A 3D Occlusion Facial Recognition Network Based on a Multi-Feature Combination Threshold
Abstract
:1. Introduction
- We propose a 3D occlusion facial recognition network. We represent the face point cloud as different geometric feature maps for recognition and de-occlusion tasks. We use a lightweight network as the backbone network to reduce the size of the model parameters and use Focal-Arcface loss to enhance the intra-class aggregation of the recognition network for missing face data.
- We propose a method for removing facial occlusion from 3D faces based on a multi-feature combinatorial thresholding method. Compared with relying only on depth information to determine the occlusion areas, the multi-feature thresholding technique can remove the occlusion with obvious depth distance from the face and can better locate the boundary between the face and occlusion. This method does not require changing the original structure of the model since it only needs to embed the input side of the neural network.
- A mixed average face model (mixed AFM) construction method is proposed. We form a new facial representation after characterizing the 3D face point cloud as a collection of facial features with different feature attributes; then, we construct the average face and standard deviation of the respective feature channels point by point (this is conducted offline).
- We propose a missing facial data generation method for convolutional network training. Compared to the original dataset, the proposed method expands the amount of data for each face by 23 times. The model parameters trained using this dataset improve the recognition rate for faces with expression changes, pose changes, and the removal of occlusions.
2. The Proposed Network
2.1. Overview
2.2. 3D Face Preprocessing
2.3. 3D Face Representation
2.4. Mixed AFM Construction
2.5. The Proposed Facial Occlusion Removal Method
2.6. Recognition Network Architecture
2.7. Missing Face Data Generation Method for Training
3. Experiments
3.1. Dataset
3.2. Model Analysis
3.3. The Proposed Thresholding Technique
3.4. Recognition Results on the Bosphorus
3.5. Recognition Results for the UMB-DB
3.6. Ablation Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hassaballah, M.; Aly, S. Face recognition: Challenges, achievements and future directions. IET Comput. Vis. 2015, 9, 614–626. [Google Scholar] [CrossRef]
- Forbes, A. Structured Light from Lasers. Laser Photonics Rev. 2019, 13, 1900140. [Google Scholar] [CrossRef]
- Conti, M. State of the art and challenges of time-of-flight PET. Phys. Med.-Eur. J. Med. Phys. 2009, 25, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Chen, S.; Liu, X.; Xu, H.; Wu, Y.; Li, M.; Chen, Y. Registration of Laser Scanning Point Clouds: A Review. Sensors 2018, 18, 1641. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.-X.; Shang, X.U. A Survey on the ICP Algorithm and Its Variants in Registration of 3D Point Clouds. J. Ocean Univ. China 2010, 40, 99–103. [Google Scholar]
- Huang, X.; Mei, G.; Zhang, J.; Abbas, R. A comprehensive survey on point cloud registration. arXiv 2021, arXiv:2103.02690. [Google Scholar]
- Li, M.H.; Huang, B.; Tian, G.H. A comprehensive survey on 3D face recognition methods. Eng. Appl. Artif. Intell. 2022, 110, 21. [Google Scholar] [CrossRef]
- Jing, Y.; Lu, X.; Gao, S. 3D Face Recognition: A Survey. Hum.-Cent. Comput. Inf. Sci. 2021, 8, 35. [Google Scholar]
