Magnetic and Optical Properties of Natural Diamonds with Subcritical Radiation Damage Induced by Fast Neutrons
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Raman Spectra of Neutron-Irradiated Diamonds
3.2. Magnetic Properties of Diamonds Irradiated with Fast Neutrons
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ivanovskii, A.L. Magnetic effects induced by sp impurities and defects in nonmagnetic sp materials. Phys.-Usp. 2007, 50, 1031–1052. [Google Scholar] [CrossRef]
- Makarova, T.L.; Sundqvist, B.; Höhne, R.; Esquinazi, P.; Kopelevich, Y.; Scharff, P.; Davydov, V.A.; Kashevarova, L.S.; Rakhmanina, A.V. Magnetic carbon. Nature 2001, 413, 716–718. [Google Scholar] [CrossRef] [PubMed]
- Esquinazi, P.; Setzer, A.; Höhne, R.; Semmelhack, C.; Kopelevich, Y.; Spemann, D.; Butz, T.; Kohlstrunk, B.; Lösche, M. Ferromagnetism in oriented graphite samples. Phys. Rev. B 2002, 66, 024429. [Google Scholar] [CrossRef]
- Esquinazi, P.; Spemann, D.; Höhne, R.; Setzer, A.; Han, K.-H.; Butz, T. Induced Magnetic Ordering by Proton Irradiation in Graphite. Phys. Rev. Lett. 2003, 91, 227201. [Google Scholar] [CrossRef] [PubMed]
- Bennet, K.E.; Tomshine, J.R.; Min, H.-K.; Manciu, F.S.; Marsh, M.P.; Paek, S.B.; Settell, M.L.; Nicolai, E.N.; Blaha, C.D.; Kouzani, A.Z.; et al. A Diamond-Based Electrode for Detection of Neurochemicals in the Human Brain. Front. Hum. Neurosci. 2016, 10, 102. [Google Scholar] [CrossRef]
- Poklonski, N.A.; Vyrko, S.A.; Siahlo, A.I.; Poklonskaya, O.N.; Ratkevich, S.V.; Hieu, N.N.; Kocherzhenko, A.A. Synergy of physical properties of low-dimensional carbon-based systems for nanoscale device design. Mater. Res. Express 2019, 6, 042002. [Google Scholar] [CrossRef]
- Fujita, M.; Wakabayashi, K.; Nakada, K.; Kusakabe, K. Peculiar Localized State at Zigzag Graphite Edge. J. Phys. Soc. Jpn. 1996, 65, 1920–1923. [Google Scholar] [CrossRef]
- Shibayama, Y.; Sato, H.; Enoki, T.; Endo, M. Disordered Magnetism at the Metal-Insulator Threshold in Nano-Graphite-Based Carbon Materials. Phys. Rev. Lett. 2000, 84, 1744–1747. [Google Scholar] [CrossRef]
- Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M.S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 1996, 54, 17954–17961. [Google Scholar] [CrossRef]
- Andriotis, A.N.; Menon, M.; Sheetz, R.M.; Chernozatonskii, L. Magnetic Properties of C60 Polymers. Phys. Rev. Lett. 2003, 90, 026801. [Google Scholar] [CrossRef]
- Kusakabe, K.; Maruyama, M. Magnetic nanographite. Phys. Rev. B 2003, 67, 092406. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Choi, J.; Chang, K.J.; Tománek, D. Defective fullerenes and nanotubes as molecular magnets: An ab initio study. Phys. Rev. B 2003, 68, 125420. [Google Scholar] [CrossRef]
- Rode, A.V.; Gamaly, E.G.; Christy, A.; Fitz Gerald, J.G.; Hyde, S.; Elliman, R.; Luther-Davies, B.; Veinger, A.I.; Androulakis, J.; Giapintzakis, J. Unconventional magnetism in all-carbon nanofoam. Phys. Rev. B 2004, 70, 054407. [Google Scholar] [CrossRef]
