Estimation of Age in Humans Using Dental Translucency of Permanent Teeth: An Experimental Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Procedure
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gualdi-Russo, E.; Belcastro, M.G.; Sineo, L.; Capasso, L.; Pilli, E.; Martinez-Labarga, C.; Viciano, J.; Toselli, S. Antropologia forense. In Manuale di Antropologia. Evoluzione e Biodiversità Umana; Sineo, L., Moggi-Cecchi, J., Eds.; UTET: Torino, Italy, 2022; pp. 557–574. [Google Scholar]
- Ubelaker, D.H. Forensic Anthropology: Methodology and applications. In Biological Anthropology of the Human Skeleton, 3rd ed.; Katzenberg, M.A., Grauer, A.L., Eds.; John Wiley & Sons, Inc.: Oxford, UK, 2019; pp. 43–71. [Google Scholar]
- Gualdi-Russo, E.; Saguto, I.; Frisoni, P.; Neri, M.; Mongillo, J.; Rinaldo, N. Age estimation using tooth cementum annulations: Bias and sources of inaccuracy. Front. Biosci.-Landmark 2022, 27, 141. [Google Scholar] [CrossRef]
- Gualdi-Russo, E.; Saguto, I.; Frisoni, P.; Neri, M.; Rinaldo, N. Tooth Cementum Thickness as a Method of Age Estimation in the Forensic Context. Biology 2022, 11, 784. [Google Scholar] [CrossRef]
- Wittwer-Backofen, U.; Gampe, J.; Vaupel, J.W. Tooth cementum annulation for age estimation: Results from a large known-age validation study. Am. J. Phys. Anthr. 2003, 123, 119–129. [Google Scholar] [CrossRef]
- Lamendin, H.; Baccino, E.; Humbert, J.F.; Tavernier, J.C.; Nossintchouk, R.M.; Zerilli, A. A simple technique for age estimation in adult corpses: The two criteria dental method. J. Forensic Sci. 1992, 37, 1373–1379. [Google Scholar] [CrossRef] [PubMed]
- Arany, S.; Ohtani, S. Age estimation by racemization method in teeth: Application of aspartic acid, glutamate, and alanine. J. Forensic Sci. 2010, 55, 701–705. [Google Scholar] [CrossRef] [PubMed]
- Prince, D.A.; Ubelaker, D.H. Application of Lamendin’s adult dental aging technique to a diverse skeletal sample. J. Forensic Sci. 2002, 47, 107–116. [Google Scholar] [CrossRef]
- Ribeiro Lopes, J.; Borges Braga dos Santos Queiroz, S.; Marques Fernandez, M.; Saavedra de Paiva, L.A.; Nogueira de Oliveira, R. Age estimation by teeth periodontosis and transparency: Accuracy of Lamendin’s method on a Brazilian sample. Braz. J. Oral Sci. 2014, 13, 17–21. [Google Scholar] [CrossRef]
- Garizoain, G.; Petrone, S.; Plischuk, M.; Inda, A.M.; Garcia, M.N. Evaluation of Lamendin’s age-at-death estimation method in a documented osteological collection (La Plata, Argentina). Forensic Sci. Int. Rep. 2020, 2, 100060. [Google Scholar] [CrossRef]
- Singhal, A.; Ramesh, V.; Balamurali, P. A comparative analysis of root dentin transparency with known age. J. Forensic Dent. Sci. 2010, 2, 18–21. [Google Scholar] [CrossRef]
- Martrille, L.; Ubelaker, D.H.; Cattaneo, C.; Seguret, F.; Trembla, M.; Baccino, E. Comparison of four skeletal methods for the estimation of age at death on white and black adults. J. Forensic Sci. 2007, 52, 302–307. [Google Scholar] [CrossRef]
- Lorentsen, M.; Solheim, T. Age assessment based on translucent dentine. J. Forensic Odontostomatol. 1989, 7, 3–9. [Google Scholar] [PubMed]
