Effects of Three Different Brazilian Green Propolis Extract Formulations on Pro- and Anti-Inflammatory Cytokine Secretion by Macrophages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Three Propolis Extracts
2.2. Chemical Marker (Propolis Component) Sources
2.3. Investigation of Propolis Extracts Composition
2.3.1. Chemical Characterization by HPLC
2.3.2. Determination of Total Phenolic Content
2.3.3. Determination of Total Flavonoid Content
2.4. Cytokine Secretion by BMDM Macrophages
2.4.1. Preparation of Donor Animals
2.4.2. Macrophage Collection
2.4.3. Lipopolysaccharide (LPS) Stimulation of Macrophages and Propolis Treatments
2.5. Quantification of Cytokine Levels
2.6. Cell Viability Assessment
2.7. Statistical Analysis
3. Results
3.1. Chemical Characterization of the Three Propolis Extracts
3.1.1. Chemical Characterization of Propolis Extracts by HPLC
3.1.2. Total Phenol and Flavonoid Content of the Propolis Extracts
3.2. Effect of the Propolis Extracts on IL-6, IL-10, and TNF-α Secretion by BMDM Macrophages
3.3. Effects of Isolated Propolis Compounds on IL-6, IL-10, and TNF-α Secretion by Macrophages
3.4. Comparative Effects of Propolis Extracts and Their Isolated Compounds on IL-6, IL-10, and TNF-α Secretion by Macrophages
3.5. Evaluation of Cell Viability
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Herrero-Cervera, A.; Soehnlein, O.; Kenne, E. Neutrophils in chronic inflammatory diseases. Cell. Mol. Immunol. 2022, 19, 177–191. [Google Scholar] [CrossRef]
- Roth, G.A. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788. [Google Scholar] [CrossRef]
- Owona, B.A.; Abia, W.A.; Moundipa, P.F. Natural compounds flavonoids as modulators of inflammasomes in chronic diseases. Int. Immunopharmacol. 2020, 84, 106498. [Google Scholar] [CrossRef]
- Lesuis, N.; Befrits, R.; Nyberg, F.; Vollenhoven, R.F. Gender and the treatment of immune-mediated chronic inflammatory diseases: Rheumatoid arthritis, inflammatory bowel disease and psoriasis: An observational study. BMC Med. 2012, 10, 82. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, G.; Khan, J.A.; Kumosani, T.A.; Kamal, M.A. Alzheimer’s disease and type 2 diabetes via chronic inflammatory mechanisms. Saudi J. Biol. Sci. 2015, 22, 4–13. [Google Scholar] [CrossRef]
- Schett, G.; Neurath, M.F. Resolution of chronic inflammatory disease: Universal and tissue-specific concepts. Nat. Commun. 2018, 9, 3261. [Google Scholar] [CrossRef]
- Rusconi, M.; Gerardi, F.; Santus, W.; Lizio, A.; Sansone, V.A.; Lunetta, C.; Zanoni, I.; Granucci, F. Inflammatory role of dendritic cells in Amyotrophic Lateral Sclerosis revealed by an analysis of patients’ peripheral blood. Sci. Rep. 2017, 7, 7853. [Google Scholar] [CrossRef]
- Abdulkhaleq, L.A.; Assi, M.A.; Abdullah, R.; Zamri-Saad, M.; Taufiq-Yap, Y.H.; Hezmee, M.N.M. The crucial roles of inflammatory mediators in inflammation: A review. Vet. World 2018, 11, 627–635. [Google Scholar] [CrossRef]
- Dantzer, R.; O’Connor, J.C.; Freund, G.G.; Johnson, R.W.; Kelley, K.W. From inflammation to sickness and depression: When the immune system subjugates the brain. Nat. Rev. Neurosci. 2010, 9, 46–56. [Google Scholar] [CrossRef]