- Dagnes, N.; Vezzetti, E.; Marcolin, F.; Tornincasa, S. Occlusion detection and restoration techniques for 3D face recognition: A literature review. Mach. Vis. Appl. 2018, 29, 789–813. [Google Scholar] [CrossRef]
- Gilani, S.Z.; Mian, A. IEEE In Learning from Millions of 3D Scans for Large-scale 3D Face Recognition. In Proceedings of the 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018; IEEE: Salt Lake City, UT, USA, 2018; pp. 1896–1905. [Google Scholar]
- Ghazi, M.M.; Ekenel, H.K. A Comprehensive Analysis of Deep Learning Based Representation for Face Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 102–109. [Google Scholar]
- Zeng, D.; Veldhuis, R.; Spreeuwers, L. A survey of face recognition techniques under occlusion. IET Biom. 2021, 10, 581–606. [Google Scholar] [CrossRef]
- Mathai, J.; Masi, I.; AbdAlmageed, W. Does Generative Face Completion Help Face Recognition? In Proceedings of the 2019 International Conference on Biometrics (ICB), Crete, Greece, 4–7 June 2019; pp. 1–8. [Google Scholar]
- Singh, C.R.; Patil, H.Y. Occlusion Invariant 3D Face Recognition with UMB—Db and Bosporus Databases. Int. J. Comput. Appl. 2015, 975, 8887. [Google Scholar]
- Drira, H.; Amor, B.B.; Srivastava, A.; Daoudi, M.; Slama, R. 3D Face Recognition under Expressions, Occlusions, and Pose Variations. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 2270–2283. [Google Scholar] [CrossRef]
- Gawali, S.; Deshmukh, R. 3D Face Recognition Using Geodesic Facial Curves to Handle Expression, Occlusion and Pose Variations. Int. J. Comput. Sci. IT 2014, 5, 4284–4287. [Google Scholar]
- Yu, X.; Gao, Y.; Zhou, J. 3D face recognition under partial occlusions using radial strings. In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; pp. 3016–3020. [Google Scholar]
- Yu, X.; Gao, Y.; Zhou, J. Boosting Radial Strings for 3D Face Recognition with Expressions and Occlusions. In Proceedings of the 2016 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Gold Coast, Australia, 30 November–2 December 2016; pp. 1–6. [Google Scholar]
- Li, X.; Da, F. Efficient 3D face recognition handling facial expression and hair occlusion. Image Vis. Comput. 2012, 30, 668–679. [Google Scholar] [CrossRef]
- Colombo, A.; Cusano, C.; Schettini, R. Detection and Restoration of Occlusions for 3D Face Recognition. In Proceedings of the 2006 IEEE International Conference on Multimedia and Expo, Toronto, ON, Canada, 9–12 July 2006; pp. 1541–1544. [Google Scholar]
- Alyüz, N.; Gökberk, B.; Spreeuwers, L.; Veldhuis, R.; Akarun, L. Robust 3D face recognition in the presence of realistic occlusions. In Proceedings of the 2012 5th IAPR International Conference on Biometrics (ICB), New Delhi, India, 29 March–1 April 2012; pp. 111–118. [Google Scholar]
- Bagchi, P.; Bhattacharjee, D.; Nasipuri, M. Robust 3D face recognition in presence of pose and partial occlusions or missing parts. arXiv 2014, arXiv:1408.3709. [Google Scholar] [CrossRef]
- Alyuz, N.; Gokberk, B.; Akarun, L. Detection of Realistic Facial Occlusions for Robust 3D Face Recognition. In Proceedings of the 2014 22nd International Conference on Pattern Recognition, Stockholm, Sweden, 24–28 August 2014; pp. 375–380. [Google Scholar]
- Zohra, F.T.; Rahman, M.W.; Gavrilova, M. Occlusion Detection and Localization from Kinect Depth Images. In Proceedings of the 2016 International Conference on Cyberworlds (CW), Chongqing, China, 28–30 September 2016; pp. 189–196. [Google Scholar]
