Structural Health Monitoring and Management of Cultural Heritage Structures: A State-of-the-Art Review
Abstract
:1. Introduction
2. Conventional SHM Techniques
2.1. Static Monitoring Systems
2.2. Dynamic Monitoring Systems
3. Innovative SHM Techniques
3.1. Smart Sensing Technologies
3.1.1. Fibre Optic Sensors
Interferometric Sensors
Fibre Bragg Gratings Sensors
Distributed Sensors
Integration of FOS in Textile-Based Composites
3.1.2. Piezoelectric Sensors
3.1.3. Self-Sensing Materials
3.2. Image and Computer-Vision Based Approach
3.2.1. Photogrammetry
3.2.2. Laser Scanning
3.2.3. Infrared Thermography
4. Data Management
4.1. General Aspects
4.2. IoT-SHM Systems
4.3. Data Analysis Algorithms for Modern SHM Architecture
4.4. Building Information Modelling in Heritage Structures
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Heritage Building | Monitoring Initiated | Monitoring | No. of Instruments | Strengthening | Description | ||
---|---|---|---|---|---|---|---|
Static | Dynamic | ||||||
Churches | |||||||
Santa Maria del Fiore Dome [27] | 1955 | x | Opera del Duomo: 22 ISMES: 150 | Statistical analysis of data collected over 60 years. | |||
Mexico City Cathedral [34,210] | 1994 | x | x | 38 (s) 10 (d) | x | Monitoring the response during and after interventions to reduce differential settlements and monitoring the seismic response. | |
Saint Torcato Church [23,51] | [51] | 1998 (s) 2009 (d) | x | x | ~26 (s) 2 (d) | Monitoring results before strengthening to control any progress of damage caused by soil settlement. | |
[23] | 2009 (s) 2014 (d) | x | x | 9 (s) 1 (d) | x | Static/dynamic monitoring to control damage evolution, to appraise the effectiveness of consolidation, and to analyse the environmental variability. | |
Basilica of Santa Maria degli Angeli in Assisi [35] | 2001 | x | x | 9 (s) 2 (d) | Preliminary analysis of static monitoring results during rehabilitation work, as well as dynamic characterization. | ||
Cathedral of Modena [56] | 2003 | x | 22 | Identification of reference quantities from the SHM data to detect anomalies from the usual structural behaviour. | |||
Basilica of Vicoforte [29,47,76,77] | 2004(s) 2015(d) | x | x | 133 (s) 12 (d) | x | Results from extensive monitoring and strengthening interventions of the world’s largest masonry oval dome. | |
Monastery of the Jerónimos Church [33] | 2005 | x | x | 11 (s) 2 (d) | Use of static/dynamic SHM results combined with FEM analysis for a complete evaluation of the monument preservation state. | ||
Anime Sante Church [36,211] | 2009 | x | x | 8 (s) 28 (d) | Comparison and correlation of static and dynamic monitoring results; control of the effect of temporary safety measures and temperature on the structural response. | ||
Santa Maria di Collemaggio [38,183] | [183] | 2013(s) 2011(d) | x | x | 11 (s) 16 (d) | x (provisional reinforcements) | Design, positioning, management, and long-term performance of a wireless sensor network. |
[38] 2018 | x | x | 9 (s) 78 (d) 5 (e) | x | Results of 2-year static/dynamic monitoring and correlation with temperature fluctuations. | ||
Church of the Major Seminary of Comillas [55] | 2012 | x | 67 | x | Integrated SHM system consisting of various type of sensors to monitor before, during, and after the intervention process. | ||
Church of the Sant Cugat Monastery [28] | 2017 | x | 16 (s) 6 (e) | Analysis of the static SHM results with the aim of understanding | |||
Cathedral of Milan [37] | 2018 | x | x | 27 (s) 36 (d) 28 (e) | SHM for assisting condition-based structural maintenance of the historic church. | ||
Palaces | |||||||
Ducale Palace in Venice [42] | 2009 | x | x | 12 (s) 3 (d) | Integrated monitoring activities to assess the preservation state of the external façade. | ||
Diocletian’s Palace in Split [212] | 2013 | x | 17 (s) 1 (e) | Long-term SHM of displacement, strain, and temperature to check anomalies. | |||
Consoli Palace of Gubbio [43] | 2017 | x | x | 10 (s) 12 (d) | Comparison between the outputs of a conventional LVDT system and an innovative remote sensing technique using radar interferometry analysis. | ||
Towers | |||||||
Portogruaro Civic Tower [50] | 2003 | x | 1 (s) 4 (e) | Investigation of the tower’s inclination trend through the joint use of monitoring and historical documentation. | |||
San Vittore Bell-tower [213,214] | 2008 (s) 2009 (d) | x | x | 15 (s) 3 (d) 8 (e) | Investigation of the long-term structural behaviour through first a static and then a dynamic monitoring. | ||
Garisenda and Asinelli Towers in Bologna [39] | 2011 (s) 2012 (d) | x | x | Garisenda: 25 (s) 4 (d) Asinelli: 33 (s) 4 (d) | x | Analysis of SHM data to distinguish between evolutionary trends and daily/seasonal fluctuations using the well-known FFT algorithm. | |
Gabbia Tower in Mantova [215] | 2012 | x | 3 (d) 1 (e) | Installation of a continuous dynamic monitoring and analysis to distinguish between damage and environmental effects on the frequencies. | |||
San Pietro Bell-tower in Perugia [69] | 2014 | x | 3 (d) 10 (e) | x | Investigation of the correlation between environmental parameters and natural frequencies and the identification of an optimal location and number of sensors. | ||
Belltower in Monza [40,41] | 2014 (s) 2015 (d) | x | x | 10 (s) 4 (d) 5 (e) | SHM installed to assess the condition after the detection of a weak structural arrangement. | ||
San Frediano Belltower in Lucca [32] | 2015 | x | 4 (d) | Assessment of the dependence of the tower’s frequencies on the ambient temperature variations through long-term vibration monitoring. | |||
Sciri Tower in Perugia [64] | 2017 | x | 3 (d) 2 (e) | Long-term vibration monitoring to assess the evolution of the modal parameters and the calibration of the linear FE model. | |||
Belltower of Palermo Cathedral [216] | - | x | 20 (d) | Identification of the main modal parameters using data collected by accelerometers and seismometers and calibration of a FE model. | |||
Other structures | |||||||
Roman Arena of Verona [44] | 2011 | x | x | 20 (s) 18 (d) 4 (e) | Analysis of the first 1.5 years of data provided by both static (displacements) and dynamic (fundamental modal parameters) monitoring. | ||
Main Spire of Milan Cathedral [217] | 2012 | x | x | 7 (s) 6 (d) 1 (e) | x | Monitoring carried out during the 4 years of restoration work to assess the structural integrity during the activities. | |
Colosseum in Rome [74] | 2014 | x | 4 (d) | Analysis of data collected during 2 years of monitoring using a wireless accelerometer network to assess the response induced by traffic (road and subway). |
Characteristics | 3D Laser Scanning | Photogrammetry |
---|---|---|
Accuracy | Millimetre | Centimetre |
Resolution | Millions of points | Hundreds of points |
Data volume | Dense point cloud | Image resolution |
Scale | Present | Absent |
Texture | Absent/Low resolution | Included |
Edges | Quite problematic | Excellent |
3D data generation | Automatic capture | Post-processing |
3D modelling | Automatic meshing and shape extraction | Manual modelling |
Commercial software | Yes | Yes |
Equipment cost | High | Low |
Data collection | Day and night | Daytime only |
Required skill | Medium-high | Low |
Comparison | ||
Pros |
|
|
Cons |
|
|
References
- European Commission EU Buildings Database. Available online: https://ec.europa.eu/energy/eu-buildings-database_en (accessed on 16 March 2023).
- Clemente, P. Extending the Life-Span of Cultural Heritage Structures. J. Civ. Struct. Health Monit. 2018, 8, 171–179. [Google Scholar] [CrossRef]
- Croce, P.; Formichi, P.; Landi, F.; Mercogliano, P.; Bucchignani, E.; Dosio, A.; Dimova, S. The Snow Load in Europe and the Climate Change. Clim. Risk Manag. 2018, 20, 138–154. [Google Scholar] [CrossRef]
- Sesana, E.; Gagnon, A.S.; Ciantelli, C.; Cassar, J.A.; Hughes, J.J. Climate Change Impacts on Cultural Heritage: A Literature Review. WIREs Clim. Chang. 2021, 12, e710. [Google Scholar] [CrossRef]
- Limongelli, M.P.; Turksezer, Z.I.; Giordano, P.F. Structural Health Monitoring for Cultural Heritage Constructions: A Resilience Perspective. In Proceedings of the IABSE Symposium, Guimaraes 2019: Towards a Resilient Built Environment Risk and Asset Management-Report, Guimarães, Portugal, 27–29 March 2019; IABSE: Zurich, Switzerland, 2019; pp. 1552–1559. [Google Scholar]
- European Commission. A Renovation Wave for Europe—Greening Our Buildings, Creating Jobs, Improving Lives; COM/2020/662 Final; European Commission: Brussels, Belgium, 2020; pp. 1–26. [Google Scholar]
- European Commission. The European Green Deal. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions; COM/2019/640 Final; European Commission: Brussels, Belgium, 2019; pp. 1–24. [Google Scholar]
- New European Bauhaus: Beautiful, Sustainable, Together. Available online: https://new-european-bauhaus.europa.eu/index_en (accessed on 14 March 2023).