- Simpson, D.S.A.; Oliver, P.L. ROS Generation in Microglia: Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease. Antioxidants 2020, 9, 743. [Google Scholar] [CrossRef]
- Motwani, M.P.; Gilroy, D.W. Macrophage development and polarization in chronic inflammation. Semin. Immunol. 2015, 27, 257–266. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, M.; Ericsson, A.C. Function of Macrophages in Disease: Current Understanding on Molecular Mechanisms. Front. Immunol. 2021, 12, 620510. [Google Scholar] [CrossRef]
- Gabay, C. Interleukin-6 and chronic inflammation. Arthritis Res. Ther. 2006, 8 (Suppl. S2), S3. [Google Scholar] [CrossRef]
- Hamidzadeh, K.; Christensen, S.M.; Dalby, E.; Chandrasekaran, P.; Mosser, D.M. Macrophages and the Recovery from Acute and Chronic Inflammation. Annu. Rev. Physiol. 2017, 79, 567–592. [Google Scholar] [CrossRef]
- Arteaga-Henríquez, G.; Simon, M.S.; Burger, B.; Weidinger, E.; Wijkhuijs, A.; Arolt, V.; Birkenhager, T.K.; Musil, R.; Müller, N.; Drexhage, H.A. Low-Grade Inflammation as a Predictor of Antidepressant and Anti-Inflammatory Therapy Response in MDD Patients: A Systematic Review of the Literature in Combination with an Analysis of Experimental Data Collected in the EU-MOODINFLAME Consortium. Front. Psychiatry 2019, 10, 458. [Google Scholar] [CrossRef]
- Bauer, M.E.; Teixeira, A.L. Neuroinflammation in Mood Disorders: Role of Regulatory Immune Cells. Neuroimmunomodulation 2021, 28, 99–107. [Google Scholar] [CrossRef]
- Wasko, M.C.; Kay, J.; Hsia, E.C.; Rahman, M.U. Diabetes mellitus and insulin resistance in patients with rheumatoid arthritis: Risk reduction in a chronic inflammatory disease. Arthritis Care Res. 2010, 63, 512–521. [Google Scholar] [CrossRef]
- Hirayama, D.; Iida, T.; Nakase, H. The Phagocytic Function of Macrophage-Enforcing Innate Immunity and Tissue Homeostasis. Int. J. Mol. Sci. 2018, 19, 92. [Google Scholar] [CrossRef]
- Gandhi, R.; Laroni, A.; Weiner, H.L. Role of the innate immune system in the pathogenesis of multiple sclerosis. J. Neuroimmunol. 2010, 221, 7–14. [Google Scholar] [CrossRef]
- Beserra, F.P.; Gushiken, L.F.S.; Hussni, M.F.; Ribeiro, V.P.; Bonamin, F.; Jackson, C.J.; Pellizzon, C.H.; Bastos, J.K. Artepillin C as an outstanding phenolic compound of Brazilian green propolis for disease treatment: A review on pharmacological aspects. Phytother. Res. 2020, 35, 2274–2286. [Google Scholar] [CrossRef]
- Missima, F.; Da Silva Filho, A.A.; Nunes, G.A.; Bueno, P.C.P.; De Sousa, J.P.B.; Bastos, J.K.; Sforcin, J.M. Effect of Baccharis dracunculifolia D.C. (Asteraceae) extracts and its isolated compounds on macrophage activation. J. Pharm. Pharmacol. 2007, 59, 463–468. [Google Scholar] [CrossRef]
- Dos Santos, D.A.; Fukui, M.J.; Nanayakkarac, D.; Khanc, S.I.; Sousa, J.P.B.; Bastos, J.K.; Andrade, S.F.; Da Silva Filho, A.A.; Quintão, N.L.M. Anti-inflammatory and antinociceptive effects of Baccharis dracunculifolia DC (Asteraceae) in different experimental models. J. Ethnopharmacol. 2010, 127, 543–550. [Google Scholar] [CrossRef]
