Centrifugal Model Study of Seepage and Seismic Behavior in a Homogeneous Reservoir Dam with Parapet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Centrifugal Model Test
2.2. Scenario Setting
2.3. Modeling and Experimental Conditions
2.4. Construction Materials
2.5. Input Seismic Motion
3. Results and Discussion
3.1. Deformation Shape and Displacement
3.2. Dam Crest Cracks
- In the case of cracks remaining at the dam crest, large-scale tensile cracks can be caused by loading in the crack direction during an earthquake.
- The increase in crack depth after the earthquake indicates that the deformation continues owing to the pore water pressure in the embankment, suggesting that stabilization measures and management of embankments after an earthquake are necessary.
3.3. Pore-Water-Pressure Variation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tabari, H. Climate Change Impact on Flood and Extreme Precipitation Increases with Water Availability. Sci. Rep. 2020, 10, 13768. [Google Scholar] [CrossRef] [PubMed]
- UNESCO. Science for a Water Secure World in a Changing Environment, Draft IHP-IX Strategic Plan; Ninth Phase of the Intergovernmental Hydrological Programme: Paris, France, 2021; Volume 2021, Available online: https://en.unesco.org/sites/default/files/ihp-ic-xxiv-ref.1_ihp-ix_strategic_plan.pdf (accessed on 6 January 2021).
- IPCC The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar] [CrossRef]
- Ahmadalipour, A.; Moradkhani, H.; Castelletti, A.; Magliocca, N. Future Drought Risk in Africa: Integrating Vulnerability, Climate Change, and Population Growth. Sci. Total Environ. 2019, 662, 672–686. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadehtalaei, P.; Tabari, H.; Willems, P.; Data, S.-B. Satellite-Based Data Driven Quantification of Pluvial Floods over Europe Under Future Climatic and Socioeconomic Changes. Sci. Total Environ. 2020, 721, 137688. [Google Scholar] [CrossRef] [PubMed]
- Korea Rural Community Corporation (KRC). Establishment of Condition Evaluation Criteria for Precise Safety Diagnosis and Precise Safety Inspection of Agricultural Reservoirs; Korea Rural Community Corporation (KRC): Naju-si, Republic of Korea, 2020. (In Korean) [Google Scholar]
- Ministry of the Interior and Safety (MOIS). 2020 Annual Natural Disaster Report; Smithsonian Institution: Sejong, Republic of Korea, 2020. (In Korean)
- Ministry of Agriculture, Food and Rural Affairs (MAFRA). Statistical Yearbook of Land and Water Development for Agriculture; Ministry of Agriculture, Food and Rural Affairs (MAFRA): Sejong-si, Republic of Korea, 2021. Available online: https://rawris.ekr.or.kr/stastics/pdf/2021.pdf (accessed on 26 April 2023). (In Korean)
- Lee, Y.-H.; Ryu, J.H.; Lee, T.H.; Shim, J.W.; Kim, C.-H.; Lee, D.-W. Failure Behavior Attributed to Internal Erosion Caused by Conduit Cracks in Homogeneous Embankment. Appl. Sci. 2022, 12, 6305. [Google Scholar] [CrossRef]
- Foster, M.A.; Fell, R.; Spannagle, M. The Statistics of Embankment Dam Failures and Accidents. Can. Geotech. J. 2000, 37, 1000–1024. [Google Scholar] [CrossRef]
- Hanson, G.J.; Cook, K.R.; Hunt, S.L. Physical modeling of overtopping erosion and breach formation of cohesive embankments. Trans. ASAE 2005, 48, 1783–1794. [Google Scholar] [CrossRef]
- Morris, M.W.; Kortenhaus, A.; Visser, P.J. Modeling Breach Initiation and Growth FLOODsite Rep. t06-08-02. FLOODsite Consortium. 2009. Available online: http://www.floodsite.net/html/partner_area/project_docs/t06_08_01_breach__execsumm_v3_5_p01.pdf (accessed on 26 April 2023).