- Bellil, W.; Hajer, B.; Ben Amar, C. Gappy wavelet neural network for 3D occluded faces: Detection and recognition. Multimed. Tools Appl. 2016, 75, 365–380. [Google Scholar] [CrossRef]
- Dutta, K.; Bhattacharjee, D.; Nasipuri, M. Expression and occlusion invariant 3D face recognition based on region classifier. In Proceedings of the 2016 1st International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), Yogyakarta, Indonesia, 23–24 August 2016; pp. 99–104. [Google Scholar]
- Dagnes, N.; Marcolin, F.; Nonis, F.; Tornincasa, S.; Vezzetti, E. 3D geometry-based face recognition in presence of eye and mouth occlusions. Int. J. Interact. Des. Manuf. (IJIDeM) 2019, 13, 1617–1635. [Google Scholar] [CrossRef]
- Zhao, X.; Dellandréa, E.; Chen, L.; Kakadiaris, I.A. Accurate landmarking of three-dimensional facial data in the presence of facial expressions and occlusions using a three-dimensional statistical facial feature model. IEEE Trans. Syst. Man Cybern. Part B Cybern. Publ. IEEE Syst. Man Cybern. Soc. 2011, 41, 1417–1428. [Google Scholar] [CrossRef]
- Liu, R.; Hu, R.; Yu, H. Nose detection on 3D face images by depth-based template matching. In Proceedings of the 2014 7th International Congress on Image and Signal Processing, Dalian, China, 14–16 October 2014; pp. 302–307. [Google Scholar]
- Liu, P.; Wang, Y.; Huang, D.; Zhang, Z. Recognizing Occluded 3D Faces Using an Efficient ICP Variant. In Proceedings of the 2012 IEEE International Conference on Multimedia and Expo, Melbourne, Australia, 9–13 July 2012; pp. 350–355. [Google Scholar]
- Alyuz, N.; Gokberk, B.; Akarun, L. 3-D Face Recognition Under Occlusion Using Masked Projection. IEEE Trans. Inf. Forensics Secur. 2013, 8, 789–802. [Google Scholar] [CrossRef]
- Colombo, A.; Cusano, C.; Schettini, R. Gappy PCA Classification for Occlusion Tolerant 3D Face Detection. JMIV 2009, 35, 193–207. [Google Scholar] [CrossRef]
- Guo, G.; Zhang, N. A survey on deep learning based face recognition. Comput. Vis. Image Underst. 2019, 189, 102805. [Google Scholar] [CrossRef]
- Mu, G.; Huang, D.; Hu, G.; Sun, J.; Wang, Y. Led3D: A Lightweight and Efficient Deep Approach to Recognizing Low-Quality 3D Faces. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 5766–5775. [Google Scholar]
- Jiang, C.; Lin, S.; Chen, W.; Liu, F.; Shen, L. PointFace: Point Cloud Encoder-Based Feature Embedding for 3-D Face Recognition. IEEE Trans. Biom. Behav. Identity Sci. 2022, 4, 486–497. [Google Scholar] [CrossRef]
- Jan, A.; Ding, H.; Meng, H.; Chen, L.; Li, H. Accurate Facial Parts Localization and Deep Learning for 3D Facial Expression Recognition. In Proceedings of the 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), Xi’an, China, 15–19 May 2018; pp. 466–472. [Google Scholar]
- Zuo, C.; Qian, J.M.; Feng, S.J.; Yin, W.; Li, Y.X.; Fan, P.F.; Han, J.; Qian, K.M.; Chen, Q. Deep learning in optical metrology: A review. Light-Sci. Appl. 2022, 11, 54. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Ji, M.; Wu, J.; Brady, D.J.; Dai, Q.; Fang, L. A modular hierarchical array camera. Light Sci. Appl. 2021, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Huang, Z.; Huang, H.; Hu, C.; Chen, M.; Yang, S.; Chen, H. LOEN: Lensless opto-electronic neural network empowered machine vision. Light Sci. Appl. 2022, 11, 121. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; He, X.; Gao, Y.; Hao, R.; Wei, Z.; Long, B.; Mu, Z.; Wang, J. Invalid point removal method based on error energy function in fringe projection profilometry. Results Phys. 2022, 41, 105904. [Google Scholar] [CrossRef]