- Höhne, R.; Esquinazi, P.; Heera, V.; Weishart, H. Magnetic properties of ion-implanted diamond. Diam. Relat. Mater. 2007, 16, 1589–1596. [Google Scholar] [CrossRef]
- Sakai, Y.; Chelikowsky, J.R.; Cohen, M.L. Magnetism in amorphous carbon. Phys. Rev. Mater. 2018, 2, 074403. [Google Scholar] [CrossRef]
- Esquinazi, P.; Höhne, R.; Han, K.-H.; Setzer, A.; Spemann, D.; Butz, T. Magnetic carbon: Explicit evidence of ferromagnetism induced by proton irradiation. Carbon 2004, 42, 1213–1218. [Google Scholar] [CrossRef]
- Ohldag, H.; Tyliszczak, T.; Höhne, R.; Spemann, D.; Esquinazi, P.; Ungureanu, M.; Butz, T. π-Electron Ferromagnetism in Metal-Free Carbon Probed by Soft X-Ray Dichroism. Phys. Rev. Lett. 2007, 98, 187204. [Google Scholar] [CrossRef]
- Daya, N.; Sideras-Haddad, E.; Makgato, T.N.; García-Hernández, M.; Climent-Font, A.; Zucchiatti, A.; Ramos, M.A. Investigation of the magnetic properties of proton irradiated type Ib HPHT diamond. Diam. Relat. Mater. 2016, 64, 197–201. [Google Scholar] [CrossRef]
- Barzola-Quiquia, J.; Stiller, M.; Esquinazi, P.D.; Molle, A.; Wunderlich, R.; Pezzagna, S.; Meijer, J.; Kossack, W.; Buga, S. Unconventional Magnetization below 25 K in Nitrogen-doped Diamond provides hints for the existence of Superconductivity and Superparamagnetism. Sci. Rep. 2019, 9, 8743. [Google Scholar] [CrossRef]
- Makgato, T.; Sideras-Haddad, E.; Ramos, M.; García-Hernández, M.; Climent-Font, A.; Zucchiatti, A.; Muñoz-Martin, A.; Shrivastava, S.; Erasmus, R. Magnetic properties of point defects in proton irradiated diamond. J. Magn. Magn. Mater. 2016, 413, 76–80. [Google Scholar] [CrossRef]
- Khomich, A.V.; Khmelnitsky, R.A.; Poklonski, N.A.; Lapchuk, N.M.; Khomich, A.A.; Dravin, V.A.; Poklonskaya, O.N.; Ashkinazi, E.E.; Vlasov, I.I.; Zavedeev, E.V.; et al. Optical and paramagnetic properties of polycrystalline CVD-diamonds implanted with deuterium ions. J. Appl. Spectrosc. 2012, 79, 600–609. [Google Scholar] [CrossRef]
- Remes, Z.; Sun, S.-J.; Varga, M.; Chou, H.; Hsu, H.-S.; Kromka, A.; Horak, P. Ferromagnetism appears in nitrogen implanted nanocrystalline diamond films. J. Magn. Magn. Mater. 2015, 394, 477–480. [Google Scholar] [CrossRef]
- Talapatra, S.; Ganesan, P.G.; Kim, T.; Vajtai, R.; Huang, M.; Shima, M.; Ramanath, G.; Srivastava, D.; Deevi, S.C.; Ajayan, P.M. Irradiation-Induced Magnetism in Carbon Nanostructures. Phys. Rev. Lett. 2005, 95, 097201. [Google Scholar] [CrossRef] [PubMed]
- Narayan, J.; Bhaumik, A. Novel phase of carbon, ferromagnetism, and conversion into diamond. J. Appl. Phys. 2015, 118, 215303. [Google Scholar] [CrossRef]