- Bournas, D.A. Concurrent Seismic and Energy Retrofitting of RC and Masonry Building Envelopes Using Inorganic Textile-Based Composites Combined with Insulation Materials: A New Concept. Compos. Part B Eng. 2018, 148, 166–179. [Google Scholar] [CrossRef]
- Longo, F.; Cascardi, A.; Lassandro, P.; Aiello, M.A. Thermal and Seismic Capacity Improvements for Masonry Building Heritage: A Unified Retrofitting System. Sustain. Switz. 2021, 13, 1111. [Google Scholar] [CrossRef]
- Pohoryles, D.A.; Maduta, C.; Bournas, D.A.; Kouris, L.A. Energy Performance of Existing Residential Buildings in Europe: A Novel Approach Combining Energy with Seismic Retrofitting. Energy Build. 2020, 223, 110024. [Google Scholar] [CrossRef]
- Negro, E.; D’Amato, M.; Cardinale, N. Non-Invasive Methods for Energy and Seismic Retrofit in Historical Building in Italy. Front. Built Environ. 2019, 5, 125. [Google Scholar] [CrossRef]
- Rossi, M.; Bournas, D. Technical Article—Smart Textiles for the Retrofitting and Monitoring of Cultural Heritage Buildings|Build Up. Available online: https://www.buildup.eu/en/news/technical-article-smart-textiles-retrofitting-and-monitoring-cultural-heritage-buildings (accessed on 17 March 2023).
- Del Grosso, A.E. Structural Health Monitoring: Research and Applications. In Proceedings of the 2nd Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures (SMAR 2013), Instanbul, Turkey, 11–13 September 2013; Instanbul Technical University: Instanbul, Turkey, 2013; pp. 1–8. [Google Scholar]
- Boller, C. Encyclopedia of Structural Health Monitoring; Boller, C., Change, F.-K., Fujino, Y., Eds.; Wiley Blackwell: Hoboken, NJ, USA, 2009; ISBN 9780470058220. [Google Scholar]
- Crane, R.L. Introduction to Structural Health Monitoring. In Comprehensive Composite Materials II; Beaumont, P.W.R., Zweber, C.H., Eds.; Elsevier: Oxford, UK, 2018; Volume 6, pp. 355–357. ISBN 9780081005330. [Google Scholar]
- Farrar, C.R.; Lieven, N.A.J. Damage Prognosis: The Future of Structural Health Monitoring. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2007, 365, 623–632. [Google Scholar] [CrossRef]
- Balageas, D.; Fritzen, C.-P.; Güemes, A. Structural Health Monitoring; Balageas, D., Fritzen, C.P., Guemes, A., Eds.; ISTE Ltd.: London, UK, 2006; ISBN 9781905209019. [Google Scholar]
- ISCARSAH. Recommendations for the Analysis, Conservation and Structural Restoration of Architectural Heritage—Guidelines. Int. Counc. Monum. Sites 2003. Available online: https://iscarsah.files.wordpress.com/2023/01/part-ii-e28093-guidelines.pdf (accessed on 16 May 2023).
- Italian Building Code. Guidelines: Assessment and Mitigation of Seismic Risk of Cultural Heritage with Reference to the 2008 Italian Building Code (Linee Guida per La Valutazione Del Rischio Sismico Del Patrimonio Culturale Allineate Alle Nuove Norme Tecniche per le Costruzioni). 2011. (In Italian). Available online: https://www.soprintendenzapdve.beniculturali.it/la-soprintendenza-informa/atti-di-indirizzo/linee-guida-per-la-valutazione-e-riduzione-del-rischio-sismico-del-patrimonio-culturale/ (accessed on 16 May 2023).
- ICOMOS. Principle for the Analysis, Conservation and Structural Restoration of Architectural Heritage. In Proceedings of the ICOMOS 14th General Assembly and Scientific Symposium, Victoria Falls, Zimbabwe, 27–31 October 2003; Available online: https://www.icomos.org/en/about-the-centre/179-articles-en-francais/ressources/charters-and-standards/165-icomos-charter-principles-for-the-analysis-conservation-and-structural-restoration-of-architectural-heritage) (accessed on 16 May 2023).
- Ramos, L.F.; Marques, L.; Lourenço, P.B.; De Roeck, G.; Campos-Costa, A.; Roque, J. Monitoring Historical Masonry Structures with Operational Modal Analysis: Two Case Studies. Mech. Syst. Signal Process. 2010, 24, 1291–1305. [Google Scholar] [CrossRef]
- Masciotta, M.G.; Ramos, L.F.; Lourenço, P.B. The Importance of Structural Monitoring as a Diagnosis and Control Tool in the Restoration Process of Heritage Structures: A Case Study in Portugal. J. Cult. Herit. 2017, 27, 36–47. [Google Scholar] [CrossRef]
- Ceravolo, R.; de Lucia, G.; Lenticchia, E.; Miraglia, G. Seismic Structural Health Monitoring of Cultural Heritage Structures. In Seismic Structural Health Monitoring: From Theory to Successful Applications; Limongelli, M.P., Çelebi, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 51–85. ISBN 978-3-030-13976-6. [Google Scholar]
- Basto, C.; Pelà, L.; Chacón, R. Open-Source Digital Technologies for Low-Cost Monitoring of Historical Constructions. J. Cult. Herit. 2017, 25, 31–40. [Google Scholar] [CrossRef]
- Ceravolo, R.; Pistone, G.; Fragonara, L.Z.; Massetto, S.; Abbiati, G. Vibration-Based Monitoring and Diagnosis of Cultural Heritage: A Methodological Discussion in Three Examples. Int. J. Archit. Herit. 2016, 10, 375–395. [Google Scholar] [CrossRef]
- Ottoni, F.; Blasi, C. Results of a 60-Year Monitoring System for Santa Maria Del Fiore Dome in Florence. Int. J. Archit. Herit. 2015, 9, 7–24. [Google Scholar] [CrossRef]
- Makoond, N.; Pelà, L.; Molins, C.; Roca, P.; Alarcón, D. Automated Data Analysis for Static Structural Health Monitoring of Masonry Heritage Structures. Struct. Control Health Monit. 2020, 27, e2581. [Google Scholar] [CrossRef]
- Ceravolo, R.; Coletta, G.; Miraglia, G.; Palma, F. Statistical Correlation between Environmental Time Series and Data from Long-Term Monitoring of Buildings. Mech. Syst. Signal Process. 2021, 152, 107460. [Google Scholar] [CrossRef]
- Yan, A.M.; Kerschen, G.; De Boe, P.; Golinval, J.C. Structural Damage Diagnosis under Varying Environmental Conditions—Part II: Local PCA for Non-Linear Cases. Mech. Syst. Signal Process. 2005, 19, 865–880. [Google Scholar] [CrossRef]
- Bellino, A.; Fasana, A.; Garibaldi, L.; Marchesiello, S. PCA-Based Detection of Damage in Time-Varying Systems. Mech. Syst. Signal Process. 2010, 24, 2250–2260. [Google Scholar] [CrossRef]
- Azzara, R.M.; De Roeck, G.; Girardi, M.; Padovani, C.; Pellegrini, D.; Reynders, E. The Influence of Environmental Parameters on the Dynamic Behaviour of the San Frediano Bell Tower in Lucca. Eng. Struct. 2018, 156, 175–187. [Google Scholar] [CrossRef]
- Masciotta, M.G.; Roque, J.C.A.; Ramos, L.F.; Lourenço, P.B. A Multidisciplinary Approach to Assess the Health State of Heritage Structures: The Case Study of the Church of Monastery of Jerónimos in Lisbon. Constr. Build. Mater. 2016, 116, 169–187. [Google Scholar] [CrossRef]
- Sánchez, A.R.; Meli, R.; Chávez, M.M. Structural Monitoring of the Mexico City Cathedral (1990–2014). Int. J. Archit. Herit. 2016, 10, 254–268. [Google Scholar] [CrossRef]
- Cavalagli, N.; Gioffrè, M.; Gusella, V. Structural monitoring of monumental buildings: The Basilica of Santa Maria degli Angeli in Assisi (Italy). In Proceedings of the 5th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (COMPDYN 2015), Crete Island, Greece, 25–27 May 2015; Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA): Athens, Greece, 2015; pp. 2410–2422. [Google Scholar]
- Russo, S. On the Monitoring of Historic Anime Sante Church Damaged by Earthquake in L’Aquila. Struct. Control Health Monit. 2013, 20, 1226–1239. [Google Scholar] [CrossRef]
- Gentile, C.; Ruccolo, A.; Canali, F. Continuous Monitoring of the Milan Cathedral: Dynamic Characteristics and Vibration-Based SHM. J. Civ. Struct. Health Monit. 2019, 9, 671–688. [Google Scholar] [CrossRef]
- Alaggio, R.; Aloisio, A.; Antonacci, E.; Cirella, R. Two-Years Static and Dynamic Monitoring of the Santa Maria Di Collemaggio Basilica. Constr. Build. Mater. 2021, 268, 121069. [Google Scholar] [CrossRef]
- Baraccani, S.; Palermo, M.; Azzara, R.M.; Gasparini, G.; Silvestri, S.; Trombetti, T. Structural Interpretation of Data from Static and Dynamic Structural Health Monitoring of Monumental Buildings. Key Eng. Mater. 2017, 747, 431–439. [Google Scholar] [CrossRef]
- Saisi, A.; Gentile, C.; Ruccolo, A. Continuous Monitoring of a Challenging Heritage Tower in Monza, Italy. J. Civ. Struct. Health Monit. 2018, 8, 77–90. [Google Scholar] [CrossRef]