- Zhang, J.C.; Gao, K.K.; Fu, K.R.; Cheng, P. Deep 3D Facial Landmark Localization on position maps. Neurocomputing 2020, 406, 89–98. [Google Scholar] [CrossRef]
- Manal, E.; Arsalane, Z.; Aicha, M. Survey on the approaches based geometric information for 3D face landmarks detection. IET Image Process. 2019, 13, 1225–1231. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, X.; Wang, B.; Hu, G.; Zuo, W.; Hancock, E.R. Face Frontalization Using an Appearance-Flow-Based Convolutional Neural Network. IEEE Trans. Image Process. 2019, 28, 2187–2199. [Google Scholar] [CrossRef]
- Arun, K.S.; Huang, T.S.; Blostein, S.D. Least-Squares Fitting of Two 3-D Point Sets. IEEE Trans. Pattern Anal. Mach. Intell. 1987, PAMI-9, 698–700. [Google Scholar] [CrossRef]
- Li, H.; Sun, J.; Xu, Z.; Chen, L. Multimodal 2D+3D Facial Expression Recognition with Deep Fusion Convolutional Neural Network. IEEE Trans. Multimed. 2017, 19, 2816–2831. [Google Scholar] [CrossRef]
- Li, H.; Huang, D.; Chen, L.; Wang, Y.; Morvan, J.M. A group of facial normal descriptors for recognizing 3D identical twins. In Proceedings of the 2012 IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems (BTAS), Arlington, VA, USA, 23–27 September 2012; pp. 271–277. [Google Scholar]
- Li, H.; Sun, J.; Chen, L. Location-sensitive sparse representation of deep normal patterns for expression-robust 3D face recognition. In Proceedings of the 2017 IEEE International Joint Conference on Biometrics (IJCB), Denver, CO, USA, 1–4 October 2017; pp. 234–242. [Google Scholar]
- Glassner, A. Building Vertex Normals from an Unstructured Polygon List. In Graphics Gems; Heckbert, P.S., Ed.; Academic Press: Cambridge, MA, USA, 1994; pp. 60–73. [Google Scholar]
- Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H.J. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861. [Google Scholar]
- Deng, J.; Guo, J.; Yang, J.; Xue, N.; Kotsia, I.; Zafeiriou, S. ArcFace: Additive Angular Margin Loss for Deep Face Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 5962–5979. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2999–3007. [Google Scholar]
- He, T.; Zhang, Z.; Zhang, H.; Zhang, Z.; Xie, J.; Li, M. Bag of Tricks for Image Classification with Convolutional Neural Networks. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 558–567. [Google Scholar]
- Savran, A.; Alyüz, N.; Dibeklioğlu, H.; Çeliktutan, O.; Gökberk, B.; Sankur, B.; Akarun, L. Bosphorus Database for 3D Face Analysis; Biometrics and Identity Management, Berlin, Heidelberg, 2008; Schouten, B., Juul, N.C., Drygajlo, A., Tistarelli, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 47–56. [Google Scholar]
- Savran, A.; Sankur, B.; Taha Bilge, M. Comparative evaluation of 3D vs. 2D modality for automatic detection of facial action units. Pattern Recognit. 2012, 45, 767–782. [Google Scholar] [CrossRef]
- Colombo, A.; Cusano, C.; Schettini, R. UMB-DB: A database of partially occluded 3D faces. In Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Barcelona, Spain, 6–13 November 2011; pp. 2113–2119. [Google Scholar]
