlorella sorokiniana (FACHB-275) | Frigon + reeling | 25 °C; 50 μE m−2 s−1; 12:12 light: dark | COD: 5400.0 mg L−1; TN: 308.0 mg L−1; TP: 23.2 mg L−1 | COD: 86.1%; TN: 58.4%; TP: 91.9% | [107] |
Frigon + distilled water | 25 °C; 50 μE m−2 s−1; 12:12 light: dark | COD: 5050.0 mg L−1; TN: 306.8 mg L−1; TP: 26.2 mg L−1 | COD: 80.0%; TN: 60.4%; TP: 94.9% | ||
Cooking cocoon | 25 °C; 50 μE m−2 s−1; 12:12 light: dark | COD: 2925.0 mg L−1; TN: 267.5 mg L−1; TP: 23.1 mg L−1 | COD: 86.6%; TN: 38.9%; TP: 49.4% | ||
Cooking cocoon | 25 °C; 150 μE m−2 s−1; 16:8 light: dark | nr | NH4-N: 92.61%; COD: 66.88%; TN: 78.50%; TP: 97.31% | [135] | |
Chlorella sorokiniana (IPRChs7104) | Wastewater from the instant coffee | 28 °C; 130 μE m−2 s−1; 12:12 light: dark (2nd cycle, 52 d) | pH: 4.54; COD: 4940 mg L−1 | CODfin: 1240 mg L−1 | [124] |
Dairy products | 28 °C; 130 μE m−2 s−1; 12:12 light: dark (2nd cycle, 52 d) | pH: 10.26; COD: 190 mg L−1 | CODfin: 158 mg L−1 | ||
Cassava flour/starch | 28 °C; 130 μE m−2 s−1; 12:12 light: dark (2nd cycle, 52 d) | pH: 3.62; COD: 7200 mg L−1 | CODfin: 435 mg L−1 | ||
Chlorella sorokiniana SVMBIOEN2 | Dairy | 25 °C; 100 μE m−2 s−1; 12:12 light: dark | COD: 2000 mg L−1 | COD: 85% | [85] |
Chlorella sp. | Aerated Seafood processing | 25 °C; 135 μE m−2 s−1 | pH: 7.14; COD: 295.1 mg L−1; TN: 94.80 mg L−1; TP: 45.89 mg L−1 | TN: 4.98 mg L−1 d−1; TP: 1.91 mg L−1 d−1 | [108] |
Meat processing (CUT + KILL) | 25 °C; 120 μE m−2 s−1 | COD: 2100 mg L−1; TN: 212.0 mg L−1; TP: 53.6 mg L−1 | COD: 29.52%; TN: 50.94%; TP: 44.95% | [128] | |
Meat processing (DS + KILL) | 25 °C; 120 μE m−2 s−1 | COD: 2100 mg L−1; TN: 204.9 mg L−1; TP: 24.1 mg L−1 | COD: 3.21%; TN: 44.46%; TP: 52.11% | ||
Meat processing (MPGP + KILL) | 25 °C; 120 μE m−2 s−1 | COD: 3020 mg L−1; TN: 197.6 mg L−1; TP: 44.7 mg L−1 | COD: 7.95%; TN: 30.06%; TP: 63.51% | ||
Meat processing (REFINERY + KILL) | 25 °C; 120 μE m−2 s−1 | COD: 2340 mg L−1; TN: 251.0 mg L−1; TP: 31.3 mg L−1 | COD: 43.91%; TN: 49.48%; TP: 54.45% | ||
Chlorella sp. L166 | Soybean processing | 25 °C; 6000 lx; 24:0 light: dark | pH: 6; COD: 5320 mg L−1; TN: 106.99 mg L−1; TP: 23.28 mg L−1 | COD: 78.20%; TN: 96.07%; TP: 95.55% | [96] |
Chlorella sp. (SAG 242.80) | Rose oil processing effluent (Race way) | 17–19.5 °C; 256–329 μE m−2 s−1 | COD: 2343 mg L−1; NH4-N: 10.67 mg L−1; NO3-N: 2.40 mg L−1 | COD: 61.76%; NH4-N: 66.99%; NO3-N: 17.22% | [110] |
Rose oil processing effluent (Tubular photobioreactor) | 28.5–31.5 °C; 256–329 μE m−2 s−1 | COD: 2342 mg L−1; NH4-N: 13.25 mg L−1; NO3-N: 1.85 mg L−1 | COD: 53.03%; NH4-N: 34.95%; NO3-N: 8.63% | ||
Chlorella vulgaris | Industrial | 25 °C; 2500 lx; 12:12 light: dark | TN: 11.5 mg L−1; Cu: 8.50 mg L−1; Cd: 1.31 mg L−1; Ni: 0.16 mg L−1; Fe: 3.51 mg L−1; Pb: 2.48 mg L−1; | TN: 0.19 mg L−1; Cu: 7.63 mg L−1; Cd: 0.60 mg L−1; Ni: 0.14 mg L−1; Fe: 2.80 mg L−1; Pb: 1.72 mg L−1 | [111] |
50% Textile | 4000–5000 lx; | COD: 500–1200 mg L−1 | COD: 99.7%; NO3-N: 95.7%; PO4-P: 96.3% | [131] | |
Chlorella vulgaris (UTEX-265) | Brewery | 25 °C; 100 μE m−2 s−1; 150 rpm; airflow rate of 100.0 cc/min; | pH: 5.5–6.0; COD: 2000–3000 mg L−1; TN: 30–45 mg L−1; TP: 12–16 mg L−1 | TN: 87%; TP: 80% | [109] |
Brewery | 25 °C; 100 μE m−2 s−1 | pH: 5.5–6.0; COD: 2000–3000 mg L−1; TN: 30–45 mg L−1; TP: 12–16 mg L−1 | More than 70% of the nutrients | ||
Chlorella vulgaris Wu-G22 | Textile | 30 °C; 4300 lx; pH 8.0 | pH: 10.5; COD: 4458 mg L−1; NH4-N: 8.35 mg L−1; TP: 22.3 mg L−1 | COD: 75%; NH4-N: 90% | [100] |
Chlorella zofingiensis | 10% Dairy (pH regulation by CO2) | 6.2–20.8 °C; 310–1035 klx; 5–6% CO2 | TN: 11.8 mg L−1; PO4-P: 14.9 mg L−1;COD: 119.5 mg L−1 | TN: 79.6%; PO4-P: 42.0% | [136] |
10% Dairy (pH regulation by acetic acid) | 6.2–20.8 °C; 310–1035 klx; 5–6% CO2 | TN: 11.8 mg L−1; PO4-P: 14.9 mg L−1;COD: 119.5 mg L−1 | TN: 97.5%; PO4-P: 51.7% | ||
Dairy | 25 °C; 200 μE m−2 s−1; 5–6% CO2 | TN: 75.5 mg L−1; TP: 48.0 mg L−1; COD: 1428 mg L−1 | TN: 90.3%; TP: ~75% | [117] | |
Dairy | 25 °C; 200 μE m−2 s−1; 5% CO2 | TN: 136.5 mg L−1; TP: 85.0 mg L−1; COD: 1858 mg L−1 | TN: 93.64%; TP: 98.45%; COD: 85.05% | [114] | |
2.5% Palm oil mill effluent | Green stage: 28 °C; 3000 lx; 12:12 light: dark Red stage: 28 °C, 6000 lx continuous light | TN: 9.4 mg L−1; TP: 1.45 mg L−1; COD: 72.46 mg L−1 | TN: 49.3%, TP: 69.4%; COD: 28% | [98] | |
Coelastrella sp. | Dairy | Under sunlight | pH: 8.65; P: 8.0 mg L−1; NH4-N: 39.3 mg L−1; NO3-N: 64.1 mg L−1; COD: 1970 mg L−1; TOC: 722 mg L−1 | P: 66.75%; NH4-N: 90.38%; NO3-N: 90.24%; COD: 69.44%; TOC: 83.51% | [115] |
Desmodesmus armatus | Cassava | Heterotrophic: in the dark for 14 days | pH: 5.70; COD: 1570.00 mg L−1 | COD: 74% | [103] |
Cassava | Mixotrophic: 4:20 light: dark for 14 days | pH: 5.70; COD: 1570.00 mg L−1 | COD: 92% | ||
Haematococcus pluvialis | 7.5% Palm oil mill effluent | Green stage: 28 °C; 3000 lx; 12:12 light: dark Red stage: 28 °C; 6000 lx; 24:0 light: dark | TN: 28.2 mg L−1; TP: 4.4 mg L−1; COD: 217.40 mg L−1 | TN: 64.9%; TP: 86.7%; COD: 50.9% | [98] |
Isochrysis galbana | Al-Ahdab oilfield produced water | 2000 lx; 25 °C; 18:6 light: dark | COD: 1300 mg L−1; NH4-N: 31 mg L−1 | COD: 83% | [137] |
Nannochloropsis oculata | Al-Ahdab oilfield produced water | 25 °C; 2000 lx; 18:6 light: dark | COD: 1300 mg L−1; NH4-N: 31 mg L−1 | COD: 90% | [137] |
Nannochloropsis sp. | Palm oil mill effluent | 23 ± 10.5 °C; 100 μE m−2 s−1 | COD: 4196.67 mg L−1 | COD: 11.31 mg mg−1 d−1 | [121] |
10% Palm oil mill effluent | Immobilized microalgae on sodium alginate beads | COD: 3250 mg L−1 | COD: 71% | [130] | |
Nostoc commune | Industrial | 25 °C; 2500 lx; 12:12 light: dark | TN: 11.5 mg L−1; Cu: 8.50 mg L−1; Cd: 1.31 mg L−1; Ni: 0.16 mg L−1; Fe: 3.51 mg L−1; Pb: 2.48 mg L−1 | TN: 0.27 mg L−1; Cu: 7.77 mg L−1; Cd: 0.67 mg L−1; Ni: 0.14 mg L−1; Fe: 2.80 mg L−1; Pb: 1.66 mg L−1 | [111] |
Oscillatoria limosa | Industrial | 25 °C; 2500 lx; 12:12 light: dark | TN: 11.5 mg L−1; Cu: 8.50 mg L−1; Cd: 1.31 mg L−1; Ni: 0.16 mg L−1; Fe: 3.51 mg L−1; Pb: 2.48 mg L−1 | TN: 0.15 mg L−1; Cu: 7.70 mg L−1; Cd: 0.61 mg L−1; Ni: 0.14 mg L−1; Fe: 2.7 mg L−1; TP: 1.68 mg L−1 | [111] |
Scenedesmus dimorphus | Lactic acid | 25 °C; 2500 lx; 14:10 light: dark | COD: 12 571 mg L−1; TN: 651 mg L−1; NH3-N: 169 mg L−1; TP: 28.2 mg L−1 | COD: 95.06%; TN: 96.31%; NH3-N: 98.22; TP: 90.78% | [124] |
Scenedesmus sp. | 25% of ultra-filtrated anaerobic liquid digestate of olive mill | 25 °C; 80.2 μE m−2 s−1; 24:0 light: dark | TN: 96 mg L−1 | TN: 98% | [92] |
Industrial | nr | TN: 5.06 mg L−1; TP: 39.4 mg L−1; COD: 4395.6 mg L−1; | TN: 42%; TP: 67%; COD: 82% | [123] | |
Scenedesmus sp. and chlorella sp. | Palm oil mill effluent | 25 °C; 14,000 lx; 24:0 light: dark | TN: 330 mg L−1; PO4-P: 273 mg L−1; COD: 2900 mg L−1; TOC: 1400 mg L−1 | TN: 86%; PO4-P: 85%; COD: 48%; TOC: 77% | [122] |
Scendesmus sp. HXY5 | Potato | 25 °C; 60 μE m−2 s−1; 12:12 light: dark; | TDN: 127.98 mg L−1; TDP: 11.11 mg L−1; COD: 1504 mg L−1; | TN: 59%; TP: 32%; COD: 93% | [126] |
Spirulina NCU-Sm | Soy sauce | 30 °C; 50 μE m−2 s−1 | NH4-N: 168.44 mg L−1; TN: 173.53 mg L−1; COD: 3263.33 mg L−1 | NH4-N: 93.86%; TN: 81.76%; COD: 84.08% | [120] |
Algae Used | Wastewater Type | Growth Rate or Volumetric Productivity | Final Biomass Concentration | Production of Target Metabolites | References |
---|---|---|---|---|---|
Arthrospira platensis | Cassava | 1.16 d−1 | 14,410 cells mL−1 | Exopolysaccharides: 0.41 g L−1 | [101] |
Arthrospira (Spirulina) platensis SAG 21.99 | 10% olive oil mill + 1 g L−1 NaNO3 + 5 g L−1 NaHCO3 | 4.4 g L−1 h−1 | 1696 mg L−1 | Carbohydrates: 33.64%; Lipids: 16.91%; Proteins: 31.52%; Chlorophyll: 1.02% | [91] |