- Bhaumik, A.; Nori, S.; Sachan, R.; Gupta, S.; Kumar, D.; Majumdar, A.K.; Narayan, J. Room-Temperature Ferromagnetism and Extraordinary Hall Effect in Nanostructured Q-Carbon: Implications for Potential Spintronic Devices. ACS Appl. Nano Mater. 2018, 1, 807–819. [Google Scholar] [CrossRef]
- Yoshinaka, H.; Inubushi, S.; Wakita, T.; Yokoya, T.; Muraoka, Y. Formation of Q-carbon by adjusting sp3 content in diamond-like carbon films and laser energy density of pulsed laser annealing. Carbon 2020, 167, 504–511. [Google Scholar] [CrossRef]
- Thakur, B.; Reddy, S.S.; Deshpande, U.P.; Amarendra, G.; Chakravarty, S. Evidence of magnetism in RF magnetron sputtered deposited carbon films and investigation of its origin. Carbon 2019, 154, 485–496. [Google Scholar] [CrossRef]
- Sharoyan, E.; Mirzakhanyan, A.; Gyulasaryan, H.; Sanchez, C.; Kocharian, A.; Bernal, O.; Manukyan, A. Ferromagnetism of Nanographite Structures in Carbon Microspheres. IEEE Trans. Magn. 2016, 52, 2300803. [Google Scholar] [CrossRef]
- Rawat, P.S.; Srivastava, R.; Dixit, G.; Asokan, K. Structural, functional and magnetic ordering modifications in graphene oxide and graphite by 100 MeV gold ion irradiation. Vacuum 2020, 182, 109700. [Google Scholar] [CrossRef]
- Li, L.-J.; Yang, X.-M.; Xia, H.-H.; He, Z.-T.; Zhou, X.-T.; Liu, X.-D. The Magnetic Order in Ion Irradiated Graphite. Chin. Phys. Lett. 2016, 33, 046101. [Google Scholar] [CrossRef]
- Sharma, S.; Rostas, A.M.; Bordonali, L.; MacKinnon, N.; Weber, S.; Korvink, J.G. Micro and nano patternable magnetic carbon. J. Appl. Phys. 2016, 120, 235107. [Google Scholar] [CrossRef]
- Liu, J.; Bi, H.; Morais, P.C.; Zhang, X.; Zhang, F.; Hu, L. Room-temperature Magnetism in Carbon Dots and Enhanced Ferromagnetism in Carbon Dots-Polyaniline Nanocomposite. Sci. Rep. 2017, 7, 2165. [Google Scholar] [CrossRef] [PubMed]
- Setzer, A.; Esquinazi, P.D.; Buga, S.; Georgieva, M.T.; Reinert, T.; Venus, T.; Estrela-Lopis, I.; Ivashenko, A.; Bondarenko, M.; Böhlmann, W.; et al. Nanometers-Thick Ferromagnetic Surface Produced by Laser Cutting of Diamond. Materials 2022, 15, 1014. [Google Scholar] [CrossRef] [PubMed]
- Kononenko, V.V.; Khomich, A.A.; Khomich, A.V.; Khmelnitskii, R.A.; Gololobov, V.M.; Komlenok, M.S.; Orekhov, A.S.; Orekhov, A.S.; Konov, V.I. Highly oriented graphite produced by femtosecond laser on diamond. Appl. Phys. Lett. 2019, 114, 251903. [Google Scholar] [CrossRef]
- Khomich, A.A.; Kononenko, V.; Kudryavtsev, O.; Zavedeev, E.; Khomich, A.V. Raman Study of the Diamond to Graphite Transition Induced by the Single Femtosecond Laser Pulse on the (111) Face. Nanomaterials 2022, 13, 162. [Google Scholar] [CrossRef] [PubMed]
- Webb, J.L.; Clement, J.D.; Troise, L.; Ahmadi, S.; Johansen, G.J.; Huck, A.; Andersen, U.L. Nanotesla sensitivity magnetic field sensing using a compact diamond nitrogen-vacancy magnetometer. Appl. Phys. Lett. 2019, 114, 231103. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, W.; Tian, C. Recent advances on applications of NV− magnetometry in condensed matter physics. Photonics Res. 2023, 11, 393–412. [Google Scholar] [CrossRef]
