Review of Studies on User Research Based on EEG and Eye Tracking
Abstract
:1. Introduction
2. Method
3. Indicators of User Research
3.1. Classification and Characteristics of EEG Signals
3.1.1. The Reference Value of EEG Research
- (1)
- Emotional indicators: The left and right frontal lobes of the brain are sensitive to positive and negative emotions, respectively. By analyzing their lateralization, we can understand the strength changes of users’ positive and negative emotions [25].
- (2)
- Attention indicators: The left and right parietal lobes of the brain control attention allocation, and can understand users’ attention allocation.
- (3)
- Memory indicators: The temporal lobe controls our memory, and can encode and recall environmental information. Through analysis of the temporal lobe, we can understand users’ memories of products [16].
3.1.2. Classic Brain EEG ERP Components and Their Meanings
3.2. Eye-Tracking Index
3.2.1. Physiological Indicators and Visualization
- (1)
- Pupil and Blink
- (2)
- Trajectory map and heat map
- (3)
- AOI and sequence analysis
3.2.2. Data Indicators and Their Significance
- (1)
- First Fixation Time (TTFF)
- (2)
- First Fixation Duration (FFD)
- (3)
- Average fixation duration
- (4)
- Dwell Time
- (5)
- Regression count
3.3. Experimental Paradigm
3.4. Preprocessing Methods and Device Connections
4. Application Scope
4.1. Industrial Products
4.1.1. Human–Computer Interaction
4.1.2. Appearance Form
4.1.3. Usability and Ease of Use
4.2. Digital Interface
4.2.1. Information Distribution Area
4.2.2. Interface Elements
4.3. Spatial Environment
4.3.1. Public Navigation System
4.3.2. Transportation System
4.3.3. Consumer Space
5. Discussion
5.1. The Strength and Contradictions of Reviewed Findings
5.2. Current Limitations
5.3. Future Research Prospects
5.3.1. Multisensory and Behavioral Interaction Research
5.3.2. Universal Research on Multi-Technology Fusion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neef, C.; Linden, K.; Richert, A. Exploring the Influencing Factors on User Experience in Robot-Assisted Health Monitoring Systems Combining Subjective and Objective Health Data. Appl. Sci. 2023, 13, 3537. [Google Scholar] [CrossRef]
- Michel, C.M.; Brunet, D. EEG Source Imaging: A Practical Review of the Analysis Steps. Front. Neurol. 2019, 10, 325. [Google Scholar] [CrossRef] [PubMed]
- Krigolson, O.E.; Williams, C.C.; Norton, A.; Hassall, C.D.; Colino, F.L. Choosing MUSE: Validation of a Low-Cost, Portable EEG System for ERP Research. Front. Neurosci. 2017, 11, 109. [Google Scholar] [CrossRef] [PubMed]
- Cano, S.; Araujo, N.; Guzman, C.; Rusu, C.; Albiol-Perez, S. Low-Cost Assessment of User eXperience through EEG Signals. IEEE Access 2020, 8, 158475–158487. [Google Scholar] [CrossRef]
- Slanzi, G.; Balazs, J.A.; Velasquez, J.D. Combining eye tracking, pupil dilation and EEG analysis for predicting web users click intention. Inf. Fusion 2017, 35, 51–57. [Google Scholar] [CrossRef]
- Lim, J.Z.; Mountstephens, J.; Teo, J. Emotion Recognition Using Eye-Tracking: Taxonomy, Review and Current Challenges. Sensors 2020, 20, 2384. [Google Scholar] [CrossRef]
- Khalighy, S.; Green, G.; Scheepers, C.; Whittet, C. Quantifying the qualities of aesthetics in product design using eye-tracking technology. Int. J. Ind. Ergon. 2015, 49, 31–43. [Google Scholar] [CrossRef]
- Dogan, K.M.; Suzuki, H.; Gunpinar, E. Eye tracking for screening design parameters in adjective-based design of yacht hull. Ocean. Eng. 2018, 166, 262–277. [Google Scholar] [CrossRef]
- Ilhan, A.E.; Togay, A. Pursuit of methodology for data input related to taste in design: Using eye tracking technology. Displays 2023, 76, 102335. [Google Scholar] [CrossRef]
- Kulke, L.V.; Atkinson, J.; Braddick, O. Neural Differences between Covert and Overt Attention Studied using EEG with Simultaneous Remote Eye Tracking. Front. Hum. Neurosci. 2016, 10, 592. [Google Scholar] [CrossRef]
- Lopez-Gil, J.M.; Virgili-Goma, J.; Gil, R.; Garcia, R. Method for Improving EEG Based Emotion Recognition by Combining It with Synchronized Biometric and Eye Tracking Technologies in a Non-invasive and Low Cost Way. Front. Comput. Neurosci. 2016, 10, 85. [Google Scholar] [CrossRef]
- Jia, Y.X.; Tyler, C.W. Measurement of saccadic eye movements by electrooculography for simultaneous EEG recording. Behav. Res. Methods 2019, 51, 2139–2151. [Google Scholar] [CrossRef] [PubMed]
- Li, B.R.; Wang, Y.; Wang, K.S. A novel method for the evaluation of fashion product design based on data mining. Adv. Manuf. 2017, 5, 370–376. [Google Scholar] [CrossRef]
- Guo, F.; Li, M.; Hu, M.; Li, F.; Lin, B. Distinguishing and quantifying the visual aesthetics of a product: An integrated approach of eye-tracking and EEG. Int. J. Ind. Ergon. 2019, 71, 47–56. [Google Scholar] [CrossRef]