- Seo, M.-W.; Ha, I.S.; Kim, Y.-S.; Olson, S.M. Behavior of Concrete-Faced Rockfill Dams During Initial Impoundment. J. Geotech. Geoenviron. Eng. 2009, 135, 1070–1081. [Google Scholar] [CrossRef]
- Tani, S. Behavior of Large Fill Dams During Earthquake and Earthquake Damage. Engineering 2000, 20, 223–229. [Google Scholar] [CrossRef]
- Okamura, M.; Tamamura, S. Seismic Stability of Embankment on Soft Soil Deposit. Int. J. Phys. Modell. Geotech. 2011, 11, 50–57. [Google Scholar] [CrossRef]
- Li, J.; Zhang, J.; Xu, J.; Wang, F.; Wang, B.; Li, Q. Dynamic Behavior of Polymer Antiseepage Wall for Earth Dam by Centrifuge Test. Int. J. Geomech. 2018, 18, 0001294. [Google Scholar] [CrossRef]
- Adapa, G.; Takada, Y.; Ueda, K.; Uzuoka, R. Dynamic Centrifuge Model Tests on Embankment with Different Upstream Conditions. In Proceedings of the 7th Asia and the Pacific Conference on Unsaturated Soils (AP-UNSAT2019), Nagoya, Japan, 23–25 August 2019; Volume 7, pp. 531–540. [Google Scholar] [CrossRef]
- Tobita, T.; Iai, S.; von der Tann, L.; Yaoi, Y. Application of the Generalised Scaling Law to Saturated Ground. Int. J. Phys. Modell. Geotech. 2011, 11, 138–155. [Google Scholar] [CrossRef]
- Chaney, R.; Demars, K.; Dewoolkar, M.; Ko, H.; Stadler, A.; Astaneh, S. A Substitute Pore Fluid for Seismic Centrifuge Modeling. Geotech. Test. J. 1999, 22, GTJ11111J. [Google Scholar] [CrossRef]
- Digital Image Technology (DITECT). 2D/3D Motion Analysis Software (DIPP-Motion V). Available online: https://www.ditect.co.jp/en/software/dipp_motionv.html (accessed on 26 April 2023).
- Onitsuka, K.; Yoshitake, S.; Nanri, M. Mechanical Properties and Strength Anisotropy of Decomposed Granite Soil. Soils Found. 1985, 25, 14–30. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.W.; Santamarina, J.C. The Hydraulic Conductivity of Sediments: A Pore Size Perspective. Eng. Geol. 2018, 233, 48–54. [Google Scholar] [CrossRef]
- Kim, S.-G.; Choi, W.-H.; Kim, Y.-H.; Shin, J.-W.; Kim, B.-J. Investigation of compressive Strength Characteristics of Hardfill Material and Seismic Stability of Hard. Appl. Sci. 2023, 13, 2492. [Google Scholar] [CrossRef]
- Korea Meteorological Administraion (KMA). Seismological Annual Report. 2020. Available online: https://www.kma.go.kr/download_01/earthquake/earthquake_2020.pdf (accessed on 26 April 2023). (In Korean)
- Kayhan, A.H.; Demir, A.; Palanci, M. Multi-functional Solution Model for Spectrum Compatible Ground Motion Record Selection Using Stochastic Harmony Search Algorithm. Bull. Earthq. Eng. 2022, 20, 6407–6440. [Google Scholar] [CrossRef]
- Kim, M.-K.; Lee, S.-H.; Choo, Y.W.; Kim, D.-S. Seismic Behaviors of Earth-Core and Concrete-Faced Rock-Fill Dams by Dynamic Centrifuge Tests. Soil Dyn. Earthq. Eng. 2011, 31, 1579–1593. [Google Scholar] [CrossRef]
- Kobayashi, A.; Murakami, A. Seismic Crack Investigation in an Earth Dam by Centrifugal Loading Test. In Dam Engineering; IntechOpen: London, UK, 2018; pp. 1–16. [Google Scholar] [CrossRef]