- Saisi, A.; Gentile, C.; Ruccolo, A. Dynamic Monitoring of Ancient Masonry Towers: Environmental Effects on Natural Frequencies. In Proceedings of the 10th International Masonry Conference, Milan, Italy, 9–11 July 2018; pp. 2328–2343. [Google Scholar]
- Sciarretta, F.; Antonelli, F.; Peron, F.; Caniglia, S. Final Outcomes on the Multi-Disciplinary Long-Term Monitoring and Preservation State Investigation on the Medieval External Façades of Palazzo Ducale in Venice, Italy. J. Civ. Struct. Health Monit. 2018, 8, 111–133. [Google Scholar] [CrossRef]
- Cavalagli, N.; Kita, A.; Farneti, E.; Falco, S.; Trillo, F.; Costantini, M.; Fornaro, G.; Reale, D.; Verde, S.; Ubertini, F. Remote Sensing and In-Situ Measurements for the Structural Monitoring of Historical Monuments: The Consoli Palace of Gubbio, Italy. In Proceedings of the European Workshop on Structural Health Monitoring; Rizzo, P., Milazzo, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 119–128. [Google Scholar]
- Lorenzoni, F.; Casarin, F.; Modena, C.; Caldon, M.; Islami, K.; da Porto, F. Structural Health Monitoring of the Roman Arena of Verona, Italy. J. Civ. Struct. Health Monit. 2013, 3, 227–246. [Google Scholar] [CrossRef]
- Kita, A.; Cavalagli, N.; Ubertini, F. Temperature Effects on Static and Dynamic Behavior of Consoli Palace in Gubbio, Italy. Mech. Syst. Signal Process. 2019, 120, 180–202. [Google Scholar] [CrossRef]
- Cardani, G.; Angjeliu, G. Integrated Use of Measurements for the Structural Diagnosis in Historical Vaulted Buildings. Sens. Switz. 2020, 20, 4290. [Google Scholar] [CrossRef]
- Ceravolo, R.; De Marinis, A.; Pecorelli, M.L.; Zanotti Fragonara, L. Monitoring of Masonry Historical Constructions: 10 Years of Static Monitoring of the World’s Largest Oval Dome. Struct. Control Health Monit. 2017, 24, e1988. [Google Scholar] [CrossRef]
- Lorenzoni, F.; Casarin, F.; Caldon, M.; Islami, K.; Modena, C. Uncertainty Quantification in Structural Health Monitoring: Applications on Cultural Heritage Buildings. Mech. Syst. Signal Process. 2016, 66–67, 268–281. [Google Scholar] [CrossRef]
- Marchi, M.; Butterfield, R.; Gottardi, G.; Lancellotta, R. Stability and Strength Analysis of Leaning Towers. Géotechnique 2011, 61, 1069–1079. [Google Scholar] [CrossRef]
- Zonta, D.; Pozzi, M.; Zanon, P.; Anese, G.A.; Busetto, A. Real-Time Probabilistic Health Monitoring of the Portogruaro Civic Tower. In Proceedings of the 6th International Conference on Structural Analysis of Historic Construction: Preserving Safety and Significance (SAHC08), Bath, UK, 2–4 July 2008; CRC Press: London, UK, 2008; pp. 723–731. [Google Scholar]
- Ramos, L.F.; Aguilar, R.; Lourenço, P.B.; Moreira, S. Dynamic Structural Health Monitoring of Saint Torcato Church. Mech. Syst. Signal Process. 2013, 35, 1–15. [Google Scholar] [CrossRef]
- Binda, L. Learning from Failure Long-Term Behaviour of Heavy Masonry Structures; WIT Press: Southampton, UK; Boston, MA, USA, 2008; ISBN 9781845640576. [Google Scholar]
- Chiorino, M.A.; Roccati, R.; Addato, C.D.; Spadafora, A. Monitoring and Modelling Strategies for the World’s Largest Elliptical Dome at Vicoforte. In Proceedings of the 5th Int. Conf. on Structural Analysis of Historical Constructions (SAHC06), New Delhi, India, 6–8 November 2006; MacMillan: New York, NY, USA, 2007; pp. 1167–1176. [Google Scholar]
- Blanco, H.; Boffill, Y.; Lombillo, I.; Villegas, L. A New Device for Stress Monitoring of Ancient Masonry Buildings: Pilot Study and Results. Struct. Control Health Monit. 2018, 25, e2197. [Google Scholar] [CrossRef]
- Blanco, H.; Boffill, Y.; Lombillo, I.; Villegas, L. An Integrated Structural Health Monitoring System for Determining Local/Global Responses of Historic Masonry Buildings. Struct. Control Health Monit. 2018, 25, e2196. [Google Scholar] [CrossRef]
- Baraccani, S.; Silvestri, S.; Gasparini, G.; Palermo, M.; Trombetti, T.; Silvestri, E.; Lancellotta, R.; Capra, A. A Structural Analysis of the Modena Cathedral. Int. J. Archit. Herit. 2016, 10, 235–253. [Google Scholar] [CrossRef]
- Lancellotta, R. The Ghirlandina Tower in Modena, Italy: A History of Soil Structure Interaction [La Torre Ghirlandina: Una Storia Di Interazione Struttura-Terreno]. Riv. Ital. Geotec. 2013, 47, 7–37. [Google Scholar]
- Masciotta, M.G.; Ramos, L.F. Dynamic Identification of Historic Masonry Structures. In Long-Term Performance and Durability of Masonry Structures; Ghiassi, B., Lourenço, P.B., Eds.; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Sawston, UK, 2019; pp. 241–264. ISBN 9780081021101. [Google Scholar]
- Pau, A.; Vestroni, F. Vibration Analysis and Dynamic Characterization of the Colosseum. Struct. Control Health Monit. 2008, 15, 1105–1121. [Google Scholar] [CrossRef]
- Aras, F.; Krstevska, L.; Altay, G.; Tashkov, L. Experimental and Numerical Modal Analyses of a Historical Masonry Palace. Constr. Build. Mater. 2011, 25, 81–91. [Google Scholar] [CrossRef]
- Pierdicca, A.; Clementi, F.; Isidori, D.; Concettoni, E.; Cristalli, C.; Lenci, S. Numerical Model Upgrading of a Historical Masonry Palace Monitored with a Wireless Sensor Network. Int. J. Mason. Res. Innov. 2016, 1, 74–98. [Google Scholar] [CrossRef]
- Standoli, G.; Giordano, E.; Milani, G.; Clementi, F. Model Updating of Historical Belfries Based on Oma Identification Techniques. Int. J. Archit. Herit. 2021, 15, 132–156. [Google Scholar] [CrossRef]
- Lacanna, G.; Betti, M.; Ripepe, M.; Bartoli, G. Dynamic Identification as a Tool to Constrain Numerical Models for Structural Analysis of Historical Buildings. Front. Built Environ. 2020, 6, 40. [Google Scholar] [CrossRef]
- Venanzi, I.; Kita, A.; Cavalagli, N.; Ierimonti, L.; Ubertini, F. Earthquake-Induced Damage Localization in an Historic Masonry Tower through Long-Term Dynamic Monitoring and FE Model Calibration. Bull. Earthq. Eng. 2020, 18, 2247–2274. [Google Scholar] [CrossRef]
- Di Lorenzo, G.; Formisano, A.; Krstevska, L.; Landolfo, R. Ambient Vibration Test and Numerical Investigation on the St. Giuliano Church in Poggio Picenze (L’aquila, Italy). J. Civ. Struct. Health Monit. 2019, 9, 477–490. [Google Scholar] [CrossRef]
- Bianconi, F.; Salachoris, G.P.; Clementi, F.; Lenci, S. A Genetic Algorithm Procedure for the Automatic Updating of Fem Based on Ambient Vibration Tests. Sens. Switz. 2020, 20, 3315. [Google Scholar] [CrossRef] [PubMed]
- De Stefano, A.; Matta, E.; Clemente, P. Structural Health Monitoring of Historical Heritage in Italy: Some Relevant Experiences. J. Civ. Struct. Health Monit. 2016, 6, 83–106. [Google Scholar] [CrossRef]
- Kita, A.; Venanzi, I.; Cavalagli, N.; Macías, E.G.; Ubertini, F. Enhanced Continuous Dynamic Monitoring of a Complex Monumental Palace through a Larger Sensor Network. Proc. Int. Conf. Struct. Dyn. EURODYN 2020, 1, 2275–2284. [Google Scholar] [CrossRef]
- Ubertini, F.; Comanducci, G.; Cavalagli, N.; Laura Pisello, A.; Luigi Materazzi, A.; Cotana, F. Environmental Effects on Natural Frequencies of the San Pietro Bell Tower in Perugia, Italy, and Their Removal for Structural Performance Assessment. Mech. Syst. Signal Process. 2017, 82, 307–322. [Google Scholar] [CrossRef]
- Elyamani, A.; Caselles, O.; Roca, P.; Clapes, J. Dynamic Investigation of a Large Historical Cathedral. Struct. Control Health Monit. 2017, 24, e1885. [Google Scholar] [CrossRef]
- Roselli, I.; Malena, M.; Mongelli, M.; Cavalagli, N.; Gioffrè, M.; De Canio, G.; de Felice, G. Health Assessment and Ambient Vibration Testing of the “Ponte Delle Torri” of Spoleto during the 2016–2017 Central Italy Seismic Sequence. J. Civ. Struct. Health Monit. 2018, 8, 199–216. [Google Scholar] [CrossRef]
- Lynch, J.P. A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring. Shock Vib. Dig. 2006, 38, 91–128. [Google Scholar] [CrossRef]
- Erdik, M.; Durukal, E.; Yuzugullu, B.; Beyen, K.; Kadakal, U. Strong-Motion Instrumentation of Aya Sofya and the Analysis of Response to an Earthquake of 4.8 Magnitude. In Structural Repair and Maintenance of Historical Buildings III, Volume 4; Brebbia, C.A., Frewer, R.J.B., Eds.; WIT Transactions on The Built Environment, WIT Press: Southampton, UK, 1993; Available online: https://www.witpress.com/elibrary/wit-transactions-on-the-built-environment/4/13548 (accessed on 16 May 2023).