- Križaj, J.; Dobrišek, S.; Štruc, V. Making the Most of Single Sensor Information: A Novel Fusion Approach for 3D Face Recognition Using Region Covariance Descriptors and Gaussian Mixture Models. Sensors 2022, 22, 2388. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, S.; Bhattacharjee, D.; Nasipuri, M. Range Face Image Registration Using ERFI from 3D Images. In Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014; Satapathy, S.C., Biswal, B.N., Udgata, S.K., Mandal, J.K., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 323–333. [Google Scholar]
- Ganguly, S.; Bhattacharjee, D.; Nasipuri, M. Depth based Occlusion Detection and Localization from 3D Face Image. Int. J. Image Graph. Signal Process. 2015, 7, 20–31. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; Maaten, L.V.D.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2261–2269. [Google Scholar]
- Howard, A.; Sandler, M.; Chen, B.; Wang, W.; Chen, L.C.; Tan, M.; Chu, G.; Vasudevan, V.; Zhu, Y.; Pang, R.; et al. Searching for MobileNetV3. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 1314–1324. [Google Scholar]
- Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. International conference on machine learning. arXiv 2019, arXiv:1905.11946. [Google Scholar]
- Schroff, F.; Kalenichenko, D.; Philbin, J. FaceNet: A unified embedding for face recognition and clustering. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 815–823. [Google Scholar]
- Chen, S.; Liu, Y.; Gao, X.; Han, Z. MobileFaceNets: Efficient CNNs for Accurate Real-Time Face Verification on Mobile Devices; Biometric Recognition, Cham, 2018; Zhou, J., Wang, Y., Sun, Z., Jia, Z., Feng, J., Shan, S., Ubul, K., Guo, Z., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 428–438. [Google Scholar]
- Liu, W.; Wen, Y.; Yu, Z.; Li, M.; Raj, B.; Song, L. SphereFace: Deep Hypersphere Embedding for Face Recognition. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6738–6746. [Google Scholar]
- Wang, H.; Wang, Y.; Zhou, Z.; Ji, X.; Gong, D.; Zhou, J.; Li, Z.; Liu, W. CosFace: Large Margin Cosine Loss for Deep Face Recognition. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 5265–5274. [Google Scholar]
- Zhu, C.C.; Wan, X.T.; Xie, S.R.; Li, X.Q.; Gu, Y.Z. IEEE Computer Society. Occlusion-robust Face Alignment using A Viewpoint-invariant Hierarchical Network Architecture. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 11102–11111. [Google Scholar]
- Wang, Q.; Qian, W.-Z.; Lei, H.; Chen, L. Siamese Neural Pointnet: 3D Face Verification under Pose Interference and Partial Occlusion. Electronics 2023, 12, 620. [Google Scholar] [CrossRef]
- Ge, Y.M.; Liu, H.; Du, J.Z.; Li, Z.H.; Wei, Y.H. Masked face recognition with convolutional visual self-attention network. Neurocomputing 2023, 518, 496–506. [Google Scholar] [CrossRef]
Face Representation | Size/Loss | Posture and Expression | Occlusion | Average | |||
---|---|---|---|---|---|---|---|
Top-1 | Top-5 | Top-1 | Top-5 | Top-1 | Top-5 | ||
[RGB] | 112112cross-entropy | 94.89 | 97.11 | 97.09 | 98.41 | 95.89 | 97.71 |
[D] | 112112cross-entropy | 96.00 | 97.56 | 91.27 | 97.35 | 93.84 | 97.22 |
[D, SI, C] | 112112cross-entropy | 95.33 | 97.11 | 94.71 | 98.41 | 95.05 | 97.71 |
[D, A, E, SI, C] | 112112cross-entropy | 96.00 | 97.33 | 94.97 | 97.62 | 95.53 | 97.46 |
[D, A, E] | 112112cross-entropy | 97.11 | 98.89 | 96.56 | 99.47 | 96.86 | 99.15 |
Size | Loss | Posture and Expression | Occlusion | Average | |||
---|---|---|---|---|---|---|---|
Top-1 | Top-5 | Top-1 | Top-5 | Top-1 | Top-5 | ||
224 | Focal-Arcface | 98.89 | 99.56 | 94.97 | 98.68 | 97.10 | 99.15 |
160 | Focal-Arcface | 98.00 | 99.33 | 93.39 | 98.41 | 95.89 | 98.91 |