- Foti, B.; Adalian, P.; Signoli, M.; Ardagna, Y.; Dutour, O.; Leonetti, G. Limits of the Lamendin method in age determination. Forensic Sci. Int. 2001, 122, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Zorba, E.; Goutas, N.; Spiliopoulou, C.; Moraitis, K. An evaluation of dental methods by Lamendin and Prince and Ubelaker for estimation of adult age in a sample of modern Greeks. Homo 2018, 69, 17–28. [Google Scholar] [CrossRef]
- Ackermann, A.; Steyn, M. A test of the Lamendin method of age estimation in South African canines. Forensic Sci. Int. 2014, 236, 192.e1–192.e6. [Google Scholar] [CrossRef]
- González-Colmenares, G.; Botella-López, M.C.; Moreno-Rueda, G.; Fernández-Cardenete, J.R. Age estimation by a dental method: A comparison of Lamendin’s and Prince & Ubelaker’s technique. J. Forensic Sci. 2007, 52, 1156–1160. [Google Scholar] [CrossRef] [PubMed]
- Puneeth, K.H.; Nandini, D.B.; Praveen, S.B.; Selvamani, M.; Mandana, D. A comparative study of efficacy of single rooted and double rooted teeth in age estimation using dentin translucency. J. Forensic Odontostomatol. 2016, 34, 1–10. [Google Scholar]
- Bang, G.; Ramm, E. Determination of age in humans from root dentin transparency. Acta Odontol. Scand. 1970, 28, 3–35. [Google Scholar] [CrossRef]
- Ubelaker, D.H.; Parra, R.C. Application of three dental methods of adult age estimation from intact single rooted teeth to a Peruvian sample. J. Forensic Sci. 2008, 53, 608–611. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, N.; Puri, A.; Nangia, R.; Bhat, N.; Bhatt, S.; Shakil, S. Assessment of root dentin translucency for age estimation: The first comparative study of conventional, stereomicroscopic & digital methods. Ann. Int. Med. Den. Res. 2019, 5, 7. [Google Scholar]
- Meinl, A.; Huber, C.D.; Tang, S.; Gruber, G.M.; Teschler-Nicola, M.; Watze, G. Comparison of the validity of three dental methods for the estimation of age at death. Forensic Sci. Int. 2008, 178, 96–105. [Google Scholar] [CrossRef]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Solheim, T.; Sundnes, P.K. Dental age estimation of Norwegian adults—A comparison of different methods. Forensic Sci. Int. 1980, 16, 7–17. [Google Scholar] [CrossRef]
- Lucy, D.; Pollard, A.M.; Roberts, C.A. A comparison of three dental techniques for estimating age at death in humans. J. Archaeol. Sci. 1995, 22, 417–428. [Google Scholar] [CrossRef]
- Soomer, H.; Ranta, H.; Lincoln, M.J.; Penttilä, A.; Leibur, E. Reliability and validity of eight dental age estimation methods for adults. J. Forensic Sci. 2003, 48, 149–152. [Google Scholar] [CrossRef]
- Phulari, R.G.S.; Dave, E.J. Evolution of dental age estimation methods in adults over the years from occlusal wear to more sophisticated recent techniques. Egypt. J. Forensic Sci. 2021, 11, 36. [Google Scholar] [CrossRef]
- Johanson, G. Age determinations from human teeth. Odontol Rev. 1971, 22 (Suppl. 21), 1–126. [Google Scholar]
- Vasiliadis, L.; Darling, A.I.; Levers, B.G. The amount and distribution of sclerotic human root dentine. Arch. Oral Biol. 1983, 28, 645–649. [Google Scholar] [CrossRef]
- Azaz, B.; Michaeli, Y.; Nitzan, D. Aging tissues of the roots of nonfunctional human teeth (impacted canines). Oral Surg. Oral Med. Oral Pathol. 1977, 43, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Garizoain, G.; Parra, R.C.; Escalante-Flórez, K.J.; Aranda, C.M.; Luna, L.H.; Condori, L.A.; Valderrama-Leal, C.I.; Retana-Milán, F. Age-at-death estimation in adults using three forensic methodologies: A Lamendin’s technique approach for Latin American context and the extension of a forensic international dental database. J. Forensic Sci. 2021, 66, 2456–2468. [Google Scholar] [CrossRef] [PubMed]