Ascochloris sp. ADW007 | Raw dairy | 0.131 g L−1 d−1 | 2.23 g L−1 | Lipids: 34.67% | [113] |
Raw dairy | 0.102 g L−1 d−1 | 1.73 g L−1 | Lipids: 24.99% | ||
Raw dairy | 0.207 g L−1 d−1 | 1.44 g L−1 | Lipids: 34.98% | ||
Chlamydomonas sp. TRC-1 | Textile | 0.28 g L−1 d−1 | 2.49 g L−1 | Lipids: 79.1%; Saturated fatty acid (SFA): 46.51%; Monounsaturated fatty acids (MUFAs): 20.7%; Polyunsaturated fatty acids (PUFAs): 11.3%; | [99] |
Chlamydomonas polypyrenoideum | Dairy industry | nr | 3.8 g | Lipids: 1.6 g L−1 | [118] |
Chlamydomonas reinhardtii CC124 | Olive mill | 22.2 mg L−1 h−1 | nr | Carbohydrates: 32.6%; Proteins: 53.87% | [132] |
Chlorella L166 | 10 times diluted Soybean | nr | nr | Lipids: 7.22 mg L−1 d−1; Polysaccharides: 2.86 mg L−1 d−1 | [94] |
Chlorella L38 | 10 times diluted Soybean | nr | nr | Lipids: 3.89 mg L−1 d−1; Polysaccharides: 1.38 mg L−1 d−1 | |
Chlorella pyrenoidosa | Dairy | nr | nr | nr | [133] |
90% Olive oil washing +10% urban | 0.0203 h−1 | 1.73 × 10−3 g L−1 h−1 | Lipids: 51.5%; Proteins: 43.7% | [17] | |
Chlorella pyrenoidosa (FACHB-9) | A mixed acidified and Secondary treated starch (1:1) | 1.27 d−1 | 3.3 g L−1 | Carbohydrates: 24.4%; Lipids: 18.7%; Proteins: 49.7%; Chlorophyll: 2.8% | [102] |
Soybean processing | nr | 0.64 g L−1 d−1 | Lipids: 37% | [95] | |
Alcohol and anaerobically digested starch (1:15) | 0.98 d−1 | 2.76 g L−1 | Lipids: 19.68% | [104] | |
Alcohol and anaerobically digested starch (0.053:1, v/v) | 0.56 d−1 | 3.01 g L−1 | Lipids: 127.71 mg L−1 d−1 | [105] | |
Anaerobic digested starch | 0.82 d−1 | 1.29 g L−1 | Lipids: 43.37 mg L−1 d−1; | [127] | |
Anaerobic digested starch | 1.02 d−1 | 0.37 g L−1 d−1 | Lipids: 7.32%; | [106] | |
Soybean | 0.058 d−1 | 6.2 g L−1 | Lipids: 0.53 mg L−1 d−1 | [134] | |
Chlorella pyrenoidosa (No. FACHB-863) | Tobacco | nr | 540.24 mg L−1 | Lipids: 268.60 mg L−1 | [8] |
Chlorella sorokiniana (FACHB-275) | Frigon + reeling | 0.36 d−1 | 19.3 mg L−1 | Lipids: 26.2%; Proteins: 49.5%; Carbohydrates: 21.2% | [107] |
Frigon + distilled water | 0.35 d−1 | 17.7 mg L−1 | Lipids: 22.4%; Proteins: 47.3%; Carbohydrates: 20.2% | ||
Cooking cocoon | 0.33 d−1 | 15.4 mg L−1 | Lipids: 22.1%; Proteins: 45.7%; Carbohydrates: 20.8% | ||
Cooking cocoon | 0.496 d−1 | 3.43 mg L−1 | Lipids: 27.95%; Proteins: 53.25%; Carbohydrates: 14.25% Pigments: 2.66% | [135] | |
Chlorella sorokiniana (IPRChs7104) | Wastewater from the instant coffee | nr | 0.88 g L−1 | nr | [125] |
Dairy products | nr | 0.35 g L−1 | nr | ||
Cassava flour/starch | nr | 1.23 g L−1 | nr | ||
Chlorella sp. | Aerated Seafood | 0.156 d−1 | 77.7 mg L−1 d−1 | Lipids: 20.4 mg L−1 d−1 | [108] |
Meat processing | nr | 1.538 g L−1 | Lipids: 17.54%; Proteins: 68.65% | [128] | |
Meat processing | nr | 0.675 v | Lipids: 14.50%; Proteins: 60.87% | ||
Meat processing | nr | 1.388 g L−1 | Lipids: 18.89%; Proteins: 61.20% | ||
Meat processing | nr | 1.400 g L−1 | Lipids: 20.57%; Proteins: 64.76% | ||
Brewery | nr | 1.22 g L−1 | Lipids:10% | [109] | |
Brewery | nr | 2.74 g L−1 | Lipids: 50.23 mg L−1 d−1 | ||
Dairy | 0.193 d−1 | 1.37 g L−1 | FAMEs: 87.09 mg L−1 | [138] | |
Chlorella vulgaris | Dairy | 0.261 d−1 | 0.26 g L−1 | FAMEs: 27.18 mg L−1 | [138] |
50% Textile | nr | 1.62 OD680 | FAMEs: 11.07 mg g−1 | [131] | |
Chlorella vulgaris (UTEX-265) | Brewery | nr | 1.5 g L−1 | Lipids: 18% | [109] |
Brewery | nr | 3.2 g L−1 | Lipids: 108.0 g L−1 d | ||
Chlorella zofingiensis | 10% Dairy (pH regulation by CO2) | nr | 10.9 × 106 cells mL−1 | Lipids: 17.9% | [136] |
10% Dairy (pH regulation by acetic acid) | nr | 9.05 × 106 cells mL−1 | Lipids: 31.8% | ||
Dairy | nr | 3.8 g L−1 | Lipids: 27.7% | [117] | |
Dairy | nr | 1.58–1.69 g L−1 | Lipids: 11.5–15.8% | [114] | |
2.5% Palm oil mill effluent | 0.2 d−1 | 0.48 g L−1 | Astaxanthin: 2.71 mg L−1 | [98] | |
Coelastrella sp. | Dairy | nr | 4.61 g L−1 d−1 | nr | [115] |
Desmodesmus armatus | Cassava | 0.14 d−1 | 52.14 mg L−1 d−1 | Lipids: 20.86% | [103] |
Cassava | 0.15 d−1 | 70.83 mg L−1 d−1 | Lipids: 21.91% | ||
Haematococcus pluvialis | 7.5% Palm oil mill effluent | 0.21 d−1 | 0.52 g L−1 | Astaxanthin: 22.43 mg L−1 | [98] |
Isochrysis galbana | Al-Ahdab oilfield produced water | 0.169 d−1 | 0.899 g L−1 | Oil content: 82% | [137] |
Nannochloropsis oceanica | Pesticides industry | 27.78 mg/L d−1 | nr | Lipids: 24.49% | [32] |
Pharmaceutical industry | 5.59 mg L−1 d−1 | nr | Lipids: 25.22% | [32] | |
Petroleum industry | 24.78 mg L−1 d−1 | nr | Lipids: 27.40% | [32] | |
Nannochloropsis oculata | Al-Ahdab oilfield produced water | 0.179 d−1 | 1.0166 g L−1 | Oil content: 89% | [137] |
Nannochloropsis sp. | Palm oil mill effluent | 0.39 d−1 | 7.93 × 107 cells/mL | Lipids: 61.60%, PUFAs: 59.13% | [121] |
10% Palm oil mill effluent | nr | 1.27 g L−1 | nr | [130] | |
Scenedesmus dimorphus | Lactic acid | nr | 5.32 g L−1 | Lipids: 28.61% | [124] |
Scenedesmus sp. | 25% of ultra-filtrated anaerobic liquid digestate of olive mill | 0.5 d−1 | 0.15 g L−1 d−1 | nr | [92] |
Industrial | 0.15 d−1 | 0.69 g L−1 | nr | [123] | |
Scenedesmus sp. and chlorella sp. | Palm oil mill effluent | stage 1: 0.1273 d−1 stage 2: 0.5858 d−1 | stage 1: 0.0204 g L−1 d−1 stage 2: 0.4403 g L−1 d−1 | Stage 1: Lipids: 17.19%; Carbohydrates: 2.06%; Proteins: 48.6% Stage 2: Lipids: 19.29%; Carbohydrates: 10.58%; Proteins: 57.36% | [122] |
Scendesmus sp.HXY5 | Potato | 1.64 mg L−1 d−1 | 2.64 g L−1 | Total pigment yield: 18.45 mg L−1; Lutein yield: 11.46 mg L−1 | [126] |
Spirulina NCU-Sm | Soy sauce | nr | 1.984 g L−1 | nr | [120] |
3. Microalgal Mechanisms for Wastewater Bioremediation
3.1. CO2 Fixation
3.2. Nitrogen Sources Assimilation
3.3. Phosphate Source Assimilation
3.4. Heavy Metals Biodegradation
4. Economic Analysis of Microalgae Wastewater Treatment Technologies
4.1. Microalgae-Based Wastewater Treatment Technologies
4.2. Economic Assessment of Microalgae-Based Wastewater Treatment
5. Challenges and Prospects
6. Conclusions
Funding
Conflicts of Interest
References
- Gupta, S.; Pawar, S.B.; Pandey, R. Current practices and challenges in using microalgae for treatment of nutrient rich wastewater from agro-based industries. Sci. Total Environ. 2019, 687, 1107–1126. [Google Scholar] [CrossRef] [PubMed]
- Coyle, E.D.; Simmons, R.A. Understanding the Global Energy Crisis; Purdue studies in public policy; Purdue University Press: West Lafayette, IN, USA, 2014. [Google Scholar]
- Bi, Z.; He, B. Biodiesel from Microalgae. In Handbook of Microalgae-Based Processes and Products; Elsevier: Amsterdam, The Netherlands, 2020; pp. 329–371. [Google Scholar]
- Yang, L.; Li, H.; Wang, Q. A novel one-step method for oil-rich biomass production and harvesting by co-cultivating microalgae with filamentous fungi in molasses wastewater. Bioresour. Technol. 2019, 275, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Goswami, R.K.; Mehariya, S.; Verma, P.; Lavecchia, R.; Zuorro, A. Microalgae-based biorefineries for sustainable resource recovery from wastewater. J. Water Process Eng. 2020, 40, 101747. [Google Scholar] [CrossRef]
- Roshan, A.; Kumar, M. Water end-use estimation can support the urban water crisis management: A critical review. J. Environ. Manag. 2020, 268, 110663. [Google Scholar] [CrossRef]
- Ferreira, A.; Gouveia, L. Microalgal Biorefineries. In Handbook of Microalgae-Based Processes and Products; Elsevier: Amsterdam, The Netherlands, 2020; pp. 771–798. [Google Scholar]
- Hao, T.-B.; Balamurugan, S.; Zhang, Z.-H.; Liu, S.-F.; Wang, X.; Li, D.-W.; Yang, W.-D.; Li, H.-Y. Effective bioremediation of tobacco wastewater by microalgae at acidic pH for synergistic biomass and lipid accumulation. J. Hazard. Mater. 2021, 426, 127820. [Google Scholar] [CrossRef]