- Monti, G.; Fumagalli, F.; Quaranta, G.; Sgroi, M.; Tommasi, M. A Permanent Wireless Dynamic Monitoring System for the Colosseum in Rome. J. Struct. Integr. Maint. 2018, 3, 75–85. [Google Scholar] [CrossRef]
- Azzara, R.M.; Girardi, M.; Occhipinti, M.; Padovani, C.; Pellegrini, D.; Tanganelli, M. Structural Health Monitoring for Architectural Heritage: Case Studies in Central Italy. In European Workshop on Structural Health Monitoring; Lecture Notes in Civil Engineering; Rizzo, P., Milazzo, A., Eds.; Springer International Publishing: Cham, Switzerland, 2023; Volume 253, pp. 3–12. ISBN 978-3-031-07253-6. [Google Scholar]
- Chiorino, M.A.; Ceravolo, R.; Spadafor, A.; Zanotti Fragonara, L.; Abbiati, G. Dynamic Characterization of Complex Masonry Structures: The Sanctuary of Vicoforte. Int. J. Archit. Herit. 2011, 5, 296–314. [Google Scholar] [CrossRef]
- Ceravolo, R.; De Lucia, G.; Pecorelli, M.; Zanotti Fragonara, L. Monitoring of Historical Buildings: Project of a Dynamic Monitoring System for the World’s Largest Elliptical Dome. In Proceedings of the 2015 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS) Proceedings, Trento, Italy, 9–10 July 2015; pp. 113–118. [Google Scholar]
- Boscato, G.; Dal Cin, A. Experimental and Numerical Evaluation of Structural Dynamic Behavior of Rialto Bridge in Venice. J. Civ. Struct. Health Monit. 2017, 7, 557–572. [Google Scholar] [CrossRef]
- Zini, G.; Betti, M.; Bartoli, G. Dynamic Identification of the Sant’Andrea Pulpit in Pistoia (Italy): Some Preliminary Notes. In European Workshop on Structural Health Monitoring; Lecture Notes in Civil Engineering; Rizzo, P., Milazzo, A., Eds.; Springer International Publishing: Cham, Switzerland, 2023; Volume 253, pp. 34–41. ISBN 978-3-031-07253-6. [Google Scholar]
- Sun, M.; Staszewski, W.J.; Swamy, R.N. Smart Sensing Technologies for Structural Health Monitoring of Civil Engineering Structures. Adv. Civ. Eng. 2010, 2010, 724962. [Google Scholar] [CrossRef]
- Rana, S.; Subramani, P.; Fangueiro, R.; Correia, A.G. A Review on Smart Self-Sensing Composite Materials for Civil Engineering Applications. AIMS Mater. Sci. 2016, 3, 357–379. [Google Scholar] [CrossRef]
- Mukherjee, A.; Srivastava, P.; Sandhu, J.K. Application of Smart Materials in Civil Engineering: A Review. Mater. Today Proc. 2021, 81, 350–359. [Google Scholar] [CrossRef]
- Lopez-Higuera, J.M.; Cobo, L.R.; Incera, A.Q.; Cobo, A. Fiber Optic Sensors in Structural Health Monitoring. J. Light. Technol. 2011, 29, 587–608. [Google Scholar] [CrossRef]
- Chen, H.-P.; Ni, Y.-Q. Structural Health Monitoring of Large Civil Engineering Structures; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; ISBN 9781119166436. [Google Scholar]
- Leung, C.K.Y.; Wan, K.T.; Inaudi, D.; Bao, X.; Habel, W.; Zhou, Z.; Ou, J.; Ghandehari, M.; Wu, H.C.; Imai, M. Review: Optical Fiber Sensors for Civil Engineering Applications. Mater. Struct. Constr. 2015, 48, 871–906. [Google Scholar] [CrossRef]
- Connolly, C. Fibre-Optic-Based Sensors Bring New Capabilities to Structural Monitoring. Sens. Rev. 2006, 26, 236–243. [Google Scholar] [CrossRef]
- Ye, X.W.; Su, Y.H.; Han, J.P. Structural Health Monitoring of Civil Infrastructure Using Optical Fiber Sensing Technology: A Comprehensive Review. Sci. World J. 2014, 2014, 652329. [Google Scholar] [CrossRef]
- Ferdinand, P. The Evolution of Optical Fiber Sensors Technologies during the 35 Last Years and Their Applications in Structural Health Monitoring. In Proceedings of the 7th European Workshop on Structural Health Monitoring, Nantes, France, 8–11 July 2014; pp. 914–929. [Google Scholar]
- Costa, B.J.A.; Figueiras, J.A. Fiber Optic Based Monitoring System Applied to a Centenary Metallic Arch Bridge: Design and Installation. Eng. Struct. 2012, 44, 271–280. [Google Scholar] [CrossRef]
- Ye, C.; Butler, L.J.; Elshafie, M.Z.E.B.; Middleton, C.R. Evaluating Prestress Losses in a Prestressed Concrete Girder Railway Bridge Using Distributed and Discrete Fibre Optic Sensors. Constr. Build. Mater. 2020, 247, 118518. [Google Scholar] [CrossRef]
- Webb, G.T.; Vardanega, P.J.; Hoult, N.A.; Fidler, P.R.A.; Bennett, P.J.; Middleton, C.R. Analysis of Fiber-Optic Strain-Monitoring Data from a Prestressed Concrete Bridge. J. Bridge Eng. 2017, 22, 05017002. [Google Scholar] [CrossRef]
- Glisic, B.; Inaudi, D. Development of Method for In-Service Crack Detection Based on Distributed Fiber Optic Sensors. Struct. Health Monit. 2012, 11, 161–171. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhu, Z.W.; Xiao, W.; Deng, Q.X. Review of Fiber Optic Sensors in Geotechnical Health Monitoring. Opt. Fiber Technol. 2020, 54, 102127. [Google Scholar] [CrossRef]
- George, S.; Sundaram, B.A.; Paul, M.M. Experimental Investigations on Using Distributed Fiber Sensing for Monitoring Pipelines. In SECON 2020; Dasgupta, K., Sudheesh, T.K., Praseeda, K.I., Unni Kartha, G., Kavitha, P.E., Jawahar Saud, S., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 865–873. [Google Scholar]
- Inaudi, D.; Walder, R.; Bulatao, R. Fabry-Perot Fiber Optic Sensors for Civil and Geotechnical Monitoring of Large Structures. In Proceedings of the Structural Health Monitoring 2019: Enabling Intelligent Life-Cycle Health Management for Industry Internet of Things (IIOT)—Proceedings of the 12th International Workshop on Structural Health Monitoring, Stanford, CA, USA, 10–12 September 2019; Chang, F.-K., Guemes, A., Kopsaftopoulos, F., Eds.; DEStech Publications, Inc.: Lancaster, PA, USA, 2019; Volume 1, pp. 279–286. [Google Scholar]
- Rajibul Islam, M.; Mahmood Ali, M.; Lai, M.H.; Lim, K.S.; Ahmad, H. Chronology of Fabry-Perot Interferometer Fiber-Optic Sensors and Their Applications: A Review. Sens. Switz. 2014, 14, 7451–7488. [Google Scholar] [CrossRef]
- Kister, G.; Winter, D.; Tetlow, J.; Barnes, R.; Mays, G.; Fernando, G.F. Structural Integrity Monitoring of Reinforced Concrete Structures. Part 1: Evaluation of Protection Systems for Extrinsic Fibre Fabry-Perot Sensors. Eng. Struct. 2005, 27, 411–419. [Google Scholar] [CrossRef]
- Inaudi, D. SOFO Sensor for Static and Dynamic Measurement. In Proceedings of the 1st FIG International Symposium on Engineering Surveys for Construction Works and Structural Engineering, Nottingham, UK, 28 June–1 July 2004; pp. 1–10. [Google Scholar]
- Porco, F.; Fiore, A.; Porco, G.; Uva, G. Monitoring and Safety for Prestressed Bridge Girders by SOFO Sensors. J. Civ. Struct. Health Monit. 2013, 3, 3–18. [Google Scholar] [CrossRef]