- Doria Martínez, A.M.; Vásquez Escobar, R.B.; Guzmán López, Z. Comparison of Two Methods, Lamendin and González-Colmenares, to Estimate Age in Adults. Univ. Odontológica 2022, 41. [Google Scholar] [CrossRef]
- Megyesi, M.S.; Ubelaker, D.H.; Sauer, N.J. Test of the Lamendin aging method on two historic skeletal samples. Am. J. Phys. Anthropol. 2006, 131, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Solheim, T. Dental root translucency as an indicator of age. Scand. J. Dent. Res. 1989, 97, 189–197. [Google Scholar] [CrossRef] [PubMed]
References | Sample Size | Tooth Type | Population | Regression Equations |
---|---|---|---|---|
Undetermined sex | ||||
Bang and Ramm [19] | 978 | Any | Norwegians | Equation 1 §: (RHT ≤ 9.0 mm): A = B0 + (B1 × RHT) + (B2 × RHT) Equation 2 §: (RHT > 9.0 mm): A = B0 + (B1 × RHT) |
Lamendin et al. [6] | 306 | Single-rooted | French | A = 0.18[(PH × 100)/RH] + 0.42 [(RHT*100)/RH] + 25.53 |
González-Colmenares et al. [17] | 78 | Incisors and premolars | Colombian mestizo population | A = 0.87(RH) + 0.18[(PH × 100)/RH] + 0.47[(RHT × 100)/RH] + 11.22 |
Ubelaker and Parra [20] | 100 | Single-rooted | Peruvians | A = 31.71 − 1.18(RH) + 5.81(PH) + 3.14(RHT) |
Singhal et al. [11] | 50 | Lower central incisors | Indians | A: 22.25 + 77.04(RHT/RH) ° |
Bhardwaj et al. [21] | 30 | Any (not specified) | Indians | A = −9.947 + 8.610(RHT) ° |
Males | ||||
Prince and Ubelaker [8] | 95 | Single rooted | Terry collection (Caucasians) | A = 0.16(RH) + 0.29([PH × 100]/RH) + 0.39([RHT × 100]/RH) + 23.17 |
Females | ||||
Prince and Ubelaker [8] | 72 | Single rooted | Terry collection (Caucasians) | A = 1.10(RH) + 0.31([PH × 100]/RH) + 0.39([RHT × 100]/RH) + 11.82 |
Variables | Total Sample Mean (SD) | Group 1 (18–39 Years) Mean (SD) | Group 2 (40–59 Years) Mean (SD) | Group 3 (60+ Years) Mean (SD) | p-Value a | Post-Hoc Test |
---|---|---|---|---|---|---|
Total sample (n = 155) | ||||||
RH (mm) | 12.64 (2.32) | 11.38 (1.74) | 12.88 (2.12) | 13.32 (2.48) | <0.001 | 1 < 2, 3 |
PH (mm) | 2.60 (1.46) | 1.68 (1.49) | 2.82 (1.14) | 3.05 (1.42) | <0.001 | 1 < 2, 3 |
RHT (mm) | 4.69 (3.36) | 0.41 (0.88) | 5.35 (2.11) | 7.08 (2.27) | <0.001 | 1 < 2, 3 |
Males (n = 63) | ||||||
RH (mm) | 13.20 (2.58) | 11.56 (2.39) | 12.89 (2.41) | 13.95 (2.51) | 0.022 | 1 < 3 |
PH (mm) | 2.69 (1.43) | 0.95 (1.17) | 3.01 (1.24) | 3.01 (1.26) | <0.001 | 1 < 2, 3 |
RHT (mm) | 5.63 (3.45) | 0.51 (1.28) | 5.13 (2.46) | 7.70 (2.38) | <0.001 | 1 < 2, 3 2 < 3; 3 > 1, 2 |
Females (n = 92) | ||||||
RH (mm) | 12.26 (2.05) † | 11.31 (1.49) | 12.86 (1.94) | 12.69 (2.32) † | 0.004 | 1 < 2, 3 |
PH (mm) | 2.54 (1.49) | 1.89 (1.52) | 2.67 (1.06) | 3.08 (1.57) | 0.004 | 1 < 3 |
RHT (mm) | 4.05 (3.16) † | 0.37 (0.71) | 5.51 (1.85) | 6.45 (2.00) † | <0.001 | 1 < 2, 3 |
Intra-operator variability (A1–A2) | |||
RH ICC (95% CI) (N = 155) | PH ICC (95% CI) (N = 111) | RHT ICC (95% CI) (N = 155) | |
Total sample | 0.947 (0.928–0.961) | 0.942 (0.919–0.959) | 0.973 (0.963–0.980) |