- Mara, D. Domestic Wastewater Treatment in Developing Countries; Routledge: Oxfordshire, UK, 2013. [Google Scholar]
- Boutin, C.; Eme, C. Domestic Wastewater Characterization by Emission Source. In Proceedings of the 13th Congress on Small Xater and Wastewater Systems, Athens, Greece, 14–16 September 2016. [Google Scholar]
- Bhatia, S.K.; Mehariya, S.; Bhatia, R.K.; Kumar, M.; Pugazhendhi, A.; Awasthi, M.K.; Atabani, A.E.; Kumar, G.; Kim, W.; Seo, S.-O.; et al. Wastewater based microalgal biorefinery for bioenergy production: Progress and challenges. Sci. Total Environ. 2021, 751, 141599. [Google Scholar] [CrossRef]
- Kumar, P.K.; Krishna, S.V.; Naidu, S.S.; Verma, K.; Bhagawan, D.; Himabindu, V. Biomass production from microalgae Chlorella grown in sewage, kitchen wastewater using industrial CO2 emissions: Comparative study. Carbon Resour. Convers. 2019, 2, 126–133. [Google Scholar] [CrossRef]
- Sawayama, S.; Minowa, T.; Dote, Y.; Yokoyama, S. Growth of the hydrocarbon-rich microalga Botryococcus braunii in secondarily treated sewage. Appl. Microbiol. Biotechnol. 1992, 38, 135–138. [Google Scholar] [CrossRef]
- Ashokkumar, V.; Chen, W.-H.; Al-Muhtaseb, A.H.; Kumar, G.; Sathishkumar, P.; Pandian, S.; Ani, F.N.; Ngamcharussrivichai, C. Bioenergy production and metallic iron (Fe) conversion from Botryococcus sp. cultivated in domestic wastewater: Algal biorefinery concept. Energy Convers. Manag. 2019, 196, 1326–1334. [Google Scholar] [CrossRef]
- Carneiro, M.; Ranglová, K.; Lakatos, G.E.; Manoel, J.A.C.; Grivalský, T.; Kozhan, D.M.; Toribio, A.; Moreno, J.; Otero, A.; Varela, J.; et al. Growth and bioactivity of two chlorophyte (Chlorella and Scenedesmus) strains co-cultured outdoors in two different thin-layer units using municipal wastewater as a nutrient source. Algal Res. 2021, 56, 102299. [Google Scholar] [CrossRef]
- Kumari, P.; Varma, A.K.; Shankar, R.; Thakur, L.S.; Mondal, P. Phycoremediation of wastewater by Chlorella pyrenoidosa and utilization of its biomass for biogas production. J. Environ. Chem. Eng. 2021, 9, 104974. [Google Scholar] [CrossRef]
- Maaitah, M.; Hodaifa, G.; Malvis, A.; Sánchez, S. Kinetic growth and biochemical composition variability of Chlorella pyrenoidosa in olive oil washing wastewater cultures enriched with urban wastewater. J. Water Process Eng. 2020, 35, 101197. [Google Scholar] [CrossRef]
- Han, W.; Jin, W.; Ding, W.; Lu, S.; Song, K.; Chen, C.; Qin, C.; Chen, Y.; Tu, R.; Zhou, X. Effects of nutrient composition, lighting conditions, and metal ions on the growth and lipid yield of the high-lipid-yielding microalgae (Chlorella pyrenoidosa) cultivated in municipal wastewater. J. Environ. Chem. Eng. 2021, 9, 106491. [Google Scholar] [CrossRef]
- Wang, Q.; Jin, W.; Zhou, X.; Guo, S.; Gao, S.-H.; Chen, C.; Tu, R.; Han, S.-F.; Jiang, J.; Feng, X. Growth enhancement of biodiesel-promising microalga Chlorella pyrenoidosa in municipal wastewater by polyphosphate-accumulating organisms. J. Clean. Prod. 2019, 240, 118148. [Google Scholar] [CrossRef]
- Dahmani, S.; Zerrouki, D.; Ramanna, L.; Rawat, I.; Bux, F. Cultivation of Chlorella pyrenoidosa in outdoor open raceway pond using domestic wastewater as medium in arid desert region. Bioresour. Technol. 2016, 219, 749–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lekshmi, B.; Joseph, R.S.; Jose, A.; Abinandan, S.; Shanthakumar, S. Studies on reduction of inorganic pollutants from wastewater by Chlorella pyrenoidosa and Scenedesmus abundans. Alex. Eng. J. 2015, 54, 1291–1296. [Google Scholar] [CrossRef] [Green Version]
- Kotoula, D.; Iliopoulou, A.; Irakleous-Palaiologou, E.; Gatidou, G.; Aloupi, M.; Antonopoulou, P.; Fountoulakis, M.S.; Stasinakis, A.S. Municipal wastewater treatment by combining in series microalgae Chlorella sorokiniana and macrophyte Lemna minor: Preliminary results. J. Clean. Prod. 2020, 271, 122704. [Google Scholar] [CrossRef]
- Katiyar, R.; Gurjar, B.; Kumar, A.; Bharti, R.K. An integrated approach for phycoremediation of municipal wastewater and production of sustainable transportation fuel using oleaginous Chlorella sp. J. Water Process Eng. 2021, 42, 102183. [Google Scholar] [CrossRef]
- Silambarasan, S.; Logeswari, P.; Sivaramakrishnan, R.; Incharoensakdi, A.; Cornejo, P.; Kamaraj, B.; Chi, N.T.L. Removal of Nutrients from Domestic Wastewater by Microalgae Coupled to Lipid Augmentation for Biodiesel Production and Influence of Deoiled Algal Biomass as Biofertilizer for Solanum Lycopersicum Cultivation. Chemosphere 2021, 268, 129323. [Google Scholar] [CrossRef]
- Thangam, K.R.; Santhiya, A.; Sri, S.A.; MubarakAli, D.; Karthikumar, S.; Kumar, R.S.; Thajuddin, N.; Soosai, M.R.; Varalakshmi, P.; Moorthy, I.G.; et al. Bio-refinery approaches based concomitant microalgal biofuel production and wastewater treatment. Sci. Total Environ. 2021, 785, 147267. [Google Scholar] [CrossRef]
- Morillas-España, A.; Sánchez-Zurano, A.; Lafarga, T.; Morales-Amaral, M.D.M.; Gómez-Serrano, C.; Acién-Fernández, F.G.; González-López, C.V. Improvement of wastewater treatment capacity using the microalga Scenedesmus sp. and membrane bioreactors. Algal Res. 2021, 60, 102516. [Google Scholar] [CrossRef]
- Liu, J.; Yin, J.; Ge, Y.; Han, H.; Liu, M.; Gao, F. Improved lipid productivity of Scenedesmus obliquus with high nutrient removal efficiency by mixotrophic cultivation in actual municipal wastewater. Chemosphere 2021, 285, 131475. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-W.; Huang, L.; Ji, P.-Y.; Chen, C.-P.; Li, X.-S.; Gao, Y.-H.; Liang, J.-R. Using a mixture of wastewater and seawater as the growth medium for wastewater treatment and lipid production by the marine diatom Phaeodactylum tricornutum. Bioresour. Technol. 2019, 289, 121681. [Google Scholar] [CrossRef]
- Şirin, S.; Sillanpää, M. Cultivating and harvesting of marine alga Nannochloropsis oculata in local municipal wastewater for biodiesel. Bioresour. Technol. 2015, 191, 79–87. [Google Scholar] [CrossRef]
- Agustin, D.M.S.; Ledesma, M.T.O.; Ramírez, I.M.; Noguez, I.Y.; Pabello, V.M.L.; Velasquez-Orta, S.B. A non-sterile heterotrophic microalgal process for dual biomass production and carbon removal from swine wastewater. Renew. Energy 2021, 181, 592–603. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, Z.; Xu, J.; Ma, L. Cultivation of microalgae Chlorella zofingiensis on municipal wastewater and biogas slurry towards bioenergy. J. Biosci. Bioeng. 2018, 126, 644–648. [Google Scholar] [CrossRef] [PubMed]
- Mitra, M.; Shah, F.; Bharadwaj, S.V.; Patidar, S.K.; Mishra, S. Cultivation of Nannochloropsis oceanica biomass rich in eicosapentaenoic acid utilizing wastewater as nutrient resource. Bioresour. Technol. 2016, 218, 1178–1186. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.-B.; Wang, L.; Wan, X.-P.; Zhou, X.-N.; Yang, L.-B.; Zhang, W.-W.; Zhao, X.-C. Growth of Chlorella pyrenoidosa on different septic tank effluents from rural areas for lipids production and pollutants removal. Bioresour. Technol. 2021, 339, 125502. [Google Scholar] [CrossRef]
- Gupta, P.L.; Choi, H.J.; Lee, S.-M. Enhanced nutrient removal from municipal wastewater assisted by mixotrophic microalgal cultivation using glycerol. Environ. Sci. Pollut. Res. 2016, 23, 10114–10123. [Google Scholar] [CrossRef]
- Singh, P.K.; Bhattacharjya, R.; Saxena, A.; Mishra, B.; Tiwari, A. Utilization of wastewater as nutrient media and biomass valorization in marine Chrysophytes- Chaetoceros and Isochrysis. Energy Convers. Manag. X 2021, 10, 100062. [Google Scholar] [CrossRef]
- Baldev, E.; Ali, D.M.; Pugazhendhi, A.; Thajuddin, N. Wastewater as an economical and ecofriendly green medium for microalgal biofuel production. Fuel 2021, 294, 120484. [Google Scholar] [CrossRef]