- Da Silva, L.A.; Malfatti, C.R.M.; Penteado, R.; Brasil, M.R.; Soares, K.C.N. Immunomodulation and anti-inflammatory effects of Baccharis dracunculifolia and Brazilian Green Propolis: A integrative literature review. Res. Soc. Dev. 2022, 11, e183111133358. [Google Scholar] [CrossRef]
- Da Silva Filho, A.A.; Sforcin, J.M.; Tonuci, L.R.S.; Búfalo, M.C. Atividades Biológicas da Baccharis dracunculifolia. In Baccharis dracunculifolia: Uma das Principais Fontes Vegetais da Própolis Brasileira, 1st ed.; Vasconcelos, M.S., Marques Neto, J.C., Gutierre, J.H.B., Ceccanyini, J.L., Ikeda, A.T., Busetto, A., Tolentino, C.A.F., Góes, E.M., Maniglia, E., Urbinati, E.C., et al., Eds.; UNESP: São Paulo, Brazil, 2012; p. 103. [Google Scholar]
- Bachiega, T.F.; De Sousa, J.P.B.; Bastos, J.K.; Sforcin, J.M. Immunomodulatory/anti-inflammatory effects of Baccharis dracunculifolia leaves. Nat. Prod. Res. 2013, 27, 1646–1650. [Google Scholar] [CrossRef]
- Ferreira, J.C.; Reis, M.B.; Coelho, G.D.P.; Gastaldello, G.H.; Peti, A.P.F.; Rodrigues, D.M.; Bastos, J.K.; Campo, V.L.; Sorgi, C.A.; Faccioli, L.H.; et al. Baccharin and p-coumaric acid from green propolis mitigate inflammation by modulating the production of cytokines and eicosanoids. J. Ethnopharmacol. 2021, 278, 114255. [Google Scholar] [CrossRef]
- Batista, M.A.C.; Braga, D.C.A.; Moura, S.A.L.; Souza, G.H.B.; Santos, O.D.H.; Cardoso, L.M. Salt-dependent hypertension and inflammation: Targeting the gut–brain axis and the immune system with Brazilian green propolis. Inflammopharmacology 2020, 28, 1163–1182. [Google Scholar] [CrossRef]
- Machado, J.L.; Assunção, A.K.M.; Silva, M.C.P.; Reis, A.S.; Costa, G.C.; Arruda, D.S.; Rocha, B.A.; Vaz, M.M.O.L.L.; Paes, A.M.A.; Guerra, R.N.M.; et al. Brazilian Green Propolis: Anti-Inflammatory Property by an Immunomodulatory Activity. Evid.-Based Complement. Altern. Med. 2012, 2012, 157652. [Google Scholar] [CrossRef]
- Paulino, N.; Teixeira, C.; Martins, R.; Scremin, A.; Dirschi, V.M.; Vollmar, A.M.; Abreu, S.R.L.; DeCastro, S.L.; Marcucci, M.C. Evaluation of Analgesic and Anti-Inflammatory Effects of a Brazilian Green Propolis. Plant Med. 2006, 72, 899–906. [Google Scholar] [CrossRef]
- Xu, X.; Yang, B.; Wang, D.; Zhu, Y.; Miao, X.; Yang, W. The Chemical Composition of Brazilian Green Propolis and Its Protective Effects on Mouse Aortic Endothelial Cells against Inflammatory Injury. Molecules 2020, 25, 4612. [Google Scholar] [CrossRef]
- Bachiega, T.F. Produção de Citocinas Pró- e Anti-Inflamatórias por Macrófagos Estimulados In Vitro com Própolis, Alecrim-do-Campo, Capim-Limão e Cravo-da-Índia. Master’s Thesis, Medical Faculty of Botucatu-FMB, Universidade Estadual Paulista (UNESP), Botucatu, Brazil, 2011. [Google Scholar]
- Hori, J.I.; Zamboni, D.S.; Carrão, D.B.; Goldman, G.H.; Berretta, A.A. The Inhibition of Inflammasome by Brazilian Propolis (EPP-AF). Evid.-Based Complement. Altern. Med. 2013, 2013, 418508. [Google Scholar] [CrossRef]
- Silveira, M.A.D.; Teles, F.; Berretta, A.A.; Sanches, T.R.; Rodrigues, C.E.; Seguro, A.C.; Andrade, L. Effects of Brazilian green propolis on proteinuria and renal function in patients with chronic kidney disease: A randomized, double-blind, placebo-controlled trial. BMC Nephrol. 2019, 20, 140. [Google Scholar] [CrossRef] [PubMed]