- Inaudi, D.; Favez, P. Long-Gauge Dynamic Strain Monitoring Systems for Bridges. In Proceedings of the 8th International Conference on Structural Dynamics, EURODYN 2011, Leuven, Belgium, 4–6 July 2011; De Roeck, G., Degrande, G., Lombaert, G., Muller, G., Eds.; Katholike Universiteit Leuven: Leuven, Belgium, 2011; pp. 1533–1538. [Google Scholar]
- Del Grosso, A.; Lanata, F. A Long-Term Static Monitoring Experiment on R.C. Beams: Damage Identification under Environmental Effect. Struct. Infrastruct. Eng. 2014, 10, 911–920. [Google Scholar] [CrossRef]
- Jawano, Y.; Mikami, T. Static and Dynamic Health Monitoring of a High-Rise Building with Optical Fiber Sensor (SOFO). In Proceedings of the Structural Health Monitoring 2009: From System Integration to Autonomous Systems—Proceedings of the 7th International Workshop on Structural Health Monitoring, IWSHM 2009, Santa Clara, CA, USA, 9–11 September 2009; Volume 2, pp. 1723–1730. [Google Scholar]
- Lienhart, W. Case Studies of High-Sensitivity Monitoring of Natural and Engineered Slopes. J. Rock Mech. Geotech. Eng. 2015, 7, 379–384. [Google Scholar] [CrossRef]
- Glisic, B.; Inaudi, D.; Vurpillot, S.; Bu, E.; Chen, C.J. Piles Monitoring Using Topologies of Long-Gage Fiber Optic Sensors. In Proceedings of the First International Conference on Structural Health Monitoring and Intelligent Infrastructure, Tokyo, Japan, 13–15 November 2003; Volume 1, pp. 291–298. [Google Scholar]
- Glisic, B.; Inaudi, D.; Posenato, D.; Figini, A.; Casanova, N. Monitoring of Heritage Structures and Historical Monuments Using Long-Gage Fiber Optic Interferometric Sensors—An Overview. In Proceedings of the 3rd International Conference on Structural Health Monitoring of Intelligent Infrastructure, Vancouver, BC, Canada, 13–16 November 2007; pp. U927–U933. [Google Scholar]
- Uglešić, D.; Bohinc, U. Monitoring of Cracks on the Bell Tower of St. Anastasia Cathedral in Zadar Croatia. In Proceedings of the 7th European Workshop on Structural Health Monitoring, Nantes, France, 8–11 July 2014; pp. 2020–2027. [Google Scholar]
- Antunes, P.; Lima, H.; Alberto, N.; Bilro, L.; Pinto, P.; Costa, A.; Rodrigues, H.; Pinto, J.L.; Nogueira, R.; Varum, H.; et al. Optical Sensors Based on Fiber Bragg Gratings for Structural Health Monitoring. In New Developments in Sensing Technology for Structural Health Monitoring; Mukhopadhyay, S.C., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 253–295. ISBN 978-3-642-21099-0. [Google Scholar]
- Del Grosso, A.; Torre, A.; Rosa, M.; Lattuada, B.G. Application of SHM Techniques in the Restoration of Historical Buildings: The Royal Villa of Monza. In Proceedings of the 2nd European Conference on Health Monitoring, Munich, Germany, 7–9 July 2004; pp. 205–212. [Google Scholar]
- Hill, K.O.; Meltz, G. Fiber Bragg Grating Technology Fundamentals and Overview. J. Light. Technol. 1997, 15, 1263–1276. [Google Scholar] [CrossRef]
- Deng, L.; Cai, C.S. Applications of Fiber Optic Sensors in Civil Engineering. Struct. Eng. Mech. 2007, 25, 577–596. [Google Scholar] [CrossRef]
- Whelan, M.P.; Albrecht, D.; Capsoni, A. Remote Structural Monitoring of the Cathedral of Como Using an Optical Fibre Bragg Sensor System. In Smart Structures and Materials 2002: Smart Sensor Technology and Measurement Systems; Inaudi, D., Udd, E., Eds.; Society of Photo-Optical Instrumentation Engineers (SPIE): Bellingham, WA, USA, 27 June 2002; Volume 4694, pp. 242–252. [Google Scholar]
- Lima, H.F.; Da Silva Vicente, R.; Nogueira, R.N.; Abe, I.; De Brito André, P.S.; Fernandes, C.; Rodrigues, H.; Varum, H.; Kalinowski, H.J.; Costa, A.; et al. Structural Health Monitoring of the Church of Santa Casa Da Misericórdia of Aveiro Using FBG Sensors. IEEE Sens. J. 2008, 8, 1236–1242. [Google Scholar] [CrossRef]
- Marazzi, F.; Tagliabue, P.; Corbani, F.M. Traditional vs Innovative Structural Health Monitoring of Monumental Structures: A Case Study. Struct. Control Health Monit. 2011, 18, 430–449. [Google Scholar] [CrossRef]
- Glisic, B.; Sigurdardottir, D.; Dobkin, D.P. Evaluation of the Use of Fiber Optic Sensors in Identification of Fresco Fracturing Patterns. Sens. Smart Struct. Technol. Civ. Mech. Aerosp. Syst. 2015, 9435, 943521. [Google Scholar] [CrossRef]
- Antunes, P.; Lima, H.; Varum, H.; André, P. Optical Fiber Sensors for Static and Dynamic Health Monitoring of Civil Engineering Infrastructures: Abode Wall Case Study. Meas. J. Int. Meas. Confed. 2012, 45, 1695–1705. [Google Scholar] [CrossRef]
- Barrias, A.; Casas, J.R.; Villalba, S. A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications. Sens. Switz. 2016, 16, 748. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Xiao, G.; Mrad, N.; Yao, J. Fiber Optic Sensors for Structural Health Monitoring of Air Platforms. Sensors 2011, 11, 3687–3705. [Google Scholar] [CrossRef]
- Bado, M.F.; Casas, J.R. A Review of Recent Distributed Optical Fiber Sensors Applications for Civil Engineering Structural Health Monitoring. Sensors 2021, 21, 1818. [Google Scholar] [CrossRef]
- Bastianini, F.; Corradi, M.; Borri, A.; Tommaso, A.D. Retrofit and Monitoring of an Historical Building Using “Smart” CFRP with Embedded Fibre Optic Brillouin Sensors. Constr. Build. Mater. 2005, 19, 525–535. [Google Scholar] [CrossRef]
- Barrias, A.; Casas, J.R.; Villalba, S.; Rodriguez, G. Health Monitoring of Real Structures by Distributed Optical Fiber. In Proceedings of the Fifth International Symposium on Life-Cycle Civil Engineering, IALCCE’16, Delft, The Netherlands, 16–19 October 2016; Bakker, J., Frangopol, D.M., Breugel, K., Eds.; CRC Press: London, UK, 2016; pp. 748–755. [Google Scholar]
- Acikgoz, S.; Pelecanos, L.; Giardina, G.; Aitken, J.; Soga, K. Distributed Sensing of a Masonry Vault during Nearby Piling. Struct. Control Health Monit. 2017, 24, e1872. [Google Scholar] [CrossRef]
- Zangani, D.; Fuggini, C.; Loriga, G. Electronic Textiles for Geotechnical and Civil Engineering; Dias, T., Ed.; Woodhead Publishing: Oxford, UK, 2015; ISBN 978-0-08-100201-8. [Google Scholar]
- Krebber, K. Smart Technical Textiles Based on Fiber Optic Sensors. In Current Developments in Optical Fiber Technology; Harun, S.W., Arof, H., Eds.; IntechOpen: Rijeka, Croatia, 2013. [Google Scholar]
- Liehr, S.; Lenke, P.; Krebber, K.; Seeger, M.; Thiele, E.; Metschies, H.; Gebreselassie, B.; Münich, J.C.; Stempniewski, L. Distributed Strain Measurement with Polymer Optical Fibers Integrated into Multifunctional Geotextiles. Opt. Sens. 2008, 7003, 700302. [Google Scholar] [CrossRef]
- Zangani, D. POLYTECT-Polyfunctional Technical Textiles against Natural Hazards—Project No. NMP2-CT-2006-026789; Final Report; 2010; Available online: https://cordis.europa.eu/project/id/26789/reporting (accessed on 16 May 2023).