- Van Do, T.C.; Nguyen, T.N.T.; Tran, D.T.; Le, T.G.; Nguyen, V.T. Semi-continuous removal of nutrients and biomass production from domestic wastewater in raceway reactors using Chlorella variabilis TH03-bacteria consortia. Environ. Technol. Innov. 2020, 20, 101172. [Google Scholar] [CrossRef]
- Liu, Y.; Yildiz, I. The effect of salinity concentration on algal biomass production and nutrient removal from municipal wastewater by Dunaliella salina. Int. J. Energy Res. 2018, 42, 2997–3006. [Google Scholar] [CrossRef]
- Leong, W.H.; Saman, N.A.M.; Kiatkittipong, W.; Assabumrungrat, S.; Najdanovic-Visak, V.; Wang, J.; Khoo, K.S.; Lam, M.K.; Mohamad, M.; Lim, J.W. Photoperiod-Induced Mixotrophic Metabolism in Chlorella Vulgaris for High Biomass and Lipid to Biodiesel Productions Using Municipal Wastewater Medium. Fuel 2022, 313, 123052. [Google Scholar] [CrossRef]
- Cabanelas, I.T.D.; Arbib, Z.; Chinalia, F.A.; Souza, C.O.; Perales, J.A.; Almeida, P.F.; Druzian, J.I.; Nascimento, I.A. From waste to energy: Microalgae production in wastewater and glycerol. Appl. Energy 2013, 109, 283–290. [Google Scholar] [CrossRef]
- Musetsho, P.; Renuka, N.; Guldhe, A.; Singh, P.; Pillay, K.; Rawat, I.; Bux, F. Valorization of Poultry Litter Using Acutodesmus Obliquus and Its Integrated Application for Lipids and Fertilizer Production. Sci. Total Environ. 2021, 796, 149018. [Google Scholar] [CrossRef]
- Feng, X.; Chen, Y.; Lv, J.; Han, S.; Tu, R.; Zhou, X.; Jin, W.; Ren, N. Enhanced lipid production by Chlorella pyrenoidosa through magnetic field pretreatment of wastewater and treatment of microalgae-wastewater culture solution: Magnetic field treatment modes and conditions. Bioresour. Technol. 2020, 306, 123102. [Google Scholar] [CrossRef]
- Wang, M.; Kuo-Dahab, W.C.; Dolan, S.; Park, C. Kinetics of nutrient removal and expression of extracellular polymeric substances of the microalgae, Chlorella sp. and Micractinium sp., in wastewater treatment. Bioresour. Technol. 2014, 154, 131–137. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.-F.; Chen, P.; Min, M.; Zhou, W.; Martinez, B.; Zhu, J.; Ruan, R. Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour. Technol. 2011, 102, 5138–5144. [Google Scholar] [CrossRef]
- Kiran, B.; Pathak, K.; Kumar, R.; Deshmukh, D. Cultivation of Chlorella sp. IM-01 in municipal wastewater for simultaneous nutrient removal and energy feedstock production. Ecol. Eng. 2014, 73, 326–330. [Google Scholar] [CrossRef]
- Sato, H.; Nagare, H.; Huynh, T.N.C.; Komatsu, H. Development of a new wastewater treatment process for resource recovery of carotenoids. Water Sci. Technol. 2015, 72, 1191–1197. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-H.; Yang, J.; Hu, H.-Y.; Yu, Y. Lipid-rich microalgal biomass production and nutrient removal by Haematococcus pluvialis in domestic secondary effluent. Ecol. Eng. 2013, 60, 155–159. [Google Scholar] [CrossRef]
- Abou-Shanab, R.A.I.; El-Dalatony, M.M.; El-Sheekh, M.M.; Ji, M.-K.; Salama, E.-S.; Kabra, A.N.; Jeon, B.-H. Cultivation of a new microalga, Micractinium reisseri, in municipal wastewater for nutrient removal, biomass, lipid, and fatty acid production. Biotechnol. Bioprocess Eng. 2014, 19, 510–518. [Google Scholar] [CrossRef]
- Reyimu, Z.; Özçimen, D. Batch cultivation of marine microalgae Nannochloropsis oculata and Tetraselmis suecica in treated municipal wastewater toward bioethanol production. J. Clean. Prod. 2017, 150, 40–46. [Google Scholar] [CrossRef]
- Parsy, A.; Sambusiti, C.; Baldoni-Andrey, P.; Elan, T.; Périé, F. Cultivation of Nannochloropsis oculata in saline oil & gas wastewater supplemented with anaerobic digestion effluent as nutrient source. Algal Res. 2020, 50, 101966. [Google Scholar] [CrossRef]
- Saleem, S.; Iftikhar, R.; Zafar, M.I.; Sohail, N.F. Growth kinetics of microalgae cultivated in different dilutions of fresh leachate for sustainable nutrient recovery and carbon fixation. Biochem. Eng. J. 2022, 178, 108299. [Google Scholar] [CrossRef]
- González-Balderas, R.; Velásquez-Orta, S.; Valdez-Vazquez, I.; Ledesma, M.O. Intensified recovery of lipids, proteins, and carbohydrates from wastewater-grown microalgae Desmodesmus sp. by using ultrasound or ozone. Ultrason. Sonochem. 2020, 62, 104852. [Google Scholar] [CrossRef]
- Onay, M. Bioethanol Production from Nannochloropsis Gaditana in Municipal Wastewater. Energy Procedia 2018, 153, 253–257. [Google Scholar] [CrossRef]
- Ledda, C.; Villegas, G.R.; Adani, F.; Fernández, F.A.; Grima, E.M. Utilization of centrate from wastewater treatment for the outdoor production of Nannochloropsis gaditana biomass at pilot-scale. Algal Res. 2015, 12, 17–25. [Google Scholar] [CrossRef]
- Mehta, N.; Shah, K.; Lin, Y.-I.; Sun, Y.; Pan, S.-Y. Advances in Circular Bioeconomy Technologies: From Agricultural Wastewater to Value-Added Resources. Environments 2021, 8, 20. [Google Scholar] [CrossRef]
- Han, T.; Lu, H.; Zhao, Y.; Xu, H.; Zhang, Y.; Li, B. Two-step strategy for obtaining Dunaliella sp. biomass and β-carotene from anaerobically digested poultry litter wastewater. Int. Biodeterior. Biodegrad. 2019, 143, 104714. [Google Scholar] [CrossRef]
- Zheng, M.; Dai, J.; Ji, X.; Li, D.; He, Y.; Wang, M.; Huang, J.; Chen, B. An integrated semi-continuous culture to treat original swine wastewater and fix carbon dioxide by an indigenous Chlorella vulgaris MBFJNU-1 in an outdoor photobioreactor. Bioresour. Technol. 2021, 340, 125703. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Kuo, E.-W.; Nagarajan, D.; Ho, S.-H.; Dong, C.-D.; Lee, D.-J.; Chang, J.-S. Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production. Bioresour. Technol. 2020, 302, 122814. [Google Scholar] [CrossRef] [PubMed]
- Cheng, P.; Chu, R.; Zhang, X.; Song, L.; Chen, D.; Zhou, C.; Yan, X.; Cheng, J.J.; Ruan, R. Screening of the dominant Chlorella pyrenoidosa for biofilm attached culture and feed production while treating swine wastewater. Bioresour. Technol. 2020, 318, 124054. [Google Scholar] [CrossRef]
- Cheng, P.; Cheng, J.J.; Cobb, K.; Zhou, C.; Zhou, N.; Addy, M.; Chen, P.; Yan, X.; Ruan, R. Tribonema sp. and Chlorella zofingiensis co-culture to treat swine wastewater diluted with fishery wastewater to facilitate harvest. Bioresour. Technol. 2020, 297, 122516. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Yu, T.; Xie, Y.; Chen, J.; Ho, S.-H.; Wang, Y.; Huang, F. Attached culture of Chlamydomonas sp. JSC4 for biofilm production and TN/TP/Cu(II) removal. Biochem. Eng. J. 2018, 141, 1–9. [Google Scholar] [CrossRef]
- López-Pacheco, I.Y.; Carrillo-Nieves, D.; Salinas-Salazar, C.; Silva-Núñez, A.; Arévalo-Gallegos, A.; Barceló, D.; Afewerki, S.; Iqbal, H.M.; Parra-Saldívar, R. Combination of nejayote and swine wastewater as a medium for Arthrospira maxima and Chlorella vulgaris production and wastewater treatment. Sci. Total Environ. 2019, 676, 356–367. [Google Scholar] [CrossRef]
- de Alva, M.S.; Pabello, V.M.L. Phycoremediation by simulating marine aquaculture effluent using Tetraselmis sp. and the potential use of the resulting biomass. J. Water Process Eng. 2021, 41, 102071. [Google Scholar] [CrossRef]
- Chen, J.-H.; Kato, Y.; Matsuda, M.; Chen, C.-Y.; Nagarajan, D.; Hasunuma, T.; Kondo, A.; Dong, C.-D.; Lee, D.-J.; Chang, J.-S. A novel process for the mixotrophic production of lutein with Chlorella sorokiniana MB-1-M12 using aquaculture wastewater. Bioresour. Technol. 2019, 290, 121786. [Google Scholar] [CrossRef]
- Kuo, C.-M.; Jian, J.-F.; Lin, T.-H.; Chang, Y.-B.; Wan, X.-H.; Lai, J.-T.; Chang, J.-S.; Lin, C.-S. Simultaneous microalgal biomass production and CO2 fixation by cultivating Chlorella sp. GD with aquaculture wastewater and boiler flue gas. Bioresour. Technol. 2016, 221, 241–250. [Google Scholar] [CrossRef]