- Zhang, Z.-D.; Yin, S.-Y.; Wang, L.-C.; Wang, Y.-D.; Li, Y.-F.; Tian, Z.-N.; Chen, Q.-D. Single NV centers array preparation and static magnetic field detection. Opt. Express 2022, 30, 32355–32365. [Google Scholar] [CrossRef]
- Fujiwara, M.; Inoue, S.; Masuno, S.-I.; Fu, H.; Tokita, S.; Hashida, M.; Mizuochi, N. Creation of NV centers over a millimeter-sized region by intense single-shot ultrashort laser irradiation. APL Photon. 2023, 8, 036108. [Google Scholar] [CrossRef]
- Pimenov, S.M.; Khomich, A.A.; Neuenschwander, B.; Jäggi, B.; Romano, V. Picosecond-laser bulk modification induced enhancement of nitrogen-vacancy luminescence in diamond. J. Opt. Soc. Am. B 2016, 33, B49–B55. [Google Scholar] [CrossRef]
- Khveshchenko, D.V. Magnetic-Field-Induced Insulating Behavior in Highly Oriented Pyrolitic Graphite. Phys. Rev. Lett. 2001, 87, 206401. [Google Scholar] [CrossRef] [PubMed]
- Park, N.; Yoon, M.; Berber, S.; Ihm, J.; Osawa, E.; Tománek, D. Magnetism in All-Carbon Nanostructures with Negative Gaussian Curvature. Phys. Rev. Lett. 2003, 91, 237204. [Google Scholar] [CrossRef] [PubMed]
- Lehtinen, P.O.; Foster, A.S.; Ma, Y.; Krasheninnikov, A.V.; Nieminen, R.M. Irradiation-Induced Magnetism in Graphite: A Density Functional Study. Phys. Rev. Lett. 2004, 93, 187202. [Google Scholar] [CrossRef]
- Hadipour, H. Screening of Coulomb interaction and π magnetism in defected graphene. Phys. Rev. B 2019, 99, 075102. [Google Scholar] [CrossRef]
- Červenka, J.; Katsnelson, M.I.; Flipse, C.F.J. Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects. Nat. Phys. 2009, 5, 840–844. [Google Scholar] [CrossRef]
- Ugeda, M.M.; Brihuega, I.; Guinea, F.; Gómez-Rodríguez, J.M. Missing Atom as a Source of Carbon Magnetism. Phys. Rev. Lett. 2010, 104, 096804. [Google Scholar] [CrossRef]
- Thakur, B.; Chandra Shekar, N.V.; Chandra, S.; Chakravarty, S. Effect of sp hybridization and bond-length disorder on magnetism in amorphous carbon—A first-principles study. Diam. Relat. Mater. 2022, 121, 108725. [Google Scholar] [CrossRef]
- Karkin, A.E.; Voronin, V.I.; Berger, I.F.; Kazantsev, V.A.; Ponosov, Y.S.; Ralchenko, V.G.; Konov, V.I.; Goshchitskii, B.N. Neutron irradiation effects in chemical-vapor-deposited diamond. Phys. Rev. B 2008, 78, 033204. [Google Scholar] [CrossRef]
- Khomich, A.A.; Khmelnitsky, R.A.; Khomich, A.V. Probing the Nanostructure of Neutron-Irradiated Diamond Using Raman Spectroscopy. Nanomaterials 2019, 10, 1166. [Google Scholar] [CrossRef]
- Poklonskaya, O.N. Electron spin resonance of CVD diamonds irradiated with neutrons: State of spin glass. BSU Bull. Phys. Math. Inform. 2013, 2, 60–65. Available online: http://elib.bsu.by/handle/123456789/95908 (accessed on 15 May 2023). (In Russian).