- Coricciati, A.; Ingrosso, I.; Sergi, A.P.; Largo, A. Application of Smart FRP Devices for the Structural Health Monitoring of Heritage Buildings—A Case Study: The Monastery of Sant’Angelo d’Ocre. Key Eng. Mater. 2017, 747, 448–455. [Google Scholar] [CrossRef]
- Stempniewski, L. POLYMAST Polyfunctional Technical Textiles for the Protection and Monitoring of Masonry Structures against Earthquakes. In Transnational Access within the SERIES Project: SEVENTH FRAMEWORK PROGRAM Capacities Specific Programme Research Infrastructures—Project No.227887; Final Report; May 2011. [Google Scholar]
- Valvona, F.; Toti, J.; Gattulli, V.; Potenza, F. Effective Seismic Strengthening and Monitoring of a Masonry Vault by Using Glass Fiber Reinforced Cementitious Matrix with Embedded Fiber Bragg Grating Sensors. Compos. Part B Eng. 2017, 113, 355–370. [Google Scholar] [CrossRef]
- Tetta, Z.C. Shear Strengthening of Concrete Members with Textile Reinforced Mortar (TRM). Ph.D. Thesis, University of Nottingham, Nottingham, UK, 2017. [Google Scholar]
- Tetta, Z.C.; Koutas, L.N.; Bournas, D.A. Shear Strengthening of Concrete Members with TRM Jackets: Effect of Shear Span-to-Depth Ratio, Material and Amount of External Reinforcement. Compos. Part B Eng. 2018, 137, 184–201. [Google Scholar] [CrossRef]
- Saidi, M.; Gabor, A. Experimental Analysis of the Tensile Behaviour of Textile Reinforced Cementitious Matrix Composites Using Distributed Fibre Optic Sensing (DFOS) Technology. Constr. Build. Mater. 2020, 230, 117027. [Google Scholar] [CrossRef]
- Bertolesi, E.; Fagone, M.; Rotunno, T.; Grande, E.; Milani, G. Experimental Characterization of the Textile-to-Mortar Bond through Distributed Optical Sensors. Constr. Build. Mater. 2022, 326, 126640. [Google Scholar] [CrossRef]
- Jiao, P.; Egbe, K.J.I.; Xie, Y.; Nazar, A.M.; Alavi, A.H. Piezoelectric Sensing Techniques in Structural Health Monitoring: A State-of-the-Art Review. Sens. Switz. 2020, 20, 3730. [Google Scholar] [CrossRef] [PubMed]
- Cuadra, C.; Shimoi, N.; Sasaki, T.; Taguchi, T. Preliminary Evaluation of Piezoelectric Sensors for the Prediction of Compression Failure of Brick Masonry Components. Struct. Stud. Repairs Maint. Herit. Archit. XIV 2015, 1, 605–612. [Google Scholar] [CrossRef]
- Sasaki, T.; Cuadra, C.; Madokoro, H.; Nakasho, K.; Shimoi, N. Comparison of Piezoelectric Limit Sensors with FEM Analysis Results of Compression Failure of Brick Masonry Specimens. In Proceedings of the 2016 16th International Conference on Control, Automation and Systems (ICCAS), Gyeongju, Republic of Korea, 16–19 October 2016; pp. 1197–1201. [Google Scholar] [CrossRef]
- Donelli, M. An RFID-Based Sensor for Masonry Crack Monitoring. Sens. Switz. 2018, 18, 4485. [Google Scholar] [CrossRef] [PubMed]
- La Mendola, L.; Oddo, M.C.; Papia, M.; Pappalardo, F.; Pennisi, A.; Bertagnoli, G.; Di Trapani, F.; Monaco, A.; Parisi, F.; Barile, S. Performance of Two Innovative Stress Sensors Imbedded in Mortar Joints of New Masonry Elements. Constr. Build. Mater. 2021, 297, 123764. [Google Scholar] [CrossRef]
- Modena, C.; Valluzzi, M.R.; da Porto, F.; Casarin, F. Structural Aspects of The Conservation of Historic Masonry Constructions in Seismic Areas: Remedial Measures and Emergency Actions. Int. J. Archit. Herit. 2011, 5, 539–558. [Google Scholar] [CrossRef]
- Downey, A.; D’Alessandro, A.; Laflamme, S.; Ubertini, F. Smart Bricks for Strain Sensing and Crack Detection in Masonry Structures. Smart Mater. Struct. 2018, 27, 015009. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Meoni, A.; Ubertini, F. Stainless Steel Microfibers for Strain-Sensing Smart Clay Bricks. J. Sens. 2018, 2018, 7431823. [Google Scholar] [CrossRef]
- Meoni, A.; D’Alessandro, A.; Ubertini, F. Characterization of the Strain-Sensing Behavior of Smart Bricks: A New Theoretical Model and Its Application for Monitoring of Masonry Structural Elements. Constr. Build. Mater. 2020, 250, 118907. [Google Scholar] [CrossRef]
- Meoni, A.; D’Alessandro, A.; Cavalagli, N.; Gioffré, M.; Ubertini, F. Shaking Table Tests on a Masonry Building Monitored Using Smart Bricks: Damage Detection and Localization. Earthq. Eng. Struct. Dyn. 2019, 48, 910–928. [Google Scholar] [CrossRef]
- Meoni, A.; D’Alessandro, A.; Saviano, F.; Lignola, G.P.; Parisi, F.; Ubertini, F. Strain Monitoring and Crack Detection in Masonry Walls under In-Plane Shear Loading Using Smart Bricks: First Results from Experimental Tests and Numerical Simulations. Sensors 2023, 23, 2211. [Google Scholar] [CrossRef]
- Dong, C.Z.; Catbas, F.N. A Review of Computer Vision–Based Structural Health Monitoring at Local and Global Levels. Struct. Health Monit. 2021, 20, 692–743. [Google Scholar] [CrossRef]
- Masciotta, M.G.; Morais, M.J.; Ramos, L.F.; Oliveira, D.V.; Sánchez-Aparicio, L.J.; González-Aguilera, D. A Digital-Based Integrated Methodology for the Preventive Conservation of Cultural Heritage: The Experience of HeritageCare Project. Int. J. Archit. Herit. 2021, 15, 844–863. [Google Scholar] [CrossRef]
- Klein, L.; Li, N.; Becerik-Gerber, B. Imaged-Based Verification of as-Built Documentation of Operational Buildings. Autom. Constr. 2012, 21, 161–171. [Google Scholar] [CrossRef]
- Bertellini, B.; Gottardi, C.; Vernier, P. 3D Survey Techniques for the Conservation and the Enhancement of a Venetian Historical Architecture. Appl. Geomat. 2020, 12, 53–68. [Google Scholar] [CrossRef]
- Oliveros-Esco, J.; Gracia-Villa, L.; López-Mesa, B. 2D Image-Based Crack Monitoring: An Affordable, Sufficient and Non-Invasive Technique for the Democratization of Preventive Conservation of Listed Buildings. Herit Sci 2022, 10, 146. [Google Scholar] [CrossRef]
- Stylianidis, E. Photogrammetric Survey for the Recording and Documentation of Historic Buildings; Springer: Cham, Switzerland, 2020; ISBN 978-3-030-47309-9. [Google Scholar]
- Sužiedelytė-Visockienė, J.; Bagdžiūnaitė, R.; Malys, N.; Maliene, V. Close-Range Photogrammetry Enables Documentation of Environment-Induced Deformation of Architectural Heritage. Environ. Eng. Manag. J. 2015, 14, 1371–1381. [Google Scholar] [CrossRef]
- Ji, Y.F.; Chang, C.C. Vision-Based Sensing for Assessing and Monitoring Civil Infrastructures. Sens. Technol. Civ. Infrastruct. 2014, 1, 383–409. [Google Scholar] [CrossRef]
- Pepe, M.; Costantino, D.; Crocetto, N.; Restuccia Garofalo, A. 3D Modeling of Roman Bridge by the Integration of Terrestrial and UAV Photogrammetric Survey for Structural Analysis Purpose. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 249–255. [Google Scholar] [CrossRef]
- Croce, V.; Martínez-Espejo Zaragoza, I. UAV-Based 3D Photogrammetry for Post-Earthquake Studies on Seismic Damaged Cities—A Case Study: Castelluccio Di Norcia. In Proceedings of the 12th International Multi-Conference on Society, Cybernetics and Informatics, Proceedings, Orlando, FL, USA, 8–11 July 2018; Volume 2, pp. 79–84. [Google Scholar]
- Biscarini, C.; Catapano, I.; Cavalagli, N.; Ludeno, G.; Pepe, F.A.; Ubertini, F. UAV Photogrammetry, Infrared Thermography and GPR for Enhancing Structural and Material Degradation Evaluation of the Roman Masonry Bridge of Ponte Lucano in Italy. NDT E Int. 2020, 115, 102287. [Google Scholar] [CrossRef]
- Lo Brutto, M.; Ebolese, D.; Dardanelli, G. 3D Modelling of a Historical Building Using Close-Range Photogrammetry and Remotely Piloted Aircraft System (RPAS). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 42, 599–606. [Google Scholar] [CrossRef]
- Bacco, M.; Barsocchi, P.; Cassara, P.; Germanese, D.; Gotta, A.; Leone, G.R.; Moroni, D.; Pascali, M.A.; Tampucci, M. Monitoring Ancient Buildings: Real Deployment of an IoT System Enhanced by UAVs and Virtual Reality. IEEE Access 2020, 8, 50131–50148. [Google Scholar] [CrossRef]
- Arias, P.; Herráez, J.; Lorenzo, H.; Ordóñez, C. Control of Structural Problems in Cultural Heritage Monuments Using Close-Range Photogrammetry and Computer Methods. Comput. Struct. 2005, 83, 1754–1766. [Google Scholar] [CrossRef]
- Armesto, J.; Arias, P.; Roca, J.; Lorenzo, H. Monitoring and Assessing Structural Damage in Historic Buildings. Photogramm. Rec. 2008, 23, 36–50. [Google Scholar] [CrossRef]