- Anvarifard, P.; Anbari, M.; Ostadrahimi, A.; Ardalan, M.; Ghoreishi, Z. A comprehensive insight into the molecular and cellular mechanisms of the effects of Propolis on preserving renal function: A systematic review. Nutr. Metab. 2022, 19, 6. [Google Scholar] [CrossRef] [PubMed]
- Diniz, D.P.; Lorencini, D.A.; Berretta, A.A.; Cintra, M.A.C.T.; Lia, E.N.; Jordão, A.A., Jr.; Coelho, E.B. Antioxidant Effect of Standardized Extract of Propolis (EPP-AF®) in Healthy Volunteers: A “Before and After” Clinical Study. Evid.-Based Complement. Altern. Med. 2020, 2020, 7538232. [Google Scholar] [CrossRef] [PubMed]
- Berretta, A.A.; Nascimento, A.P.; Bueno, P.C.P.; Vaz, M.M.O.L.L.; Marchetti, J.M. Propolis Standardized Extract (EPP-AF®), an Innovative Chemically and Biologically Reproducible Pharmaceutical Compound for Treating Wounds. Int. J. Biol. Sci. 2012, 8, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Barud, H.S.; Araújo, A.M., Jr.; Saska, S.; Mestieri, L.B.; Campos, J.A.D.B.; Freitas, R.M.; Ferreira, N.U.; Nascimento, A.P.; Miguel, F.G.; Vaz, M.M.O.L.L.; et al. Antimicrobial Brazilian Propolis (EPP-AF) Containing Biocellulose Membranes as Promising Biomaterial for Skin Wound Healing. Evid.-Based Complement. Altern. Med. 2013, 2013, 703024. [Google Scholar] [CrossRef]
- Berretta, A.A.; Castro, P.A.; Cavalheiro, A.H.; Fortes, V.S.; Bom, V.P.; Nascimento, A.P.; Marquele-oliveira, F.; Pedrazzi, V.; Ramalho, L.N.Z.; Goldman, G.H. Evaluation of Mucoadhesive Gels with Propolis (EPP-AF) in Preclinical Treatment of Candidiasis Vulvo vaginal Infection. Evid.-Based Complement. Altern. Med. 2013, 2013, 641480. [Google Scholar] [CrossRef]
- De Castro, P.A.; Savoldi, M.; Bonatto, D.; Barros, M.H.; Goldman, M.H.S.; Berretta, A.A.; Goldman, G.H. Molecular Characterization of Propolis-Induced Cell Death in Saccharomyces cerevisiae. Eukaryot. Cell. 2011, 10, 398–411. [Google Scholar] [CrossRef]
- Bankova, V. Recent trends and important developments in propolis research. Evid.-Based. Complement. Altern. Med. 2005, 2, 29–32. [Google Scholar] [CrossRef]
- Berretta, A.A.; Arruda, C.; Miguel, F.G.; Baptista, N.; Nascimento, A.P.; Marquele-Oliveira, F.; Hori, J.I.; Barud, H.S.; Damaso, B.; Ramos, C.; et al. Functional Properties of Brazilian Propolis: From Chemical Composition Until the Market. In Superfood and Functional Food—An Overview of Their Processing and Utilization, 1st ed.; Waisundara, V.Y., Shiomi, N., Eds.; InTech Open: London, UK, 2017; pp. 55–98. [Google Scholar]
- Funari, C.S.; Sutton, A.T.; Carneiro, R.L.; Fraige, K.; Cavalheiro, A.J.; Bolzani, V.S.; Hilder, E.F.; Arrua, R.D. Natural deep eutectic solvents and aqueous solutions as an alternative extraction media for propolis. Food Res. Int. 2019, 125, 108559. [Google Scholar] [CrossRef]
- Irigoiti, Y.; Navarro, A.; Yamul, D.; Libonatti, C.; Tabera, A.; Basualdo, M. The use of propolis as a functional food ingredient: A review. Trends Food Sci. Technol. 2021, 115, 297–306. [Google Scholar] [CrossRef]
- Pant, K.; Thakur, M.; Chopra, H.K.; Nanda, V. Encapsulated bee propolis powder: Drying process optimization and physicochemical characterization. LWT 2022, 155, 112956. [Google Scholar] [CrossRef]