- Khatoon, H.; Penz, K.P.; Banerjee, S.; Rahman, M.R.; Minhaz, T.M.; Islam, Z.; Mukta, F.A.; Nayma, Z.; Sultana, R.; Amira, K.I. Immobilized Tetraselmis sp. for reducing nitrogenous and phosphorous compounds from aquaculture wastewater. Bioresour. Technol. 2021, 338, 125529. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-Y.; Hong, Y.; Zhao, G.-P.; Zhang, H.-K.; Zhai, Q.-Y.; Wang, Q. Microalgae-Based Swine Wastewater Treatment: Strain Screening, Conditions Optimization, Physiological Activity and Biomass Potential. Sci. Total Environ. 2022, 807, 151008. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Shao, S.; He, Y.; Luo, Q.; Zheng, M.; Zheng, M.; Chen, B.; Wang, M. Nutrients removal from piggery wastewater coupled to lipid production by a newly isolated self-flocculating microalga Desmodesmus sp. PW1. Bioresour. Technol. 2020, 302, 122806. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.-M.; Chen, T.-Y.; Lin, T.-H.; Kao, C.-Y.; Lai, J.-T.; Chang, J.-S.; Lin, C.-S. Cultivation of Chlorella sp. GD using piggery wastewater for biomass and lipid production. Bioresour. Technol. 2015, 194, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-C.; Choi, W.J.; Chae, A.N.; Park, J.; Kim, H.J.; Song, K.G. Treating High-Strength Saline Piggery Wastewater Using the Heterotrophic Cultivation of Acutodesmus Obliquus. Biochem. Eng. J. 2016, 110, 51–58. [Google Scholar] [CrossRef]
- Hilares, R.T.; Bustos, K.A.G.; Vera, F.P.S.; Andrade, G.J.C.; Tanaka, D.A.P. Acid precipitation followed by microalgae (Chlorella vulgaris) cultivation as a new approach for poultry slaughterhouse wastewater treatment. Bioresour. Technol. 2021, 335, 125284. [Google Scholar] [CrossRef]
- Depraetere, O.; Foubert, I.; Muylaert, K. Decolorisation of Piggery Wastewater to Stimulate the Production of Arthrospira platensis. Bioresour. Technol. 2013, 148, 366–372. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Xiong, H.; Hui, Z.; Zeng, X. Mixotrophic Cultivation of Chlorella Pyrenoidosa with Diluted Primary Piggery Wastewater to Produce Lipids. Bioresour. Technol. 2012, 104, 215–220. [Google Scholar] [CrossRef]
- Ganeshkumar, V.; Subashchandrabose, S.R.; Dharmarajan, R.; Venkateswarlu, K.; Naidu, R.; Megharaj, M. Use of Mixed Wastewaters from Piggery and Winery for Nutrient Removal and Lipid Production by Chlorella Sp. MM3. Bioresour. Technol. 2018, 256, 254–258. [Google Scholar] [CrossRef]
- Jain, R.; Mishra, S.; Mohanty, K. Cattle Wastewater as a Low-Cost Supplement Augmenting Microalgal Biomass under Batch and Fed-Batch Conditions. J. Environ. Manag. 2022, 304, 114213. [Google Scholar] [CrossRef]
- Hena, S.; Znad, H.; Heong, K.; Judd, S. Dairy farm wastewater treatment and lipid accumulation by Arthrospira platensis. Water Res. 2018, 128, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Wang, Z.; Wang, X.; Yuan, Z. Cultivation of Chlorella Sp. Using Raw Dairy Wastewater for Nutrient Removal and Biodiesel Production: Characteristics Comparison of Indoor Bench-Scale and Outdoor Pilot-Scale Cultures. Bioresour. Technol. 2015, 192, 382–388. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ge, Y.; Cheng, H.; Wu, L.; Tian, G. Aerated swine lagoon wastewater: A promising alternative medium for Botryococcus braunii cultivation in open system. Bioresour. Technol. 2013, 139, 190–194. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yildiz, I. Bioremediation of Minkery Wastewater and Astaxanthin Production by Haematococcus Pluvialis. Int. J. Glob. Warm. 2019, 19, 145–157. [Google Scholar] [CrossRef]
- Wang, H.; Qi, M.; Bo, Y.; Zhou, C.; Yan, X.; Wang, G.; Cheng, P. Treatment of Fishery Wastewater by Co-Culture of Thalassiosira Pseudonana with Isochrysis Galbana and Evaluation of Their Active Components. Algal Res. 2021, 60, 102498. [Google Scholar] [CrossRef]
- Shayesteh, H.; Vadiveloo, A.; Bahri, P.A.; Moheimani, N.R. Can CO2 Addition Improve the Tertiary Treatment of Anaerobically Digested Abattoir Effluent (ADAE) by Scenedesmus Sp. (Chlorophyta)? Algal Res. 2021, 58, 102379. [Google Scholar] [CrossRef]
- Nasir, N.M.; Bakar, N.S.A.; Lananan, F.; Abdul Hamid, S.H.; Lam, S.S.; Jusoh, A. Treatment of African Catfish, Clarias Gariepinus Wastewater Utilizing Phytoremediation of Microalgae, Chlorella Sp. with Aspergillus Niger Bio-Harvesting. Bioresour. Technol. 2015, 190, 492–498. [Google Scholar] [CrossRef]
- Umamaheswari, J.; Kavitha, M.S.; Shanthakumar, S. Outdoor Cultivation of Chlorella Pyrenoidosa in Paddy-Soaked Wastewater and a Feasibility Study on Biodiesel Production from Wet Algal Biomass through in-Situ Transesterification. Biomass Bioenergy 2020, 143, 105853. [Google Scholar] [CrossRef]
- Herold, C.; Ishika, T.; Nwoba, E.G.; Tait, S.; Ward, A.; Moheimani, N.R. Biomass Production of Marine Microalga Tetraselmis Suecica Using Biogas and Wastewater as Nutrients. Biomass Bioenergy 2021, 145, 105945. [Google Scholar] [CrossRef]
- Kiran, B.R.; Mohan, S.V. Photosynthetic transients in Chlorella sorokiniana during phycoremediation of dairy wastewater under distinct light intensities. Bioresour. Technol. 2021, 340, 125593. [Google Scholar] [CrossRef]
- Lananan, F.; Hamid, S.H.A.; Din, W.N.S.; Ali, N.; Khatoon, H.; Jusoh, A.; Endut, A. Symbiotic bioremediation of aquaculture wastewater in reducing ammonia and phosphorus utilizing Effective Microorganism (EM-1) and microalgae (Chlorella sp.). Int. Biodeterior. Biodegrad. 2014, 95, 127–134. [Google Scholar] [CrossRef]
- Song, Y.; Wang, X.; Cui, H.; Ji, C.; Xue, J.; Jia, X.; Ma, R.; Li, R. Enhancing growth and oil accumulation of a palmitoleic acid–rich Scenedesmus obliquus in mixotrophic cultivation with acetate and its potential for ammonium-containing wastewater purification and biodiesel production. J. Environ. Manag. 2021, 297, 113273. [Google Scholar] [CrossRef] [PubMed]
- Rosenwinkel, K.-H.; Austermann-Haun, U.; Meyer, H. Industrial Wastewater Sources and Treatment Strategies. In Environmental Biotechnology; Jördening, H.-J., Winter, J., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2005; pp. 49–77. [Google Scholar]
- Li, S.; Zhao, S.; Yan, S.; Qiu, Y.; Song, C.; Li, Y.; Kitamura, Y. Food processing wastewater purification by microalgae cultivation associated with high value-added compounds production—A review. Chin. J. Chem. Eng. 2019, 27, 2845–2856. [Google Scholar] [CrossRef]
- Ahmad, A.; Banat, F.; Alsafar, H.; Hasan, S.W. Algae Biotechnology for Industrial Wastewater Treatment, Bioenergy Production, and High-Value Bioproducts. Sci. Total Environ. 2022, 806, 150585. [Google Scholar] [CrossRef]
- Markou, G.; Chatzipavlidis, I.; Georgakakis, D. Cultivation of Arthrospira (Spirulina) Platensis in Olive-Oil Mill Wastewater Treated with Sodium Hypochlorite. Bioresour. Technol. 2012, 112, 234–241. [Google Scholar] [CrossRef]
- Karray, R.; Elloumi, W.; Ben Ali, R.; Loukil, S.; Chamkha, M.; Karray, F.; Sayadi, S. A Novel Bioprocess Combining Anaerobic Co-Digestion Followed by Ultra-Filtration and Microalgae Culture for Optimal Olive Mill Wastewater Treatment. J. Environ. Manag. 2022, 303, 114188. [Google Scholar] [CrossRef]
- Yonezawa, N.; Matsuura, H.; Shiho, M.; Kaya, K.; Watanabe, M.M. Effects of Soybean Curd Wastewater on the Growth and Hydrocarbon Production of Botryococcus Braunii Strain BOT-22. Bioresour. Technol. 2012, 109, 304–307. [Google Scholar] [CrossRef]
- Qiu, Y.; Zu, Y.; Song, C.; Xie, M.; Qi, Y.; Kansha, Y.; Kitamura, Y. Soybean Processing Wastewater Purification via Chlorella L166 and L38 with Potential Value-Added Ingredients Production. Bioresour. Technol. Rep. 2019, 7, 100195. [Google Scholar] [CrossRef]