- Mongelli, M.; De Canio, G.; Roselli, I.; Malena, M.; Nacuzi, A.; De Felice, G. 3D Photogrammetric Reconstruction by Drone Scanning for FE Analysis and Crack Pattern Mapping of the “Bridge of the Towers”, Spoleto. Key Eng. Mater. 2017, 747, 423–430. [Google Scholar] [CrossRef]
- Galantucci, R.A.; Fatiguso, F. Advanced Damage Detection Techniques in Historical Buildings Using Digital Photogrammetry and 3D Surface Anlysis. J. Cult. Herit. 2019, 36, 51–62. [Google Scholar] [CrossRef]
- Russo, M.; Carnevali, L.; Russo, V.; Savastano, D.; Taddia, Y. Modeling and Deterioration Mapping of Façades in Historical Urban Context by Close-Range Ultra-Lightweight UAVs Photogrammetry. Int. J. Archit. Herit. 2019, 13, 549–568. [Google Scholar] [CrossRef]
- Bellagamba, I.; Caponero, M.; Mongelli, M. Using Fiber-Optic Sensors and 3D Photogrammetric Reconstruction for Crack Pattern Monitoring of Masonry Structures at the Aurelian Walls in Rome, Italy. WIT Trans. Built Environ. 2019, 191, 457–465. [Google Scholar] [CrossRef]
- Dlesk, A.; Uueni, A.; Vach, K.; Pärtna, J. From Analogue to Digital Photogrammetry: Documentation of Padise Abbey in Two Different Time Stages. Appl. Sci. Switz. 2020, 10, 8330. [Google Scholar] [CrossRef]
- Brusaporci, S.; Graziosi, F.; Franchi, F.; Maiezza, P.; Tata, A. Mixed Reality Experiences for the Historical Storytelling of Cultural Heritage; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; ISBN 9783030492786. [Google Scholar]
- Carvajal-Ramírez, F.; Martínez-Carridondo, P.; Yero-Paneque, L.; Agüera-Vega, F. UAV Photogrammetry and HBIM for the Virtual Reconstruction of Heritage. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 271–278. [Google Scholar] [CrossRef]
- Castagnetti, C.; Dubbini, M.; Ricci, P.C.; Rivola, R.; Giannini, M.; Capra, A. Critical Issues and Key Points from the Survey to the Creation of the Historical Building Information Model: The Case of Santo Stefano Basilica. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 467–474. [Google Scholar] [CrossRef]
- Mukupa, W.; Roberts, G.W.; Hancock, C.M.; Al-Manasir, K. A Review of the Use of Terrestrial Laser Scanning Application for Change Detection and Deformation Monitoring of Structures. Surv. Rev. 2017, 49, 99–116. [Google Scholar] [CrossRef]
- Guarnieri, A.; Milan, N.; Vettore, A. Monitoring of Complex Structure for Structural Control Using Terrestrial Laser Scanning (Tls) and Photogrammetry. Int. J. Archit. Herit. 2013, 7, 54–67. [Google Scholar] [CrossRef]
- Fregonese, L.; Barbieri, G.; Biolzi, L.; Bocciarelli, M.; Frigeri, A.; Taffurelli, L. Surveying and Monitoring for Vulnerability Assessment of an Ancient Building. Sens. Switz. 2013, 13, 9747–9773. [Google Scholar] [CrossRef]
- Valente, R.; Oreni, D.; Barazzetti, L.; Roncoroni, F.; Previtali, M. Documentation of Historical Architectures through the Combined Use of Digital Surveying Techniques. In Proceedings of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W11, Milan, Italy, 8–10 May 2019; pp. 1121–1125. [Google Scholar]
- Furini, A.; Paternò, M.; Pellegrinelli, A.; Russo, P. Integrated Measurement Techniques for the Monitoring of the Ancient Walls of Ferrara. In Built Heritage: Monitoring Conservation Management. Research for Development; Toniolo, L., Boriani, M., Guidi, G., Eds.; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Masciotta, M.G.; Sanchez-Aparicio, L.J.; Oliveira, D.V.; Gonzalez-Aguilera, D. Integration of Laser Scanning Technologies and 360° Photography for the Digital Documentation and Management of Cultural Heritage Buildings. Int. J. Archit. Herit. 2023, 17, 56–75. [Google Scholar] [CrossRef]
- Avdelidis, N.P.; Moropoulou, A. Applications of Infrared Thermography for the Investigation of Historic Structures. J. Cult. Herit. 2004, 5, 119–127. [Google Scholar] [CrossRef]
- Glavaš, H.; Hadzima-Nyarko, M.; Buljan, I.H.; Barić, T. Locating Hidden Elements in Walls of Cultural Heritage Buildings by Using Infrared Thermography. Buildings 2019, 9, 32. [Google Scholar] [CrossRef]
- Ruiz Valero, L.; Flores Sasso, V.; Prieto Vicioso, E. In Situ Assessment of Superficial Moisture Condition in Façades of Historic Building Using Non-Destructive Techniques. Case Stud. Constr. Mater. 2019, 10, e00228. [Google Scholar] [CrossRef]
- Paoletti, D.; Ambrosini, D.; Sfarra, S.; Bisegna, F. Preventive Thermographic Diagnosis of Historical Buildings for Consolidation. J. Cult. Herit. 2013, 14, 116–121. [Google Scholar] [CrossRef]
- Costanzo, A.; Minasi, M.; Casula, G.; Musacchio, M.; Buongiorno, M.F. Combined Use of Terrestrial Laser Scanning and IR Thermography Applied to a Historical Building. Sens. Switz. 2014, 15, 194–213. [Google Scholar] [CrossRef] [PubMed]
- Ayyildiz, C.; Erdem, H.E.; Dirikgil, T.; Dugenci, O.; Kocak, T.; Altun, F.; Gungor, V.C. Structure Health Monitoring Using Wireless Sensor Networks on Structural Elements. Ad. Hoc. Netw. 2019, 82, 68–76. [Google Scholar] [CrossRef]
- Anastasi, G.; Lo Re, G.; Ortolani, M. WSNs for Structural Health Monitoring of Historical Buildings. In Proceedings of the 2009 2nd Conference on Human System Interactions, Catania, Italy, 21–23 May 2009; pp. 574–579. [Google Scholar] [CrossRef]
- Zonta, D.; Wu, H.; Pozzi, M.; Zanon, P.; Ceriotti, M.; Mottola, L.; Picco, G.P.; Murphy, A.L.; Guna, S.; Corrà, M. Wireless Sensor Networks for Permanent Health Monitoring of Historic Buildings. Smart Struct. Syst. 2010, 6, 595–618. [Google Scholar] [CrossRef]
- Samuels, J.M.; Reyer, M.; Hurlebaus, S.; Lucy, S.H.; Woodcock, D.G.; Bracci, J.M. Wireless Sensor Network to Monitor an Historic Structure under Rehabilitation. J. Civ. Struct. Health Monit. 2011, 1, 69–78. [Google Scholar] [CrossRef]
- Barsocchi, P.; Bartoli, G.; Betti, M.; Girardi, M.; Mammolito, S.; Pellegrini, D.; Zini, G. Wireless Sensor Networks for Continuous Structural Health Monitoring of Historic Masonry Towers. Int. J. Archit. Herit. 2020, 15, 22–44. [Google Scholar] [CrossRef]
- Potenza, F.; Federici, F.; Lepidi, M.; Gattulli, V.; Graziosi, F.; Colarieti, A. Long-Term Structural Monitoring of the Damaged Basilica S. Maria Di Collemaggio through a Low-Cost Wireless Sensor Network. J. Civ. Struct. Health Monit. 2015, 5, 655–676. [Google Scholar] [CrossRef]
- Zini, G.; Betti, M.; Bartoli, G. Wireless Network Monitoring System for Cultural Heritage Buildings. In Proceedings of the 9th ECCOMAS Thematic Conference on Smart Structures and Materials, Paris, France, 8–11 July 2019; pp. 1612–1621. [Google Scholar]
- Bezas, K.; Komianos, V.; Koufoudakis, G.; Tsoumanis, G.; Kabassi, K.; Oikonomou, K. Structural Health Monitoring in Historical Buildings: A Network Approach. Heritage 2020, 3, 796–818. [Google Scholar] [CrossRef]
- Morais, M.J.; Masciotta, M.G.; Ramos, L.F.; Oliveira, D.V.; Azenha, M.; Pereira, E.B.; Lourenço, P.B.; Ferreira, T.C.; Monteiro, P. A Proactive Approach to the Conservation of Historic and Cultural Heritage: The HeritageCare Methodology. In Proceedings of the IABSE Symposium: Towards a Resilient Built Environment Risk and Asset Management, Guimarães, Portugal, 27–29 March 2019; pp. 64–71. [Google Scholar] [CrossRef]
- Sánchez-Aparicio, L.J.; Masciotta, M.G.; García-Alvarez, J.; Ramos, L.F.; Oliveira, D.V.; Martín-Jiménez, J.A.; González-Aguilera, D.; Monteiro, P. Web-GIS Approach to Preventive Conservation of Heritage Buildings. Autom. Constr. 2020, 118, 103304. [Google Scholar] [CrossRef]
- Scuro, C.; Lamonaca, F.; Porzio, S.; Milani, G.; Olivito, R.S. Internet of Things (IoT) for Masonry Structural Health Monitoring (SHM): Overview and Examples of Innovative Systems. Constr. Build. Mater. 2021, 290, 123092. [Google Scholar] [CrossRef]
- Scuro, C.; Sciammarella, P.F.; Lamonaca, F.; Olivito, R.S.; Carni, D.L. IoT for Structural Health Monitoring. IEEE Instrum. Meas. Mag. 2018, 21, 4–14. [Google Scholar] [CrossRef]
- Barsocchi, P.; Cassará, P.; Mavilia, F.; Pellegrini, D. Sensing a City’s State of Health: Structural Monitoring System by Internet-of-Things Wireless Sensing Devices. IEEE Consum. Electron. Mag. 2018, 7, 22–31. [Google Scholar] [CrossRef]