- Andrade, J.K.S.; Denadai, M.; Andrade, G.R.S.; Nascimento, C.C.; Barbosa, P.F.; Jesus, M.S.; Narain, N. Development and characterization of microencapsules containing spray dried powder obtained from Brazilian brown, green and red propolis. Food Res. Int. 2018, 109, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, S.S.; Thomé, G.S.; Cataneo, A.H.D.; Miranda, M.M.; Felipe, I.; Andrade, C.G.T.J.; Watanabe, M.A.E.; Piana, G.M.; Sforcin, J.M.; Pavanelli, W.R.; et al. Brazilian Propolis Antileishmanial and Immunomodulatory Effects. Evid.-Based Complement. Altern. Med. 2013, 2013, 673058. [Google Scholar] [CrossRef]
- Dos Reis, A.S.; Diedrich, C.; De Moura, C.; Pereira, D.; Almeida, J.F.; Da Silva, L.D.; Plata-Oviedo, M.S.V.; Tavares, R.A.W.; Carpes, S.T. Physico-chemical characteristics of microencapsulated própolis co-product extract and its effect on storage stability of burger meat during storage at −15 °C. LWT Food Sci. Technol. 2017, 76, 306–313. [Google Scholar] [CrossRef]
- Marquiafável, F.S.; Nascimento, A.P.; Barud, H.S.; Marquele-Oliveira, F.; Freitas, L.A.P.; Bastos, J.K.; Berretta, A.A. Development and characterization of a novel standardized propolis dry extract obtained by factorial design with high artepillin C content. J. Pharm. Technol. Drug Res. 2015, 4, 1. [Google Scholar] [CrossRef]
- Šuran, J.; Cepanec, I.; Mašek, T.; Radic, B.; Radic, S.; Gajger, I.T.; Vlainic, J. Propolis Extract and Its Bioactive Compounds—From Traditional to Modern Extraction Technologies. Molecules 2021, 26, 2930. [Google Scholar] [CrossRef]
- Trusheva, B.; Trunkova, D.; Bankova, V. Different extraction methods of biologically active components from propolis: A preliminary study. Chem. Cent. J. 2007, 1, 13. [Google Scholar] [CrossRef]
- Oroian, M.; Ursachi, F.; Dranca, F. Influence of ultrasonic amplitude, temperature, time and solvent concentration on bioactive compounds extraction from propolis. Ultrason. Sonochem. 2020, 64, 105021. [Google Scholar] [CrossRef]
- Bankova, V.; Trusheva, B.; Popova, M. Propolis extraction methods: A review. J. Apic. Res. 2021, 60, 734–743. [Google Scholar] [CrossRef]
- Berretta, A.A.; Zamarrenho, L.G.; Correa, J.A.; De Lima, J.A.; Borini, G.B.; Ambrósio, S.R.; Barud, H.S.; Bastos, J.K.; De Jong, D. Development and Characterization of New Green Propolis Extract Formulations as Promising Candidates to Substitute for Green Propolis Hydroalcoholic Extract. Molecules 2023, 28, 3510. [Google Scholar] [CrossRef]
- Brazilian Ministry of Agriculture. Brazilian Ministry of Agriculture: Instruction Normative to Propolis Extracts, n. 3/2001; Ministério da Agricultura e do Abastecimento: São Paulo, Brazil, 2001. [Google Scholar]
- De Andrade, U.V.C.; Hartmann, W.; Funayama, S.; De Alencar, S.M.; Masson, M.L. Propolis obtained by means of alkaline hydrolysis and action on Staphylococcus aureus. ARS Vet. 2009, 25, 151–154. [Google Scholar]