- Garcia, M.A.; Fernandez Pinel, E.; de la Venta, J.; Quesada, A.; Bouzas, V.; Fernández, J.F.; Romero, J.J.; Martín González, M.S.; Costa-Krämer, J.C. Sources of experimental errors in the observation of nanoscale magnetism. J. Appl. Phys. 2009, 105, 013925. [Google Scholar] [CrossRef]
- Nikolaenko, V.A.; Gordeev, V.G. Diamond amorphization in neutron irradiation. Radiat. Eff. Defects. Solids 1996, 139, 183–188. [Google Scholar] [CrossRef]
- Esquinazi, P.D. (Ed.) Basic Physics of Functionalized Graphite; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Orwa, J.O.; Nugent, K.W.; Jamieson, D.N.; Prawer, S. Raman investigation of damage caused by deep ion implantation in diamond. Phys. Rev. B 2000, 62, 5461–5472. [Google Scholar] [CrossRef]
- Khomich, A.A.; Averin, A.A.; Poklonskaya, O.N.; Bokova-Sirosh, S.N.; Dzeraviaha, A.N.; Khmelnitsky, R.A.; Vlasov, I.I.; Shenderova, O.; Poklonski, N.A.; Khomich, A.V. Features of the 1640 cm−1 band in the Raman spectra of radiation-damaged and nano-sized diamonds. J. Phys. Conf. Ser. 2019, 1400, 044017. [Google Scholar] [CrossRef]
- Zaitsev, A.M. Optical Properties of Diamond. A Data Handbook; Springer: Berlin, Germany, 2001. [Google Scholar] [CrossRef]
- Klein, C.A.; Hartnett, T.M.; Robinson, C.J. Critical-point phonon frequencies of diamond. Phys. Rev. B 1992, 45, 12854–12863. [Google Scholar] [CrossRef] [PubMed]
- Nazaré, M.H.; Neves, A.J. (Eds.) Properties, Growth and Applications of Diamond; INPEC, IEE: London, UK, 2001. [Google Scholar]
- Bosak, A.; Krisch, M. Phonon density of states probed by inelastic x-ray scattering. Phys. Rev. B 2005, 72, 224305. [Google Scholar] [CrossRef]
- Richter, H.; Wang, Z.P.; Ley, L. The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun. 1981, 39, 625–629. [Google Scholar] [CrossRef]
- Osswald, S.; Mochalin, V.N.; Havel, M.; Yushin, G.; Gogotsi, Y. Phonon confinement effects in the Raman spectrum of nanodiamond. Phys. Rev. B 2009, 80, 075419. [Google Scholar] [CrossRef]
- Khmelnitsky, R.A.; Dravin, V.A.; Tal, A.A.; Latushko, M.I.; Khomich, A.A.; Khomich, A.V.; Trushin, A.S.; Alekseev, A.A.; Terentiev, S.A. Mechanical stresses and amorphization of ion-implanted diamond. Nucl. Instr. Meth. Phys. Res. B 2013, 304, 5–10. [Google Scholar] [CrossRef]
- Prawer, S.; Nugent, K.W.; Jamieson, D.N.; Orwa, J.O.; Bursill, L.A.; Peng, J.L. The Raman spectrum of nanocrystalline diamond. Chem. Phys. Lett. 2000, 332, 93–97. [Google Scholar] [CrossRef]
- Chumakov, A.I.; Monaco, G.; Han, X.; Xi, L.; Bosak, A.; Paolasini, L.; Chernyshov, D.; Dyadkin, V. Relation between the boson peak in glasses and van Hove singularity in crystals. Philos. Mag. 2016, 96, 743–753. [Google Scholar] [CrossRef]
- Nemanich, R.J. Low-frequency inelastic light scattering from chalcogenide glasses and alloys. Phys. Rev. B 1997, 16, 1655–1674. [Google Scholar] [CrossRef]