- Hongyang, S.; Yalei, Z.; Chunmin, Z.; Xuefei, Z.; Jinpeng, L. Cultivation of Chlorella Pyrenoidosa in Soybean Processing Wastewater. Bioresour. Technol. 2011, 102, 9884–9890. [Google Scholar] [CrossRef]
- Hu, X.; Song, C.; Mu, H.; Liu, Z.; Kitamura, Y. Optimization of Simultaneous Soybean Processing Wastewater Treatment and Flue Gas CO2 Fixation via Chlorella Sp. L166 Cultivation. J. Environ. Chem. Eng. 2020, 8, 103960. [Google Scholar] [CrossRef]
- Fazal, T.; Mushtaq, A.; Rehman, F.; Khan, A.U.; Rashid, N.; Farooq, W.; Rehman, M.S.U.; Xu, J. Bioremediation of textile wastewater and successive biodiesel production using microalgae. Renew. Sustain. Energy Rev. 2018, 82, 3107–3126. [Google Scholar] [CrossRef]
- Fernando, J.S.R.; Premaratne, M.; Dinalankara, D.M.S.D.; Perera, G.L.N.J.; Ariyadasa, T.U. Cultivation of microalgae in palm oil mill effluent (POME) for astaxanthin production and simultaneous phycoremediation. J. Environ. Chem. Eng. 2021, 9, 105375. [Google Scholar] [CrossRef]
- Behl, K.; SeshaCharan, P.; Joshi, M.; Sharma, M.; Mathur, A.; Kareya, M.S.; Jutur, P.P.; Bhatnagar, A.; Nigam, S. Multifaceted Applications of Isolated Microalgae Chlamydomonas Sp. TRC-1 in Wastewater Remediation, Lipid Production and Bioelectricity Generation. Bioresour. Technol. 2020, 304, 122993. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.-Y.; Lay, C.-H.; Chiong, M.-C.; Chew, K.W.; Chen, C.-C.; Wu, S.-Y.; Zhou, D.; Kumar, G.; Show, P.L. Immobilized Chlorella species mixotrophic cultivation at various textile wastewater concentrations. J. Water Process Eng. 2020, 38, 101609. [Google Scholar] [CrossRef]
- Araujo, G.S.; Santiago, C.S.; Moreira, R.T.; Neto, M.P.D.; Fernandes, F.A. Nutrient removal by Arthrospira platensis cyanobacteria in cassava processing wastewater. J. Water Process Eng. 2020, 40, 101826. [Google Scholar] [CrossRef]
- Tan, X.-B.; Zhao, X.-C.; Yang, L.-B. Strategies for Enhanced Biomass and Lipid Production by Chlorella Pyrenoidosa Culture in Starch Processing Wastewater. J. Clean. Prod. 2019, 236, 117671. [Google Scholar] [CrossRef]
- Okpozu, O.O.; Ogbonna, I.O.; Ikwebe, J.; Ogbonna, J.C. Phycoremediation of Cassava Wastewater by Desmodesmus Armatus and the Concomitant Accumulation of Lipids for Biodiesel Production. Bioresour. Technol. Rep. 2019, 7, 100255. [Google Scholar] [CrossRef]
- Tan, X.-B.; Zhao, X.-C.; Zhang, Y.-L.; Zhou, Y.-Y.; Yang, L.-B.; Zhang, W.-W. Enhanced Lipid and Biomass Production Using Alcohol Wastewater as Carbon Source for Chlorella pyrenoidosa Cultivation in Anaerobically Digested Starch Wastewater in Outdoors. Bioresour. Technol. 2018, 247, 784–793. [Google Scholar] [CrossRef]
- Yang, L.; Tan, X.; Li, D.; Chu, H.; Zhou, X.; Zhang, Y.; Yu, H. Nutrients Removal and Lipids Production by Chlorella pyrenoidosa Cultivation Using Anaerobic Digested Starch Wastewater and Alcohol Wastewater. Bioresour. Technol. 2015, 181, 54–61. [Google Scholar] [CrossRef]
- Tan, X.; Chu, H.; Zhang, Y.; Yang, L.; Zhao, F.; Zhou, X. Chlorella Pyrenoidosa Cultivation Using Anaerobic Digested Starch Processing Wastewater in an Airlift Circulation Photobioreactor. Bioresour. Technol. 2014, 170, 538–548. [Google Scholar] [CrossRef]
- Gao, K.; Liu, Q.; Gao, Z.; Xue, C.; Qian, P.; Dong, J.; Gao, Z.; Deng, X. A Dilution Strategy Used to Enhance Nutrient Removal and Biomass Production of Chlorella Sorokiniana in Frigon Wastewater. Algal Res. 2021, 58, 102438. [Google Scholar] [CrossRef]
- Gao, F.; Peng, Y.-Y.; Li, C.; Yang, G.-J.; Deng, Y.-B.; Xue, B.; Guo, Y.-M. Simultaneous Nutrient Removal and Biomass/Lipid Production by Chlorella Sp. in Seafood Processing Wastewater. Sci. Total Environ. 2018, 640–641, 943–953. [Google Scholar] [CrossRef] [PubMed]
- Farooq, W.; Lee, Y.-C.; Ryu, B.-G.; Kim, B.-H.; Kim, H.-S.; Choi, Y.-E.; Yang, J.-W. Two-Stage Cultivation of Two Chlorella Sp. Strains by Simultaneous Treatment of Brewery Wastewater and Maximizing Lipid Productivity. Bioresour. Technol. 2013, 132, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Uysal, Ö.; Ekinci, K. Treatment of Rose Oil Processing Effluent with Chlorella Sp. Using Photobioreactor and Raceway. J. Environ. Manag. 2021, 295, 113089. [Google Scholar] [CrossRef] [PubMed]
- Atoku, D.I.; Ojekunle, O.Z.; Taiwo, A.M.; Shittu, O.B. Evaluating the Efficiency of Nostoc commune, Oscillatoria limosa and Chlorella vulgaris in a Phycoremediation of Heavy Metals Contaminated Industrial Wastewater. Sci. Afr. 2021, 12, e00817. [Google Scholar] [CrossRef]
- Huo, S.; Kong, M.; Zhu, F.; Qian, J.; Huang, D.; Chen, P.; Ruan, R. Co-Culture of Chlorella and Wastewater-Borne Bacteria in Vinegar Production Wastewater: Enhancement of Nutrients Removal and Influence of Algal Biomass Generation. Algal Res. 2020, 45, 101744. [Google Scholar] [CrossRef]
- Kumar, A.K.; Sharma, S.; Shah, E.; Parikh, B.S.; Patel, A.; Dixit, G.; Gupta, S.; Divecha, J.M. Cultivation of Ascochloris Sp. ADW007-Enriched Microalga in Raw Dairy Wastewater for Enhanced Biomass and Lipid Productivity. Int. J. Environ. Sci. Technol. 2019, 16, 943–954. [Google Scholar] [CrossRef]
- Yang, K.; Qin, L.; Wang, Z.; Feng, W.; Feng, P.; Zhu, S.; Xu, J.; Yuan, Z. Water-saving analysis on an effective water reuse system in biodiesel feedstock production based on Chlorella zofingiensis fed-batch cultivation. Water Sci. Technol. 2015, 71, 1562–1568. [Google Scholar] [CrossRef]
- Raja, S.W.; Thanuja, K.G.; Karthikeyan, S.; Marimuthu, S. Exploring the Concurrent Use of Microalgae Coelastrella Sp. for Electricity Generation and Dairy Wastewater Treatment. Bioresour. Technol. Rep. 2022, 17, 100889. [Google Scholar] [CrossRef]
- Gani, P.; Sunar, N.M.; Matias-Peralta, H.M.; Abdul Latiff, A.A.; Joo, I.T.K.; Parjo, U.K.; Emparan, Q.; Er, C.M. Phycoremediation of Dairy Wastewater by Using Green Microlgae: Botryococcus sp. Appl. Mech. Mater. 2015, 773–774, 1318–1323. [Google Scholar] [CrossRef]
- Shu, Q.; Qin, L.; Yuan, Z.; Zhu, S.; Xu, J.; Xu, Z.; Feng, P.; Wang, Z. Comparison of Dairy Wastewater and Synthetic Medium for Biofuels Production by Microalgae Cultivation. Energy Sources Part A Recovery Util. Environ. Eff. 2018, 40, 751–758. [Google Scholar] [CrossRef]
- Kothari, R.; Prasad, R.; Kumar, V.; Singh, D. Production of biodiesel from microalgae Chlamydomonas polypyrenoideum grown on dairy industry wastewater. Bioresour. Technol. 2013, 144, 499–503. [Google Scholar] [CrossRef] [PubMed]
- Spennati, E.; Mirizadeh, S.; Casazza, A.A.; Solisio, C.; Converti, A. Chlorella Vulgaris and Arthrospira Platensis Growth in a Continuous Membrane Photobioreactor Using Industrial Winery Wastewater. Algal Res. 2021, 60, 102519. [Google Scholar] [CrossRef]
- Han, P.; Lu, Q.; Zhong, H.; Xie, J.; Leng, L.; Li, J.; Fan, L.; Li, J.; Chen, P.; Yan, Y.; et al. Recycling Nutrients from Soy Sauce Wastewater to Culture Value-Added Spirulina maxima. Algal Res. 2021, 53, 102157. [Google Scholar] [CrossRef]
- Resdi, R.; Lim, J.S.; Idris, A. Batch Kinetics of Nutrients Removal for Palm Oil Mill Effluent and Recovery of Lipid by Nannochloropsis Sp. J. Water Process Eng. 2021, 40, 101767. [Google Scholar] [CrossRef]
- Hariz, H.B.; Takriff, M.S.; Yasin, N.H.M.; Ba-Abbad, M.M.; Hakimi, N.I.N.M. Potential of the microalgae-based integrated wastewater treatment and CO2 fixation system to treat Palm Oil Mill Effluent (POME) by indigenous microalgae; Scenedesmus sp. and Chlorella sp. J. Water Process Eng. 2019, 32, 100907. [Google Scholar] [CrossRef]