Single-rooted | 0.938 (0.889–0.966) | 0.917 (0.841–0.956) | 0.927 (0.869–0.959) |
Multi-rooted | 0.948 (0.926–0.964) | 0.951 (0.929–0.967) | 0.981 (0.972–0.987) |
Inter-operator variability (A1-B) | |||
RH ICC (95% CI) (N = 135) | PH ICC (95% CI) (N = 97) | RHT ICC (95% CI) (N = 136) | |
Total sample | 0.876 (0.824–0.912) | 0.658 (0.323–0.628) | 0.923 (0.887–0.947) |
Single-rooted | 0.932 (0.859–0.966) | 0.543 (−0.042–0.797) | 0.844 (0.690–0.921) |
Multi-rooted | 0.818 (0.728–0.878) | 0.692 (0.505–0.808) | 0.933 (0.897–0.956) |
RH (mm) | PH (mm) | RHT (mm) | ||||
---|---|---|---|---|---|---|
r | p-Value | r | p-Value | r | p-Value | |
Total sample | 0.31 | <0.001 | 0.35 | <0.001 | 0.80 | <0.001 |
Males | 0.31 | 0.014 | 0.47 | <0.001 | 0.77 | <0.001 |
Females | 0.28 | 0.007 | 0.30 | 0.004 | 0.82 | <0.001 |
18–39 years | −0.12 | 0.462 | 0.34 | 0.030 | 0.71 | <0.001 |
40–59 years | 0.12 | 0.399 | −0.02 | 0.893 | 0.37 | 0.011 |
60+ years | −0.07 | 0.546 | −0.16 | 0.222 | 0.08 | 0.553 |
Single rooted tooth | 0.04 | 0.791 | 0.26 | 0.108 | 0.42 | 0.005 |
Multi-rooted tooth | 0.34 | <0.001 | 0.40 | <0.001 | 0.86 | <0.001 |
Equations | Bias | Precision | Inaccuracy |
---|---|---|---|
Bang and Ramm [19] | |||
Total sample | −4.3 | 16.1 | 12.6 |
Single rooted | −2.4 | 20.8 | 16.0 |
Multi-rooted | −5.3 | 13.0 | 10.8 |
Lamendin et al. [6] | |||
Total sample | −10.8 | 11.7 | 12.4 |
Single rooted | −16.2 | 12.4 | 16.9 |
Multi-rooted | −8.4 | 10.5 | 10.4 |
Prince and Ubelaker [8] | |||
Total sample | −3.10 | 13.3 | 11.6 |
Single rooted | −7.0 | 11.8 | 11.9 |
Multi-rooted | −1.3 | 13.6 | 11.5 |
Gonzales-Colmenares et al. [17] | |||
Total sample | −12.3 | 12.0 | 13.4 |
Single rooted | −17.7 | 13.9 | 18.5 |
Multi-rooted | −9.5 | 10.0 | 10.8 |
Ubelaker and Parra [20] | |||
Total sample | −8.8 | 14.5 | 12.9 |
Single rooted | −15.6 | 16.7 | 18.6 |
Multi-rooted | −5.3 | 11.9 | 10.0 |
Singhal et al. [11] | |||
Total sample | −2.9 | 13.4 | 11.1 |
Single rooted | −7.7 | 14.7 | 13.9 |
Multi-rooted | −0.4 | 12.1 | 7.4 |
Bhardwaj et al. [21] | |||
Total sample | −17.1 | 18.0 | 20.6 |
Single rooted | −19.2 | 20.1 | 23.6 |
Multi-rooted | −15.9 | 16.7 | 18.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rinaldo, N.; Saguto, I.; De Luca, F.; Neri, M.; Frisoni, P.; Gualdi-Russo, E. Estimation of Age in Humans Using Dental Translucency of Permanent Teeth: An Experimental Study. Appl. Sci. 2023, 13, 6289. https://doi.org/10.3390/app13106289
Rinaldo N, Saguto I, De Luca F, Neri M, Frisoni P, Gualdi-Russo E. Estimation of Age in Humans Using Dental Translucency of Permanent Teeth: An Experimental Study. Applied Sciences. 2023; 13(10):6289. https://doi.org/10.3390/app13106289
Chicago/Turabian StyleRinaldo, Natascia, Ilaria Saguto, Federica De Luca, Margherita Neri, Paolo Frisoni, and Emanuela Gualdi-Russo. 2023. "Estimation of Age in Humans Using Dental Translucency of Permanent Teeth: An Experimental Study" Applied Sciences 13, no. 10: 6289. https://doi.org/10.3390/app13106289
APA StyleRinaldo, N., Saguto, I., De Luca, F., Neri, M., Frisoni, P., & Gualdi-Russo, E. (2023). Estimation of Age in Humans Using Dental Translucency of Permanent Teeth: An Experimental Study. Applied Sciences, 13(10), 6289. https://doi.org/10.3390/app13106289