- Khomich, A.V.; Khmelnitskii, R.A.; Hu, X.J.; Khomich, A.A.; Popovich, A.F.; Vlasov, I.I.; Dravin, V.A.; Chen, Y.G.; Karkin, A.E.; Ralchenko, V.G. Radiation Damage Effects on Optical, Electrical, and Thermophysical Properties of CVD Diamond Films. J. Appl. Spectrosc. 2013, 80, 707–714. [Google Scholar] [CrossRef]
- Poklonskaya, O.N.; Vyrko, S.A.; Khomich, A.A.; Averin, A.A.; Khmelnitsky, R.A.; Poklonski, N.A. Raman Scattering in Natural Diamond Crystals Implanted with High-Energy Ions and Irradiated with Fast Neutrons. J. Appl. Spectrosc. 2014, 81, 969–977. [Google Scholar] [CrossRef]
- Poklonskaya, O.N.; Khomich, A.A. Raman Scattering in a Diamond Crystal Implanted by High-Energy Nickel Ions. J. Appl. Spectrosc. 2013, 80, 715–720. [Google Scholar] [CrossRef]
- Casari, C.S.; Bassi, A.L.; Baserga, A.; Ravagnan, L.; Piseri, P.; Lenardi, C.; Tommasini, M.; Milani, A.; Fazzi, D.; Bottani, C.E.; et al. Low-frequency modes in the Raman spectrum of sp−sp2 nanostructured carbon. Phys. Rev. B 2008, 77, 195444. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef]
- Kalish, R.; Reznik, A.; Prawer, S.; Saada, D.; Adler, J. Ion-implantation-induced defects in diamond and their annealing: Experiment and simulation. Phys. Status Solidi A 1999, 174, 83–99. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM–The stopping and range of ions in matter (2010). Nucl. Instr. Meth. Phys. Res. B 2013, 268, 1818–1823. [Google Scholar] [CrossRef]
- Khmelnitsky, R.A.; Dravin, V.A.; Tal, A.A.; Zavedeev, E.V.; Khomich, A.A.; Khomich, A.V.; Alekseev, A.A.; Terentiev, S.A. Damage accumulation in diamond during ion implantation. J. Mater. Res. 2015, 30, 1583–1592. [Google Scholar] [CrossRef]
- Nikolaenko, V.A.; Krasikov, E.A. Effect of Reactor Radiation Intensity on Crystal Lattice Expansion in Diamond. At. Energy 2014, 115, 267–276. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Biersack, J.P.; Ziegler, M.D. SRIM-The Stopping and Range of Ions in Matter; SRIM Co.: Chester, MD, USA, 2008; Available online: http://www.srim.org (accessed on 15 May 2023).
- Prins, J.F. Ballistic self-annealing during ion implantation. J. Phys. D Appl. Phys. 2001, 34, 3003–3010. [Google Scholar] [CrossRef]
- Khomich, A.V.; Khmelnitskiy, R.A.; Dravin, V.A.; Gippius, A.A.; Zavedeev, E.V.; Vlasov, I.I. Radiation damage in diamonds subjected to helium implantation. Phys. Solid State 2007, 49, 1661–1665. [Google Scholar] [CrossRef]
- Hickey, D.P.; Jones, K.S.; Elliman, R.G. Amorphization and graphitization of single-crystal diamond—A transmission electron microscopy study. Diam. Relat. Mater. 2009, 18, 1353–1359. [Google Scholar] [CrossRef]
- Bokobza, L.; Bruneel, J.-L.; Couzi, M. Raman Spectra of Carbon-Based Materials (from Graphite to Carbon Black) and of Some Silicone Composites. C J. Carbon Res. 2015, 1, 77–94. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Meyer, J.C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.S.; Roth, S.; et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Basko, D.M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 2013, 8, 235–246. [Google Scholar] [CrossRef]