- López-Pacheco, I.Y.; Castillo-Vacas, E.I.; Castañeda-Hernández, L.; Gradiz-Menjivar, A.; Rodas-Zuluaga, L.I.; Castillo-Zacarías, C.; Sosa-Hernández, J.E.; Barceló, D.; Iqbal, H.M.; Parra-Saldívar, R. CO2 biocapture by Scenedesmus sp. grown in industrial wastewater. Sci. Total Environ. 2021, 790, 148222. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, D.-J.; Zhong, C.-Q. Cultivating Scenedesmus Dimorphus in Lactic Acid Wastewater for Cost-Effective Biodiesel Production. Sci. Total Environ. 2021, 792, 148428. [Google Scholar] [CrossRef]
- Melo, J.M.; Telles, T.S.; Ribeiro, M.R.; Junior, O.D.C.; Andrade, D.S. Chlorella sorokiniana as bioremediator of wastewater: Nutrient removal, biomass production, and potential profit. Bioresour. Technol. Rep. 2021, 17, 100933. [Google Scholar] [CrossRef]
- Yuan, S.; Ye, S.; Yang, S.; Luo, G. Purification of Potato Wastewater and Production of Byproducts Using Microalgae Scenedesmus and Desmodesmus. J. Water Process Eng. 2021, 43, 102237. [Google Scholar] [CrossRef]
- Chu, H.-Q.; Tan, X.-B.; Zhang, Y.-L.; Yang, L.-B.; Zhao, F.-C.; Guo, J. Continuous Cultivation of Chlorella pyrenoidosa Using Anaerobic Digested Starch Processing Wastewater in the Outdoors. Bioresour. Technol. 2015, 185, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Zhou, W.; Min, M.; Ma, X.; Chandra, C.; Doan, Y.T.T.; Ma, Y.; Zheng, H.; Cheng, S.; Griffith, R.; et al. Growing Chlorella Sp. on Meat Processing Wastewater for Nutrient Removal and Biomass Production. Bioresour. Technol. 2015, 198, 189–197. [Google Scholar] [CrossRef]
- Polishchuk, A.; Valev, D.; Tarvainen, M.; Mishra, S.; Kinnunen, V.; Antal, T.; Yang, B.; Rintala, J.; Tyystjärvi, E. Cultivation of Nannochloropsis for eicosapentaenoic acid production in wastewaters of pulp and paper industry. Bioresour. Technol. 2015, 193, 469–476. [Google Scholar] [CrossRef]
- Emparan, Q.; Jye, Y.S.; Danquah, M.K.; Harun, R. Cultivation of Nannochloropsis sp. microalgae in palm oil mill effluent (POME) media for phycoremediation and biomass production: Effect of microalgae cells with and without beads. J. Water Process Eng. 2020, 33, 101043. [Google Scholar] [CrossRef]
- Fazal, T.; Rehman, M.S.U.; Javed, F.; Akhtar, M.; Mushtaq, A.; Hafeez, A.; Din, A.A.; Iqbal, J.; Rashid, N.; Rehman, F. Integrating bioremediation of textile wastewater with biodiesel production using microalgae (Chlorella vulgaris). Chemosphere 2021, 281, 130758. [Google Scholar] [CrossRef]
- Li, J.; Zheng, X.; Liu, K.; Sun, S.; Li, X. Effect of Tetracycline on the Growth and Nutrient Removal Capacity of Chlamydomonas reinhardtii in Simulated Effluent from Wastewater Treatment Plants. Bioresour. Technol. 2016, 218, 1163–1169. [Google Scholar] [CrossRef]
- Wang, B.; Qin, L.; Yao, C.; Chen, H.; Feng, P.; Zhu, S.; Zhou, W.; Wang, Z. Enhancement of Co-Conversion of Endogenous Carbon and Nitrogen of Dairy Wastewater in Mesophilic Hydrolysis-Acidification Coupled Microalgae Culture System by Rhamnolipid. Biochem. Eng. J. 2022, 179, 108314. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, H.; Zhong, Y.; Zhang, C.; Shen, Z.; Sang, W.; Yan, G.; Zhou, X. The Effect of Bacterial Contamination on the Heterotrophic Cultivation of Chlorella pyrenoidosa in Wastewater from the Production of Soybean Products. Water Res. 2012, 46, 5509–5516. [Google Scholar] [CrossRef]
- Yang, M.; Xue, C.; Li, L.; Gao, Z.; Liu, Q.; Qian, P.; Dong, J.; Gao, K. Design and Performance of a Low-Cost Microalgae Culturing System for Growing Chlorella sorokiniana on Cooking Cocoon Wastewater. Algal Res. 2022, 62, 102607. [Google Scholar] [CrossRef]
- Huo, S.; Wang, Z.; Zhu, S.; Zhou, W.; Dong, R.; Yuan, Z. Cultivation of Chlorella zofingiensis in Bench-Scale Outdoor Ponds by Regulation of PH Using Dairy Wastewater in Winter, South China. Bioresour. Technol. 2012, 121, 76–82. [Google Scholar] [CrossRef]
- Ammar, S.H.; Khadim, H.J.; Mohamed, A.I. Cultivation of Nannochloropsis oculata and Isochrysis galbana Microalgae in Produced Water for Bioremediation and Biomass Production. Environ. Technol. Innov. 2018, 10, 132–142. [Google Scholar] [CrossRef]
- Choi, Y.-K.; Jang, H.M.; Kan, E. Microalgal Biomass and Lipid Production on Dairy Effluent Using a Novel Microalga, Chlorella Sp. Isolated from Dairy Wastewater. Biotechnol. Bioprocess Eng. 2018, 23, 333–340. [Google Scholar] [CrossRef]
- Koul, B.; Sharma, K.; Shah, M.P. Phycoremediation: A Sustainable Alternative in Wastewater Treatment (WWT) Regime. Environ. Technol. Innov. 2022, 25, 102040. [Google Scholar] [CrossRef]
- Lee, Y.-J.; Lei, Z. Wastewater Treatment Using Microalgal-Bacterial Aggregate Process at Zero-Aeration Scenario: Most Recent Research Focuses and Perspectives. Bioresour. Technol. Rep. 2022, 17, 100943. [Google Scholar] [CrossRef]
- Qi, F.; Jia, Y.; Mu, R.; Ma, G.; Guo, Q.; Meng, Q.; Yu, G.; Xie, J. Convergent Community Structure of Algal–Bacterial Consortia and Its Effects on Advanced Wastewater Treatment and Biomass Production. Sci. Rep. 2021, 11, 21118. [Google Scholar] [CrossRef]
- Kong, W.; Shen, B.; Lyu, H.; Kong, J.; Ma, J.; Wang, Z.; Feng, S. Review on Carbon Dioxide Fixation Coupled with Nutrients Removal from Wastewater by Microalgae. J. Clean. Prod. 2021, 292, 125975. [Google Scholar] [CrossRef]
- Maheshwari, N.; Krishna, P.K.; Thakur, I.S.; Srivastava, S. Biological Fixation of Carbon Dioxide and Biodiesel Production Using Microalgae Isolated from Sewage Waste Water. Environ. Sci. Pollut. Res. 2020, 27, 27319–27329. [Google Scholar] [CrossRef]
- Silvello, M.A.D.C.; Gonçalves, I.S.; Azambuja, S.P.H.; Costa, S.S.; Silva, P.G.P.; Santos, L.O.; Goldbeck, R. Microalgae-based carbohydrates: A green innovative source of bioenergy. Bioresour. Technol. 2021, 344, 126304. [Google Scholar] [CrossRef]
- Chai, W.S.; Chew, C.H.; Munawaroh, H.S.H.; Ashokkumar, V.; Cheng, C.K.; Park, Y.-K.; Show, P.L. Microalgae and Ammonia: A Review on Inter-Relationship. Fuel 2021, 303, 121303. [Google Scholar] [CrossRef]
- Li, X.; Li, W.; Zhai, J.; Wei, H. Effect of Nitrogen Limitation on Biochemical Composition and Photosynthetic Performance for Fed-Batch Mixotrophic Cultivation of Microalga Spirulina platensis. Bioresour. Technol. 2018, 263, 555–561. [Google Scholar] [CrossRef]
- Ran, W.; Wang, H.; Liu, Y.; Qi, M.; Xiang, Q.; Yao, C.; Zhang, Y.; Lan, X. Storage of Starch and Lipids in Microalgae: Biosynthesis and Manipulation by Nutrients. Bioresour. Technol. 2019, 291, 121894. [Google Scholar] [CrossRef] [PubMed]
- Yan, C.; Qu, Z.; Wang, J.; Cao, L.; Han, Q. Microalgal Bioremediation of Heavy Metal Pollution in Water: Recent Advances, Challenges, and Prospects. Chemosphere 2022, 286, 131870. [Google Scholar] [CrossRef] [PubMed]
- Priya, A.; Jalil, A.; Vadivel, S.; Dutta, K.; Rajendran, S.; Fujii, M.; Soto-Moscoso, M. Heavy metal remediation from wastewater using microalgae: Recent advances and future trends. Chemosphere 2022, 305, 135375. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.F.; Mofijur, M.; Parisa, T.A.; Islam, N.; Kusumo, F.; Inayat, A.; Le, V.G.; Badruddin, I.A.; Khan, T.Y.; Ong, H.C. Progress and challenges of contaminate removal from wastewater using microalgae biomass. Chemosphere 2022, 286, 131656. [Google Scholar] [CrossRef] [PubMed]
- Leong, Y.K.; Chang, J.-S. Bioremediation of Heavy Metals Using Microalgae: Recent Advances and Mechanisms. Bioresour. Technol. 2020, 303, 122886. [Google Scholar] [CrossRef]
- Sathinathan, P.; Parab, H.; Yusoff, R.; Ibrahim, S.; Vello, V.; Ngoh, G. Photobioreactor design and parameters essential for algal cultivation using industrial wastewater: A review. Renew. Sustain. Energy Rev. 2023, 173, 113096. [Google Scholar] [CrossRef]
- Nagarajan, D.; Lee, D.-J.; Varjani, S.; Lam, S.S.; Allakhverdiev, S.I.; Chang, J.-S. Microalgae-Based Wastewater Treatment—Microalgae-Bacteria Consortia, Multi-Omics Approaches and Algal Stress Response. Sci. Total Environ. 2022, 845, 157110. [Google Scholar] [CrossRef]