- Mishra, M. Machine Learning Techniques for Structural Health Monitoring of Heritage Buildings: A State-of-the-Art Review and Case Studies. J. Cult. Herit. 2021, 47, 227–245. [Google Scholar] [CrossRef]
- De Angelis, A.; Santoni, F.; Carbone, P.; Cecconi, M.; Vecchietti, A.; Di Lorenzo, F. Development of an IoT Structural Monitoring System Applied to a Hypogeal Site. Sens. Switz. 2020, 20, 6769. [Google Scholar] [CrossRef]
- Barontini, A.; Masciotta, M.G.; Ramos, L.F.; Amado-Mendes, P.; Lourenço, P.B. An Overview on Nature-Inspired Optimization Algorithms for Structural Health Monitoring of Historical Buildings. Procedia Eng. 2017, 199, 3320–3325. [Google Scholar] [CrossRef]
- Masciotta, M.G.; Barontini, A.; Ramos, L.F.; Amado Mendes, P.; Lourenco, P.B. An Overview on Structural Health Monitoring: From the Current State-of-the-Art to New Bio-Inspired Sensing Paradigms. Int. J. Bio-Inspired Comput. 2019, 14, 1–26. [Google Scholar] [CrossRef]
- Carnimeo, L.; Foti, D.; Vacca, V. On Damage Monitoring in Historical Buildings via Neural Networks. In Proceedings of the 2015 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems, EESMS 2015—Proceedings, Trento, Italy, 9–10 July 2015. [Google Scholar]
- Standoli, G.; Salachoris, G.P.; Masciotta, M.G.; Clementi, F. Modal-Based FE Model Updating via Genetic Algorithms: Exploiting Artificial Intelligence to Build Realistic Numerical Models of Historical Structures. Constr. Build. Mater. 2021, 303, 124393. [Google Scholar] [CrossRef]
- Lamonaca, F.; Olivito, R.S.; Porzio, S.; Cami, D.L.; Scuro, C. Structural Health Monitoring System for Masonry Historical Construction. In Proceedings of the 2018 Metrology for Archaeology and Cultural Heritage (MetroArchaeo), Cassino, Italy, 22–24 October 2018; pp. 330–335. [Google Scholar] [CrossRef]
- García-Macías, E.; Ubertini, F. MOVA/MOSS: Two Integrated Software Solutions for Comprehensive Structural Health Monitoring of Structures. Mech. Syst. Signal Process. 2020, 143, 106830. [Google Scholar] [CrossRef]
- Murphy, M.; Mcgovern, E.; Pavia, S. Historic Building Information Modelling (HBIM). Struct. Surv. 2009, 27, 311–327. [Google Scholar] [CrossRef]
- Khalil, A.; Stravoravdis, S.; Backes, D. Categorisation of Building Data in the Digital Documentation of Heritage Buildings. Appl. Geomat. 2021, 13, 29–54. [Google Scholar] [CrossRef]
- Panah, R.S.; Kioumarsi, M. Application of Building Information Modelling (BIM) in the Health Monitoring and Maintenance Process: A Systematic Review. Sens. Switz. 2021, 21, 837. [Google Scholar] [CrossRef]
- De Paiva, P.V.V.; Cogima, C.K.; Dezen-Kempter, E.; De Carvalho, M.A.G.; Cerqueira, L.R. Intelligent Digital Built Heritage Models: An Approach from Image Processing and Building Information Modelling Technology. In Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Funchal–Madeira, Portufal, 27–29 January 2018; Volume 4, pp. 558–565. [Google Scholar] [CrossRef]
- Rea, P.; Pelliccio, A.; Ottaviano, E.; Saccucci, M. The Heritage Management and Preservation Using the Mechatronic Survey. Int. J. Archit. Herit. 2017, 11, 1121–1132. [Google Scholar] [CrossRef]
- Bruno, S.; De Fino, M.; Fatiguso, F. Historic Building Information Modelling: Performance Assessment for Diagnosis-Aided Information Modelling and Management. Autom. Constr. 2018, 86, 256–276. [Google Scholar] [CrossRef]
- Ciribini, A.L.C.; Ventura, S.M.; Paneroni, M. BIM Methodology as an Integrated Approach to Heritage Conservation Management. Build. Inf. Model. BIM Des. Constr. Oper. 2015, 1, 265–276. [Google Scholar] [CrossRef]
- Banfi, F.; Barazzetti, L.; Previtali, M.; Roncoroni, F. Historic Bim: A New Repository for Structural Health Monitoring. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42W4, 269–274. [Google Scholar] [CrossRef]
- Tsilimantou, E.; Delegou, E.T.; Nikitakos, I.A.; Ioannidis, C.; Moropoulou, A. GIS and BIM as Integrated Digital Environments for Modeling and Monitoring of Historic Buildings. Appl. Sci. Switz. 2020, 10, 1078. [Google Scholar] [CrossRef]
- Calì, A.; Saisi, A.; Gentile, C. Structural Assessment of Cultural Heritage Buildings Using HBIM and Vibration-Based System Identification. In Proceedings of the 12th International Conference on Structural Analysis of Historical Constructions SAHC 2020, Barcelona, Spain, 29 September–1 October 2021; Roca, P., Pelá, L., Molins, C., Eds.; pp. 1315–1325. Available online: https://congress.cimne.com/SAHC2020/frontal/doc/Ebook_SAHC2020.pdf (accessed on 18 May 2023).
- Monchetti, S.; Bartoli, G.; Betti, M.; Facchini, L.; Rougier, E.; Zini, G. The Research Project “CHARMING PISTOIA”: An Integrated HBIM Project for Preservation and Maintenance of Heritage Structures. Procedia Struct. Integr. 2023, 44, 1988–1995. [Google Scholar] [CrossRef]
- Rivera, D.; Meli, R.; Sánchez, R.; Orozco, B. Evaluation of the Measured Seismic Response of the Mexico City Cathedral. Earthq. Eng. Struct. Dyn. 2008, 37, 1249–1268. [Google Scholar] [CrossRef]
- Dal Cin, A.; Russo, S. Evaluation of Static and Dynamic Long-Term Structural Monitoring for Monumental Masonry Structure. J. Civ. Struct. Health Monit. 2019, 9, 169–182. [Google Scholar] [CrossRef]
- Duvnjak, I.; Damjanović, D.; Krolo, J. Structural Health Monitoring of Cultural Heritage Structures: Applications on Peristyle of Diocletian’s Palace in Split. In Proceedings of the 8th European Workshop On Structural Health Monitoring (EWSHM 2016), Bilbao, Spain, 5–8 July 2016. [Google Scholar]
- Binda, L.; Condoleo, P.; Tiraboschi, C.; Rigamonti, P. On-Site Investigation and Crack Monitoring of an Ancient Bell-Tower. In Proceedings of the 14th International Conference on Structural Faults & Repair (SF&R 2012), Edinburgh, UK, 3–5 July 2012; Forde, M.C., Ed.; Engineering Technics Press: Edinburgh, Scotland, 2012. [Google Scholar]
- Cabboi, A.; Gentile, C.; Saisi, A. From Continuous Vibration Monitoring to FEM-Based Damage Assessment: Application on a Stone-Masonry Tower. Constr. Build. Mater. 2017, 156, 252–265. [Google Scholar] [CrossRef]
- Saisi, A.; Gentile, C.; Guidobaldi, M. Post-Earthquake Continuous Dynamic Monitoring of the Gabbia Tower in Mantua, Italy. Constr. Build. Mater. 2015, 81, 101–112. [Google Scholar] [CrossRef]
- Cavaleri, L.; Ferrotto, M.F.; Di Trapani, F.; Vicentini, A. Vibration Tests and Structural Identification of the Bell Tower of Palermo Cathedral. Open Constr. Build. Technol. J. 2019, 13, 319–330. [Google Scholar] [CrossRef]
- Cigada, A.; Corradi Dell’Acqua, L.; Mörlin Visconti Castiglione, B.; Scaccabarozzi, M.; Vanali, M.; Zappa, E. Structural Health Monitoring of an Historical Building: The Main Spire of the Duomo Di Milano. Int. J. Archit. Herit. 2017, 11, 501–518. [Google Scholar] [CrossRef]
Criteria | Types |
---|---|
Sensing location | Single point sensors |
Quasi-distributed sensors | |
Distributed sensors | |
Operating principle | Intensity sensors |
Phase sensors | |
Frequency sensors | |
Polarization sensors | |
Application | Physical sensors |
Chemical sensors | |
Biomedical sensors |
Parameters | Sensor Technologies | ||||
---|---|---|---|---|---|
Interferometric Sensors | Fibre Bragg Grating | Distributed Sensors | |||
Rayleigh Scattering | Raman Scattering | Brillouin Scattering | |||
Strain | x | x | x | x | |
Temperature | x | x | x | x | x |
Pressure | x | * | |||
Displacement | x | * | |||
Deformation | x |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rossi, M.; Bournas, D. Structural Health Monitoring and Management of Cultural Heritage Structures: A State-of-the-Art Review. Appl. Sci. 2023, 13, 6450. https://doi.org/10.3390/app13116450
Rossi M, Bournas D. Structural Health Monitoring and Management of Cultural Heritage Structures: A State-of-the-Art Review. Applied Sciences. 2023; 13(11):6450. https://doi.org/10.3390/app13116450
Chicago/Turabian StyleRossi, Michela, and Dionysios Bournas. 2023. "Structural Health Monitoring and Management of Cultural Heritage Structures: A State-of-the-Art Review" Applied Sciences 13, no. 11: 6450. https://doi.org/10.3390/app13116450
APA StyleRossi, M., & Bournas, D. (2023). Structural Health Monitoring and Management of Cultural Heritage Structures: A State-of-the-Art Review. Applied Sciences, 13(11), 6450. https://doi.org/10.3390/app13116450