96 | Focal-Arcface | 98.89 | 99.33 | 96.03 | 98.68 | 97.58 | 99.03 |
112 | Cross-entropy | 97.11 | 98.89 | 96.56 | 99.47 | 96.86 | 99.15 |
112 | Focal | 98.67 | 99.33 | 92.06 | 97.88 | 95.65 | 98.67 |
112 | Focal-Arcface | 99.33 | 99.78 | 98.15 | 99.47 | 98.79 | 99.64 |
Raw Training Data | Missing Face Data Generation Method for Training | ||||||
---|---|---|---|---|---|---|---|
Depth-Based Method | Multi-Feature Combined Threshold Method | Depth-Based | Multi-Feature Combined Threshold Method | ||||
Top-1 | Top-5 | Top-1 | Top-5 | Top-1 | Top-5 | Top-1 | Top-5 |
97.09 | 97.89 | 97.07 | 98.67 | 97.89 | 98.15 | 98.94 | 99.47 |
Method | Posture and Expression | Occlusion | Average | |||
---|---|---|---|---|---|---|
Top-1 | Top-5 | Top-1 | Top-5 | Top-1 | Top-5 | |
DenseNet-121 [59] | 96.44 | 98.67 | 77.78 | 91.01 | 87.92 | 95.17 |
MobileNet-V3 [60] | 96.22 | 98.22 | 68.78 | 83.86 | 83.69 | 91.67 |
EfficientNet-B0 [61] | 96.44 | 98.44 | 79.37 | 93.12 | 88.65 | 96.01 |
FaceNet [62] | 98.44 | 99.33 | 81.75 | 91.01 | 90.82 | 95.53 |
MobileFaceNet [63] | 94.89 | 97.56 | 90.48 | 94.97 | 92.87 | 96.38 |
Sphereface [64] | 96.00 | 97.78 | 93.39 | 97.35 | 94.81 | 97.58 |
Cosface [65] | 99.11 | 99.78 | 90.21 | 96.56 | 95.05 | 98.31 |
Arcface [50] | 99.33 | 99.55 | 98.41 | 99.73 | 98.91 | 99.64 |
MFCT-3DOFRNet | 100 | 100 | 98.94 | 99.47 | 99.52 | 99.76 |
Method | Posture and Expression | Occlusion | Average | |||
---|---|---|---|---|---|---|
Top-1 | Top-5 | Top-1 | Top-5 | Top-1 | Top-5 | |
DenseNet-121 [59] | 95.87 | 98.62 | 29.15 | 48.09 | 50.07 | 63.82 |
MobileNet-V3 [60] | 89.91 | 97.71 | 26.17 | 43.62 | 46.17 | 60.49 |
EfficientNet-B0 [61] | 92.66 | 98.17 | 33.83 | 54.04 | 52.24 | 67.73 |
FaceNet [62] | 94.50 | 98.62 | 19.79 | 38.09 | 43.27 | 57.02 |
MobileFaceNet [63] | 85.78 | 92.66 | 31.28 | 52.34 | 48.34 | 64.83 |
Sphereface [64] | 96.33 | 98.62 | 68.30 | 82.34 | 76.85 | 87.12 |
Cosface [65] | 98.17 | 99.08 | 82.98 | 92.98 | 87.41 | 94.50 |
Arcface [50] | 99.08 | 100 | 85.53 | 94.89 | 89.44 | 96.09 |
MFCT-3DOFRNet | 100 | 100 | 93.41 | 96.60 | 95.08 | 97.25 |
MFCT-3DOFRNet w/o Multi-Feature Combined Threshold Method | MFCT-3DOFRNet w/o Missing Face Data Generation | MFCT-3DOFRNet w/o Focal-Arcface | MFCT-3DOFRNet | |
---|---|---|---|---|
Avg. | 94.62 | 87.99 | 92.44 | 95.08 |
Enhance Percent | 0.49% | 8.06% | 2.9% | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, K.; He, X.; Lv, Z.; Zhang, X.; Hao, R.; He, X.; Wang, J.; He, J.; Zhang, L.; Mu, Z. A 3D Occlusion Facial Recognition Network Based on a Multi-Feature Combination Threshold. Appl. Sci. 2023, 13, 5950. https://doi.org/10.3390/app13105950
Zhu K, He X, Lv Z, Zhang X, Hao R, He X, Wang J, He J, Zhang L, Mu Z. A 3D Occlusion Facial Recognition Network Based on a Multi-Feature Combination Threshold. Applied Sciences. 2023; 13(10):5950. https://doi.org/10.3390/app13105950
Chicago/Turabian StyleZhu, Kaifeng, Xin He, Zhuang Lv, Xin Zhang, Ruidong Hao, Xu He, Jun Wang, Jiawei He, Lei Zhang, and Zhiya Mu. 2023. "A 3D Occlusion Facial Recognition Network Based on a Multi-Feature Combination Threshold" Applied Sciences 13, no. 10: 5950. https://doi.org/10.3390/app13105950
APA StyleZhu, K., He, X., Lv, Z., Zhang, X., Hao, R., He, X., Wang, J., He, J., Zhang, L., & Mu, Z. (2023). A 3D Occlusion Facial Recognition Network Based on a Multi-Feature Combination Threshold. Applied Sciences, 13(10), 5950. https://doi.org/10.3390/app13105950