- Aditya, L.; Mahlia, T.I.; Nguyen, L.N.; Vu, H.P.; Nghiem, L.D. Microalgae-bacteria consortium for wastewater treatment and biomass production. Sci. Total Environ. 2022, 838, 155871. [Google Scholar] [CrossRef]
- Liu, Z.; Cui, D.; Liu, Y.; Wang, H.; Yang, L.; Chen, H.; Qiu, G.; Xiong, Z.; Shao, P.; Luo, X. Enhanced Ammonia Nitrogen Removal from Actual Rare Earth Element Tailings (REEs) Wastewater by Microalgae-Bacteria Symbiosis System (MBS): Ratio Optimization of Microalgae to Bacteria and Mechanism Analysis. Bioresour. Technol. 2023, 367, 128304. [Google Scholar] [CrossRef]
- Leng, L.; Li, W.; Chen, J.; Leng, S.; Chen, J.; Wei, L.; Peng, H.; Li, J.; Zhou, W.; Huang, H. Co-Culture of Fungi-Microalgae Consortium for Wastewater Treatment: A Review. Bioresour. Technol. 2021, 330, 125008. [Google Scholar] [CrossRef]
- Wang, S.-K.; Yang, K.-X.; Zhu, Y.-R.; Zhu, X.-Y.; Nie, D.-F.; Jiao, N.; Angelidaki, I. One-Step Co-Cultivation and Flocculation of Microalgae with Filamentous Fungi to Valorize Starch Wastewater into High-Value Biomass. Bioresour. Technol. 2022, 361, 127625. [Google Scholar] [CrossRef] [PubMed]
- Walls, L.E.; Velasquez-Orta, S.B.; Romero-Frasca, E.; Leary, P.; Noguez, I.Y.; Ledesma, M.T.O. Non-sterile heterotrophic cultivation of native wastewater yeast and microalgae for integrated municipal wastewater treatment and bioethanol production. Biochem. Eng. J. 2019, 151, 107319. [Google Scholar] [CrossRef]
- Ray, A.; Nayak, M.; Ghosh, A. A Review on Co-Culturing of Microalgae: A Greener Strategy towards Sustainable Biofuels Production. Sci. Total Environ. 2022, 802, 149765. [Google Scholar] [CrossRef] [PubMed]
- Vasistha, S.; Khanra, A.; Rai, M.P. Influence of Microalgae-ZnO Nanoparticle Association on Sewage Wastewater towards Efficient Nutrient Removal and Improved Biodiesel Application: An Integrated Approach. J. Water Process Eng. 2021, 39, 101711. [Google Scholar] [CrossRef]
- Markeb, A.A.; Llimós-Turet, J.; Ferrer, I.; Blánquez, P.; Alonso, A.; Sánchez, A.; Moral-Vico, J.; Font, X. The use of magnetic iron oxide based nanoparticles to improve microalgae harvesting in real wastewater. Water Res. 2019, 159, 490–500. [Google Scholar] [CrossRef]
- Nishshanka, G.K.S.H.; Liyanaarachchi, V.C.; Premaratne, M.; Nimarshana, P.; Ariyadasa, T.U.; Kornaros, M. Wastewater-based microalgal biorefineries for the production of astaxanthin and co-products: Current status, challenges and future perspectives. Bioresour. Technol. 2021, 342, 126018. [Google Scholar] [CrossRef]
- Fu, R.; Kang, L.; Zhang, C.; Fei, Q. Application and progress of techno-economic analysis and life cycle assessment in biomanufacturing of fuels and chemicals. Green Chem. Eng. 2022, S2666952822000802. [Google Scholar] [CrossRef]
- Pooja, K.; Priyanka, V.; Rao, B.C.S.; Raghavender, V. Cost-Effective Treatment of Sewage Wastewater Using Microalgae Chlorella Vulgaris and Its Application as Bio-Fertilizer. Energy Nexus 2022, 7, 100122. [Google Scholar] [CrossRef]
- Leong, Y.K.; Huang, C.-Y.; Chang, J.-S. Pollution Prevention and Waste Phycoremediation by Algal-Based Wastewater Treatment Technologies: The Applications of High-Rate Algal Ponds (HRAPs) and Algal Turf Scrubber (ATS). J. Environ. Manag. 2021, 296, 113193. [Google Scholar] [CrossRef]
- Arashiro, L.T.; Montero, N.; Ferrer, I.; Acién, F.G.; Gómez, C.; Garfí, M. Life Cycle Assessment of High Rate Algal Ponds for Wastewater Treatment and Resource Recovery. Sci. Total Environ. 2018, 622–623, 1118–1130. [Google Scholar] [CrossRef]
- Maga, D. Life Cycle Assessment of Biomethane Produced from Microalgae Grown in Municipal Waste Water. Biomass Conv. Bioref. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Kohlheb, N.; van Afferden, M.; Lara, E.; Arbib, Z.; Conthe, M.; Poitzsch, C.; Marquardt, T.; Becker, M.-Y. Assessing the Life-Cycle Sustainability of Algae and Bacteria-Based Wastewater Treatment Systems: High-Rate Algae Pond and Sequencing Batch Reactor. J. Environ. Manag. 2020, 264, 110459. [Google Scholar] [CrossRef] [PubMed]
- Nasir, A.S.M.; Mohamed, B.; Li, L.Y. Comparative life cycle assessment of co-pyrolysing sewage sludge and wastewater-grown microalgae for biofuel production. Resour. Conserv. Recycl. 2023, 190, 106780. [Google Scholar] [CrossRef]
- Arashiro, L.T.; Josa, I.; Ferrer, I.; Van Hulle, S.W.; Rousseau, D.P.; Garfí, M. Life Cycle Assessment of Microalgae Systems for Wastewater Treatment and Bioproducts Recovery: Natural Pigments, Biofertilizer and Biogas. Sci. Total Environ. 2022, 847, 157615. [Google Scholar] [CrossRef]
- Sutherland, D.L. Improving Microalgal Tolerance to High Ammonia with Simple Organic Carbon Addition for More Effective Wastewater Treatment. J. Water Process Eng. 2022, 47, 102667. [Google Scholar] [CrossRef]
- Li, J.; Wang, L.; Lu, Q.; Zhou, W. Toxicity Alleviation for Microalgae Cultivation by Cationic Starch Addition and Ammonia Stripping and Study on the Cost Assessment. RSC Adv. 2019, 9, 38235–38245. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhou, W.; Chen, H.; Zhan, J.; He, C.; Wang, Q. Ammonium Nitrogen Tolerant Chlorella Strain Screening and Its Damaging Effects on Photosynthesis. Front. Microbiol. 2019, 9, 3250. [Google Scholar] [CrossRef]
- Azov, Y.; Goldman, J.C. Free Ammonia Inhibition of Algal Photosynthesis in Intensive Culturest. Appl. Environ. Microbiol. 1982, 43, 735–739. [Google Scholar] [CrossRef] [Green Version]
- Hanifzadeh, M.; Sarrafzadeh, M.-H.; Nabati, Z.; Tavakoli, O.; Feyzizarnagh, H. Technical, economic and energy assessment of an alternative strategy for mass production of biomass and lipid from microalgae. J. Environ. Chem. Eng. 2018, 6, 866–873. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, L.; Wu, D.; Wang, L.; Yang, Z.; Yan, W.; Jin, Y.; Chen, F.; Song, Y.; Cheng, X. Biochemical wastewater from landfill leachate pretreated by microalgae achieving algae’s self-reliant cultivation in full wastewater-recycling chain with desirable lipid productivity. Bioresour. Technol. 2021, 340, 125640. [Google Scholar] [CrossRef]
- Leite, L.D.S.; Hoffmann, M.T.; Daniel, L.A. Coagulation and dissolved air flotation as a harvesting method for microalgae cultivated in wastewater. J. Water Process Eng. 2019, 32, 100947. [Google Scholar] [CrossRef]
- Kurniawan, S.B.; Ahmad, A.; Imron, M.F.; Abdullah, S.R.S.; Othman, A.R.; Hasan, H.A. Potential of Microalgae Cultivation Using Nutrient-Rich Wastewater and Harvesting Performance by Biocoagulants/Bioflocculants: Mechanism, Multi-Conversion of Biomass into Valuable Products, and Future Challenges. J. Clean. Prod. 2022, 365, 132806. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Bakraoui, H.; Slaoui, M.; Mabrouki, J.; Hmouni, D.; Laroche, C. Recent Trends on Domestic, Agricultural and Industrial Wastewaters Treatment Using Microalgae Biorefinery System. Appl. Sci. 2023, 13, 68. https://doi.org/10.3390/app13010068
El Bakraoui H, Slaoui M, Mabrouki J, Hmouni D, Laroche C. Recent Trends on Domestic, Agricultural and Industrial Wastewaters Treatment Using Microalgae Biorefinery System. Applied Sciences. 2023; 13(1):68. https://doi.org/10.3390/app13010068
Chicago/Turabian StyleEl Bakraoui, Houria, Miloudia Slaoui, Jamal Mabrouki, Driss Hmouni, and Céline Laroche. 2023. "Recent Trends on Domestic, Agricultural and Industrial Wastewaters Treatment Using Microalgae Biorefinery System" Applied Sciences 13, no. 1: 68. https://doi.org/10.3390/app13010068
APA StyleEl Bakraoui, H., Slaoui, M., Mabrouki, J., Hmouni, D., & Laroche, C. (2023). Recent Trends on Domestic, Agricultural and Industrial Wastewaters Treatment Using Microalgae Biorefinery System. Applied Sciences, 13(1), 68. https://doi.org/10.3390/app13010068