Special Issue on Unsupervised Anomaly Detection
1. Introduction to Anomaly Detection
2. Contributions
3. Conclusions
Acknowledgments
Conflicts of Interest
References
- Herskind Sejr, J.; Christiansen, T.; Dvinge, N.; Hougesen, D.; Schneider-Kamp, P.; Zimek, A. Outlier Detection with Explanations on Music Streaming Data: A Case Study with Danmark Music Group Ltd. Appl. Sci. 2021, 11, 2270. [Google Scholar] [CrossRef]
- Qin, F.; Feng, H.; Yang, T.; Hu, B. Low-Cost Active Anomaly Detection with Switching Latency. Appl. Sci. 2021, 11, 2976. [Google Scholar] [CrossRef]
- Shang, Z.; Zhang, Y.; Zhang, X.; Zhao, Y.; Cao, Z.; Wang, X. Time Series Anomaly Detection for KPIs Based on Correlation Analysis and HMM. Appl. Sci. 2021, 11, 1353. [Google Scholar] [CrossRef]
- Jiang, J.R.; Kao, J.B.; Li, Y.L. Semi-Supervised Time Series Anomaly Detection Based on Statistics and Deep Learning. Appl. Sci. 2021, 11, 6698. [Google Scholar] [CrossRef]
- Al-amri, R.; Murugesan, R.K.; Man, M.; Abdulateef, A.F.; Al-Sharafi, M.A.; Alkahtani, A.A. A Review of Machine Learning and Deep Learning Techniques for Anomaly Detection in IoT Data. Appl. Sci. 2021, 11, 5320. [Google Scholar] [CrossRef]
- Cheng, C.S.; Chen, P.W.; Wu, Y.T. Phase I Analysis of Nonlinear Profiles Using Anomaly Detection Techniques. Appl. Sci. 2023, 13, 2147. [Google Scholar] [CrossRef]
- Lian, Y.; Geng, Y.; Tian, T. Anomaly Detection Method for Multivariate Time Series Data of Oil and Gas Stations Based on Digital Twin and MTAD-GAN. Appl. Sci. 2023, 13, 1891. [Google Scholar] [CrossRef]
- Rollón de Pinedo, Á.; Couplet, M.; Iooss, B.; Marie, N.; Marrel, A.; Merle, E.; Sueur, R. Functional Outlier Detection by Means of h-Mode Depth and Dynamic Time Warping. Appl. Sci. 2021, 11, 1475. [Google Scholar] [CrossRef]
- Jasra, S.K.; Valentino, G.; Muscat, A.; Camilleri, R. Hybrid Machine Learning—Statistical Method for Anomaly Detection in Flight Data. Appl. Sci. 2022, 12, 261. [Google Scholar] [CrossRef]
- Kozitsin, V.; Katser, I.; Lakontsev, D. Online Forecasting and Anomaly Detection Based on the ARIMA Model. Appl. Sci. 2021, 11, 3194. [Google Scholar] [CrossRef]
- Rewicki, F.; Denzler, J.; Niebling, J. Is It Worth It? Comparing Six Deep and Classical Methods for Unsupervised Anomaly Detection in Time Series. Appl. Sci. 2023, 13, 1778. [Google Scholar] [CrossRef]
- Pham, T.A.; Lee, J.H.; Park, C.S. MST-VAE: Multi-Scale Temporal Variational Autoencoder for Anomaly Detection in Multivariate Time Series. Appl. Sci. 2022, 12, 78. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goldstein, M. Special Issue on Unsupervised Anomaly Detection. Appl. Sci. 2023, 13, 5916. https://doi.org/10.3390/app13105916
Goldstein M. Special Issue on Unsupervised Anomaly Detection. Applied Sciences. 2023; 13(10):5916. https://doi.org/10.3390/app13105916
Chicago/Turabian StyleGoldstein, Markus. 2023. "Special Issue on Unsupervised Anomaly Detection" Applied Sciences 13, no. 10: 5916. https://doi.org/10.3390/app13105916