- De Sousa, J.P.B.; Filho, A.A.S.; Bueno, P.C.P.; Gregório, L.E.; Furtado, N.A.J.C.; Jorge, R.F.; Bastos, J.K. A validated reverse-phase HPLC analytical method for the quantification of phenolic compounds in Baccharis dracunculifolia. Phytochem. Anal. 2008, 20, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Silva, T.S.; Silva, J.M.B.; Braun, G.H.; Mejia, J.A.A.; Ccapatinta, G.V.C.; Santos, M.F.C.; Tanimoto, M.H.; Bastos, J.K.; Parreira, R.L.T.; Orenha, R.P.; et al. Green and Red Brazilian Propolis: Antimicrobial Potential and Anti Virulence against ATCC and Clinically Isolated Multidrug-Resistant Bacteria. R Chem. Biodivers. 2021, 18, e2100307. [Google Scholar] [CrossRef]
- Waterman, P.G.; Mole, S. Analysis of Phenolic Plant Metabolites, 1st ed.; Blackwell Scientific Publications: Hoboken, NJ, USA, 1994; p. 248. [Google Scholar]
- Funari, C.S.; Ferro, V.O. Análise de própolis. Food Sci. Technol. 2006, 26, 171–178. [Google Scholar] [CrossRef]
- Marim, F.M.; Silveira, T.N.; Lima, D.S.; Zamboni, D.S. A method for generation of bone marrow-derived macrophages from cryopreserved mouse bone marrow cells. PLoS ONE 2010, 5, e15263. [Google Scholar] [CrossRef]
- Rocha, B.A.; Bueno, P.C.P.; Vaz, M.M.O.L.L.; Nascimento, A.P.; Ferreira, N.U.; Moreno, G.P.; Rodrigues, M.R.; Costa-Machado, A.R.M.; Barizon, E.A.; Campos, J.C.L.; et al. Evaluation of a Propolis Water Extract Using a Reliable RP-HPLC Methodology and In Vitro and In Vivo Efficacy and Safety Characterisation. Evid.-Based. Complement. Altern. Med. 2013, 2013, 670451. [Google Scholar] [CrossRef]
- Alanazi, S.; Alenzi, N.; Fearnley, J.; Harnett, W.; Watson, D.G. Temperate Propolis has Anti-inflammatory Effects and is a Potent Inhibitor of Nitric Oxide Formation in Macrophages. Metabolites 2020, 10, 413. [Google Scholar] [CrossRef]
- Xool-Tamayo, J.; Chan-Zapata, I.; Arana-Argaez, V.E.; Villa-de la Torre, F.; Torres-Romero, J.C.; Araujo-Leon, J.A.; Aguilar-Ayala, F.J.; Rejón-Peraza, M.E.; Castro-Linares, N.C.; Vargas-Coronado, R.F.; et al. In vitro and in vivo anti-inflammatory properties of Mayan propolis. Eur. J. Inflamm. 2020, 18, 2058739220935280. [Google Scholar] [CrossRef]
- Asgharpour, F.; Moghadamnia, A.A.; Motallebnejad, M.; Nouri, H.R. Propolis attenuates lipopolysaccharide-induced inflammatory responses through intracellular ROS and NO levels along with downregulation of IL-1β and IL-6 expressions in murine RAW 264.7 macrophages. J. Food Biochem. 2019, 43, 12926. [Google Scholar] [CrossRef]
- Búfalo, M.C.; Ferreira, I.; Costa, G.; Francisco, V.; Liberal, J.; Cruz, M.T.; Lopes, M.C.; Batista, M.T.; Sforcin, J.M. Propolis and its constituent caffeic acid suppress LPS-stimulated pro-inflammatory response by blocking NF-kB and MAPK activation in macrophages. J. Ethnopharmacol. 2013, 149, 84–92. [Google Scholar] [CrossRef]
- Ricciardi-Castagnoli, P.; Granucci, F. Opinion: Interpretation of the complexity of innate immune responses by functional genomics. Nat. Rev. Immunol. 2002, 2, 881–889. [Google Scholar] [CrossRef] [PubMed]
- Parameswaran, N.; Patial, S. Tumor Necrosis Factor-α Signaling in Macrophages. Crit. Rev. Eukaryot. Gene Expr. 2010, 20, 87–103. [Google Scholar] [CrossRef] [PubMed]
- Magez, S.; Radwanska, M.; Drennan, M.; Fick, L.; Baral, T.N.; Allie, N.; Jacobs, M.; Nedospasov, S.; Brombacher, F.; Ryffel, B.; et al. Tumor Necrosis Factor (TNF) Receptor–1 (TNFp55) Signal Transduction and Macrophage-Derived Soluble TNF Are Crucial for Nitric Oxide–Mediated Trypanosoma congolense Parasite Killing. J. Infect. Dis. 2007, 196, 954–962. [Google Scholar] [CrossRef] [PubMed]