- Adapa, G.; Ueda, K.; Uzuoka, R. Seismic Stability of Embankments with Different Densities and Upstream Conditions Related to the Water Level. Soils Found. 2021, 61, 185–197. [Google Scholar] [CrossRef]
Years | Number of Failures | Cause of Embankment Failure | ||
---|---|---|---|---|
Dam Type | Cause | Note | ||
2010.8 | 2 | Homogeneous-type | Torrential rain | - |
2011.8 | 1 | Homogeneous-type | Torrential rain | - |
2012.8 | 1 | Homogeneous-type | Torrential rain | - |
2012.8 | 2 | Core-type | Torrential rain | - |
2013.4 | 1 | Homogeneous-type | Deterioration | Conduit defect |
2013.7 | 2 | Core-type | Torrential rain | - |
2014.8 | 1 | Homogeneous-type | Torrential rain | - |
2014.9 | 1 | Homogeneous-type | Torrential rain | - |
2014.9 | 1 | Core-type | Deterioration | Conduit defect |
2016.10 | 2 | Zoned fill-type | Torrential rain | - |
2018.7 | 1 | Homogeneous-type | Torrential rain | - |
2019.10 | 3 | Zoned fill-type | Torrential rain | - |
2020.7 | 1 | Homogeneous-type | Deterioration | Conduit defect |
2020.8 | 3 | Homogeneous-type | Torrential rain | - |
2020.8 | 13 | Core-type | Torrential rain | - |
2020.8 | 5 | Zoned fill-type | Torrential rain | - |
Total | 40 | - |
Properties | Prototype | Scaling Factor | Properties | Prototype | Scaling Factor |
---|---|---|---|---|---|
Density | 1 | 1 | Mass | 1 | 1/N2 |
Length | 1 | 1/N | Force | 1 | 1/N2 |
Displacement | 1 | 1/N | Stress | 1 | 1 |
Velocity | 1 | 1 | Strain | 1 | 1 |
Centrifuge acceleration | 1 | N | Time (static) | 1 | 1/N2 |
Seismic velocity | 1 | N | Time (dynamic) | 1 | 1/N |
Location | Dam Crest (Section B) | Upstream (Section A) | Downstream (Section C) | |||
---|---|---|---|---|---|---|
Mode | EMB | Parapet | EMB | Parapet | EMB | Parapet |
1st seepage mode | 2–6 | 1–3 | 11–14 | 1–3 | 1–3 | 1–4 |
Seismic mode | 8–15 | 2–5 | 11–14 | 1–3 | 2–5 | 2–5 |
2nd seepage mode | 12–20 | 5–9 | 11–14 | 1–3 | 2–5 | 4–7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-H.; Yamakawa, S.; Tobita, T.; Hong, H.-K.; Song, H.-S.; Kim, J.-J.; Lee, D.-W. Centrifugal Model Study of Seepage and Seismic Behavior in a Homogeneous Reservoir Dam with Parapet. Appl. Sci. 2023, 13, 6347. https://doi.org/10.3390/app13106347
Lee Y-H, Yamakawa S, Tobita T, Hong H-K, Song H-S, Kim J-J, Lee D-W. Centrifugal Model Study of Seepage and Seismic Behavior in a Homogeneous Reservoir Dam with Parapet. Applied Sciences. 2023; 13(10):6347. https://doi.org/10.3390/app13106347
Chicago/Turabian StyleLee, Young-Hak, Soichiro Yamakawa, Tetsuo Tobita, Hyuk-Kee Hong, Hyo-Sung Song, Jae-Jung Kim, and Dal-Won Lee. 2023. "Centrifugal Model Study of Seepage and Seismic Behavior in a Homogeneous Reservoir Dam with Parapet" Applied Sciences 13, no. 10: 6347. https://doi.org/10.3390/app13106347
APA StyleLee, Y. -H., Yamakawa, S., Tobita, T., Hong, H. -K., Song, H. -S., Kim, J. -J., & Lee, D. -W. (2023). Centrifugal Model Study of Seepage and Seismic Behavior in a Homogeneous Reservoir Dam with Parapet. Applied Sciences, 13(10), 6347. https://doi.org/10.3390/app13106347