- Jorio, A. Raman Spectroscopy in Graphene-Based Systems: Prototypes for Nanoscience and Nanometrology. Int. Sch. Res. Netw. 2012, 2012, 234216. [Google Scholar] [CrossRef]
- Davydov, S.Y.; Tikhonov, S.K. Magnetic susceptibility of wide-gap semiconductors. Semiconductors 1996, 30, 375–376. [Google Scholar]
- Garg, A. The two cultures: SI and Gaussian units in electromagnetism. Eur. J. Phys. 2018, 39, 045205. [Google Scholar] [CrossRef]
- Goldfarb, R.B. Electromagnetic Units, the Giorgi System, and the Revised International System of Units. IEEE Magn. Lett. 2018, 9, 1205905. [Google Scholar] [CrossRef] [PubMed]
- Novikov, N.V. (Ed.) Physical Properties of Diamond. Handbook; Naukova Dumka: Kiev, Ukraine, 1987. (In Russian) [Google Scholar]
- Madelung, O. Semiconductors: Data Handbook; Springer: Berlin, Germany, 2004. [Google Scholar] [CrossRef]
- Poklonski, N.A.; Lapchuk, T.M.; Gorbachuk, N.I.; Nikolaenko, V.A.; Bachuchin, I.V. Nanostructuring of crystalline grains of natural diamond using ionizing radiation. Semiconductors 2005, 39, 894–897. [Google Scholar] [CrossRef]
- Poklonski, N.A.; Dzeraviaha, A.N.; Vyrko, S.A.; Zabrodskii, A.G.; Veinger, A.I.; Semenikhin, P.V. Curie–Weiss behavior of the low-temperature paramagnetic susceptibility of semiconductors doped and compensated with hydrogen-like impurities. AIP Adv. 2021, 11, 055016. [Google Scholar] [CrossRef]
- Lavrik, N.L.; Voloshin, V.P. Calculation of mean distances between the randomly distributed particles in the model of points and hard spheres (the method of Voronoi polyhedra). J. Chem. Phys. 2001, 114, 9489–9491. [Google Scholar] [CrossRef]
- Khomich, A.A.; Dzeraviaha, A.N.; Poklonskaya, O.N.; Khomich, A.V.; Khmelnitsky, R.A.; Poklonski, N.A.; Ralchenko, V.G. Effect of neutron irradiation on the hydrogen state in CVD diamond films. J. Phys. Conf. Ser. 2018, 1135, 012019. [Google Scholar] [CrossRef]
- Zabrodskii, A.G. Magnetic ordering in doped semiconductors near the metal–insulator transition. Phys. Status Solidi B 2004, 241, 33–39. [Google Scholar] [CrossRef]
- Lebedev, A.A.; Abramov, P.L.; Agrinskaya, N.V.; Kozub, V.I.; Lebedev, S.P.; Oganesyan, G.A.; Tregubova, A.S.; Shamshur, D.V.; Skvortsova, M.O. Metal-insulator transition in n-3C-SiC epitaxial films. J. Appl. Phys. 2009, 105, 023706. [Google Scholar] [CrossRef]
- Kavaleu, A.I.; Gorbachuk, N.I.; Vyrko, S.A.; Poklonski, N.A.; Kozlova, M.V.; Dravin, V.A.; Khomich, A.V. Optical and electrical properties of crystalline natural and polycrystalline CVD diamonds irradiated with fast reactor neutrons. In Interaction of Radiation with Solids (IRS-2019), Proceedings of the 13th International Conference, Minsk, Belarus, 30 September–3 October 2019; BSU: Minsk, Belarus, 2019; pp. 265–268. Available online: http://elib.bsu.by/handle/123456789/241542 (accessed on 15 May 2023). (In Russian)
- Zhou, S. Defect-induced ferromagnetism in semiconductors: A controllable approach by particle irradiation. Nucl. Instr. Meth. Phys. Res. B 2014, 326, 55–60. [Google Scholar] [CrossRef]