- Szliszka, E.; Mertas, A.; Czuba, Z.P.; Król, W. Inhibition of Inflammatory Response by Artepillin C in Activated RAW264.7 Macrophages. Evid.-Based Complement. Altern. Med. 2013, 2013, 735176. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, P.F.; Neto, M.A.B.M.; Leandro, L.F.; Bastos, J.K.; Filho, A.A.S.; Tavares, D.C. In Vivo Antigenotoxicity of Baccharin, an Important Constituent of Baccharis dracunculifolia DC (Asteraceae). Basic Clin. Pharmacol. Toxicol. 2010, 109, 35–41. [Google Scholar] [CrossRef]
- Amaral, D.; Caldas, G.R.; Santos, N.A.G.; Parreira, R.L.T.; Bastos, J.K.; Santos, A.C. Baccharin from Brazilian green propolis induces neurotrophic signaling pathways in PC12 cells: Potential for axonal and synaptic regeneration. Naunyn-Schmied. Arch. Pharmacol. 2022, 395, 659–672. [Google Scholar] [CrossRef]
- Watanabe, A.; Almeida, M.O.; Deguchi, Y.; Kozuka, R.; Arruda, C.; Berretta, A.A.; Bastos, J.K.; Woo, J.T.; Yonezawa, T. Effects of Baccharin Isolated from Brazilian Green Propolis on Adipocyte Differentiation and Hyperglycemia in ob/ob Diabetic Mice. Int. J. Mol. Sci. 2021, 22, 6954. [Google Scholar] [CrossRef]
- Al-Hariri, M. Immune’s-boosting agent: Immunomodulation potentials of propolis. J. Fam. Community Med. 2019, 26, 57–60. [Google Scholar] [CrossRef]
- Araujo, M.A.R.; Libério, S.A.; Guerra, R.N.M.; Ribeiro, M.N.S.; Nascimento, F.R.F. Mechanisms of action underlying the antiinflammatory and immunomodulatory effects of propolis: A brief review. Rev. Bras. Farmacogn. 2012, 22, 208–219. [Google Scholar] [CrossRef]
- Figueiredo, S.M.; Nogueira-Machado, J.A.; Almeida, B.M.; Abreu, S.R.L.; Abreu, J.A.S.; Filho, S.A.V.; Binda, N.S.; Caligiorne, R.B. Immunomodulatory Properties of Green Propolis. Recent Pat. Endocr. Metab. Immune Drug Discov. 2014, 8, 85–94. [Google Scholar] [CrossRef]
- Özsezena, B.; Karakaya, S. Propolis and the immune system. In Bee Products and Their Applications in the Food and Pharmaceutical Industries, 1st ed.; Elsevier: New York, NY, USA, 2022; pp. 115–137. [Google Scholar]
- Sforcin, J.M. Propolis and the immune system: A review. J. Ethnopharmacol. 2007, 113, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Wolska, K.; Górska, A.; Antosik, K.; Ługowska, L. Immunomodulatory Effects of Propolis and its Components on Basic Immune Cell Functions. Indian J. Pharm. Sci. 2019, 81, 575–588. [Google Scholar] [CrossRef]
- Bachiega, T.F.; Orsatti, C.L.; Pagliarone, A.C.; Sforcin, J.M. The Effects of Propolis and its Isolated Compounds on Cytokine Production by Murine Macrophages. Phytother. Res. 2012, 26, 1308–1313. [Google Scholar] [CrossRef] [PubMed]
- Búfalo, M.C.; Bordon-Graciani, A.P.; Conti, B.J.; Golim, M.A.; Sforcin, J.M. The immunomodulatory effect of propolis on receptors expression, cytokine production and fungicidal activity of human monocytes. J. Pharm. Pharmacol. 2014, 66, 1497–1504. [Google Scholar] [CrossRef]
Chemical Marker | PPF | PSDE | MPE |
---|---|---|---|