- Botsch, L.; Esquinazi, P.D.; Bundesmann, C.; Spemann, D. Toward a systematic discovery of artificial functional magnetic materials. Phys. Rev. B 2021, 104, 014428. [Google Scholar] [CrossRef]
- Mal, S.; Nori, S.; Jin, C.; Narayan, J.; Nellutla, S.; Smirnov, A.I.; Prater, J.T. Reversible room temperature ferromagnetism in undoped zinc oxide: Correlation between defects and physical properties. J. Appl. Phys. 2010, 108, 073510. [Google Scholar] [CrossRef]
- Khomich, A.A.; Kovalev, A.I.; Khmelnitsky, R.A.; Khomich, A.V.; Popovich, A.F.; Ralchenko, V.G. Engineering of defects in fast neutron irradiated synthetic diamonds. J. Phys. Conf. Ser. 2021, 2103, 012076. [Google Scholar] [CrossRef]
- Massi, L.; Fritsch, E.; Collins, A.T.; Hainschwang, T.; Notari, F. The “amber centres” and their relation to the brown colour in diamond. Diam. Relat. Mater. 2005, 14, 1623–1629. [Google Scholar] [CrossRef]
- Hainschwang, T.; Notari, F.; Pamies, G. A Defect Study and Classification of Brown Diamonds with Deformation-Related Color. Minerals 2020, 10, 903. [Google Scholar] [CrossRef]
- Mäki, J.-M.; Tuomisto, F.; Kelly, C.J.; Fisher, D.; Martineau, P.M. Properties of optically active vacancy clusters in type IIa diamond. J. Phys. Condens. Matter 2009, 21, 364216. [Google Scholar] [CrossRef]
- Hounsome, L.S.; Jones, R.; Martineau, P.M.; Fisher, D.; Shaw, M.J.; Briddon, P.R.; Öberg, S. Origin of brown coloration in diamond. Phys. Rev. B 2006, 73, 125203. [Google Scholar] [CrossRef]
- Stauffer, D.; Aharony, A. Introduction to Percolation Theory; Taylor & Francis: London, UK, 1994. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poklonski, N.A.; Khomich, A.A.; Svito, I.A.; Vyrko, S.A.; Poklonskaya, O.N.; Kovalev, A.I.; Kozlova, M.V.; Khmelnitskii, R.A.; Khomich, A.V. Magnetic and Optical Properties of Natural Diamonds with Subcritical Radiation Damage Induced by Fast Neutrons. Appl. Sci. 2023, 13, 6221. https://doi.org/10.3390/app13106221
Poklonski NA, Khomich AA, Svito IA, Vyrko SA, Poklonskaya ON, Kovalev AI, Kozlova MV, Khmelnitskii RA, Khomich AV. Magnetic and Optical Properties of Natural Diamonds with Subcritical Radiation Damage Induced by Fast Neutrons. Applied Sciences. 2023; 13(10):6221. https://doi.org/10.3390/app13106221
Chicago/Turabian StylePoklonski, Nikolai A., Andrey A. Khomich, Ivan A. Svito, Sergey A. Vyrko, Olga N. Poklonskaya, Alexander I. Kovalev, Maria V. Kozlova, Roman A. Khmelnitskii, and Alexander V. Khomich. 2023. "Magnetic and Optical Properties of Natural Diamonds with Subcritical Radiation Damage Induced by Fast Neutrons" Applied Sciences 13, no. 10: 6221. https://doi.org/10.3390/app13106221
APA StylePoklonski, N. A., Khomich, A. A., Svito, I. A., Vyrko, S. A., Poklonskaya, O. N., Kovalev, A. I., Kozlova, M. V., Khmelnitskii, R. A., & Khomich, A. V. (2023). Magnetic and Optical Properties of Natural Diamonds with Subcritical Radiation Damage Induced by Fast Neutrons. Applied Sciences, 13(10), 6221. https://doi.org/10.3390/app13106221