Mean (mg/g) ± SD | Mean (mg/g) ± SD | Mean (mg/g) ± SD | |
Caffeic acid | 168.647 ± 17.4 ***(a) | 7.045 ± 0.0274 **(a) | 0.795 ± 0.0044 *(a) |
p-Coumaric acid | 50.989 ± 3.9 ***(a) | 6.982 ± 0.0132 **(a) | 4.667 ± 0.0317 *(a) |
3,5 Dicaffeoylquinic acid | ND | 7.289 ± 0.030 **(b) | 6.623 ± 0.035 *(b) |
4,5 Dicaffeoylquinic acid | ND | 4.741 ± 0.0429 **(b) | 11.844 ± 0.2153 *(b) |
Aromadendrin-4-O′-methyl-ether | ND | ND | 2.619 ± 0.038 *(b) |
Drupanin | ND | 18.945 ± 0.134 **(b) | 7.715 ± 0.040 *(b) |
Chrysin | ND | 1.963 ± 0.035 **(b) | 1.225 ± 0.029 *(b) |
Galangin | ND | ND | 3.613 ± 0.089 *(b) |
Artepillin C | ND | 44.970 ± 1.078 **(b) | 18.850 ± 0.373 *(b) |
Baccharin | ND | ND | 2.581 ± 0.071 *(b) |
Chemical Marker | Regression Curve | r | LOD | LOQ |
---|---|---|---|---|
µg/mL | µg/mL | |||
Caffeic acid | y = 32,558x – 11,096 | 1.00 | 0.59 | 1.79 |
p-Coumaric acid | y = 52,979x – 2033 | 0.99 | 1.18 | 3.57 |
3,5 Dicaffeoylquinic acid | y = 18,942x – 44,655 | 0.99 | 6.41 | 19.43 |
4,5 Dicaffeoylquinic acid | y = 15,827x – 13,446 | 0.99 | 7.15 | 21.68 |
Aromadendrin-4-O′-methyl-ether | y = 23,304x – 4193 | 0.99 | 0.49 | 1.47 |
Drupanin | y = 26,870x – 36,385 | 0.99 | 1.40 | 4.24 |
Chrysin | y = 66,663x – 3433.7 | 0.99 | 1.35 | 4.08 |
Galangin | y = 34,798x – 17,489 | 0.99 | 3.04 | 9.20 |
Artepillin C | y = 19,313x – 725,866 | 0.99 | 8.03 | 24.34 |
Baccharin | y = 49,810x – 39,607 | 0.99 | 0.85 | 2.58 |
Propolis Extracts | Total Phenolic Compounds | Total Flavonoid Compounds | ||
---|---|---|---|---|
Mean (mg GAE/g) ± SD | RSD (%) | Mean (mg QUE/g) ± SD | RSD (%) | |
PPF | 53.05 ± 1.30 | 2.37 | 18.11 ± 1.3 | 3.53 |
PSDE | 123.24 ± 1.90 | 1.53 | 45.48 ± 0.5 | 1.17 |
MPE | 49.45 ± 1.30 | 2.60 | 23.17 ± 0.6 | 2.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zamarrenho, L.G.; de Lima, M.H.F.; Hori, J.I.; Lima, J.A.; Ambrósio, S.R.; Bastos, J.K.; De Jong, D.; Berretta, A.A. Effects of Three Different Brazilian Green Propolis Extract Formulations on Pro- and Anti-Inflammatory Cytokine Secretion by Macrophages. Appl. Sci. 2023, 13, 6247. https://doi.org/10.3390/app13106247
Zamarrenho LG, de Lima MHF, Hori JI, Lima JA, Ambrósio SR, Bastos JK, De Jong D, Berretta AA. Effects of Three Different Brazilian Green Propolis Extract Formulations on Pro- and Anti-Inflammatory Cytokine Secretion by Macrophages. Applied Sciences. 2023; 13(10):6247. https://doi.org/10.3390/app13106247
Chicago/Turabian StyleZamarrenho, Luana Gonçalves, Mikhael Haruo Fernandes de Lima, Juliana Issa Hori, Jéssica Aparecida Lima, Sérgio Ricardo Ambrósio, Jairo Kenupp Bastos, David De Jong, and Andresa Aparecida Berretta. 2023. "Effects of Three Different Brazilian Green Propolis Extract Formulations on Pro- and Anti-Inflammatory Cytokine Secretion by Macrophages" Applied Sciences 13, no. 10: 6247. https://doi.org/10.3390/app13106247
APA StyleZamarrenho, L. G., de Lima, M. H. F., Hori, J. I., Lima, J. A., Ambrósio, S. R., Bastos, J. K., De Jong, D., & Berretta, A. A. (2023). Effects of Three Different Brazilian Green Propolis Extract Formulations on Pro- and Anti-Inflammatory Cytokine Secretion by Macrophages. Applied Sciences, 13(10), 6247. https://doi.org/10.3390/app13106247