- Rodriguez, V.J.C.; Antonovica, A.; Martin, D.L.S. Consumer neuroscience on branding and packaging: A review and future research agenda. Int. J. Consum. Stud. 2023, 2023, 1–26. [Google Scholar] [CrossRef]
- Lin, W.; Li, C. Review of Studies on Emotion Recognition and Judgment Based on Physiological Signals. Appl. Sci. 2023, 13, 2573. [Google Scholar] [CrossRef]
- Bazzani, A.; Ravaioli, S.; Trieste, L.; Faraguna, U.; Turchetti, G. Is EEG suitable for marketing research? A systematic review. Front. Neurosci. 2020, 14, 594566. [Google Scholar] [CrossRef]
- Rethlefsen, M.L.; Page, M.J. PRISMA 2020 and PRISMA-S: Common questions on tracking records and the flow diagram. J. Med. Libr. Assoc. 2022, 110, 253–257. [Google Scholar] [CrossRef]
- Welch, V.; Petticrew, M.; Petkovic, J.; Moher, D.; Waters, E.; White, H.; Tugwell, P.; Grp, P.R.-E.B. Extending the PRISMA statement to equity-focused systematic reviews (PRISMA-E 2012): Explanation and elaboration. J. Dev. Eff. 2016, 8, 287–324. [Google Scholar] [CrossRef]
- Ding, X.; Yang, Z. Knowledge mapping of platform research: A visual analysis using VOSviewer and CiteSpace. Electron. Commer. Res. 2022, 22, 787–809. [Google Scholar] [CrossRef]
- Cai, C.; Deng, L.; Chen, B.; Chen, Z.; Wen, R.; Pang, Q. Application of EEG technology in industrial design. Mach. Des. Manuf. Eng. 2017, 46, 80–84. [Google Scholar]
- Chatterjee, A.; Vartanian, O. Neuroaesthetics. Trends Cogn. Sci. 2014, 18, 370–375. [Google Scholar] [CrossRef]
- Fadeev, K.A.; Smirnov, A.S.; Zhigalova, O.P.; Bazhina, P.S.; Tumialis, A.V.; Golokhvast, K.S. Too Real to Be Virtual: Autonomic and EEG Responses to Extreme Stress Scenarios in Virtual Reality. Behav. Neurol. 2020, 2020, 5758038. [Google Scholar] [CrossRef]
- Chen, B.; Deng, L.; Cai, C.; LIu, Y.; Hong, P.; Zhou, Y.; Jiang, H. Evaluation Interactive Prototype Scheme Based on Emotional EEG. Packag. Eng. 2017, 38, 110–114. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L. A Two-Step Framework to Recognize Emotion Using the Combinations of Adjacent Frequency Bands of EEG. Appl. Sci. 2023, 13, 1954. [Google Scholar] [CrossRef]
- Li, Y.; Le, C.; Mo, R.; Song, W. Aesthetic reward research based on event-related potentials. Art Panor. 2022, 35, 144–148. [Google Scholar]
- Nazemi, E.; Tarokh, M.J.; Djavanshir, G.R. ERP: A literature survey. Int. J. Adv. Manuf. Technol. 2012, 61, 999–1018. [Google Scholar] [CrossRef]
- Luck, S.J.; Gaspelin, N. How to get statistically significant effects in any ERP experiment (and why you shouldn’t). Psychophysiology 2017, 54, 146–157. [Google Scholar] [CrossRef]
- Schindler, S.; Bublatzky, F. Attention and emotion: An integrative review of emotional face processing as a function of attention. Cortex 2020, 130, 362–386. [Google Scholar] [CrossRef]
- Ghani, U.; Signal, N.; Niazi, I.K.; Taylor, D. ERP based measures of cognitive workload: A review. Neurosci. Biobehav. Rev. 2020, 118, 18–26. [Google Scholar] [CrossRef]
- Sharafi, Z.; Soh, Z.; Gueheneuc, Y.G. A systematic literature review on the usage of eye-tracking in software engineering. Inf. Softw. Technol. 2015, 67, 79–107. [Google Scholar] [CrossRef]
- Rosch, J.L.; Vogel-Walcutt, J.J. A review of eye-tracking applications as tools for training. Cogn. Technol. Work. 2013, 15, 313–327. [Google Scholar] [CrossRef]
- Hansen, D.W.; Ji, Q. In the Eye of the Beholder: A Survey of Models for Eyes and Gaze. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 32, 478–500. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, S.; Gao, S.; Li, S.; Wu, C. A study on airline pilots’ visual attention allocation during emergency. China Saf. Sci. J. 2023, 33, 214–220. [Google Scholar] [CrossRef]
- Rebollar, R.; Lidon, I.; Martin, J.; Puebla, M. The identification of viewing patterns of chocolate snack packages using eye-tracking techniques. Food Qual. Prefer. 2015, 39, 251–258. [Google Scholar] [CrossRef]
- Banire, B.; Al Thani, D.; Qaraqe, M.; Mansoor, B.; Makki, M. Impact of mainstream classroom setting on attention of children with autism spectrum disorder: An eye-tracking study. Univers. Access Inf. Soc. 2021, 20, 785–795. [Google Scholar] [CrossRef]
- Boardman, R.; McCormick, H.; Henninger, C.E. Exploring attention on a retailer’s homepage: An eye-tracking & qualitative research study. Behav. Inf. Technol. 2022. [Google Scholar] [CrossRef]
- Heilmann, F.; Witte, K. Perception and Action under Different Stimulus Presentations: A Review of Eye-Tracking Studies with an Extended View on Possibilities of Virtual Reality. Appl. Sci. 2021, 11, 5546. [Google Scholar] [CrossRef]
- Henderson, J.M.; Brockmole, J.R.; Gajewski, D.A. Differential detection of global luminance and contrast changes across saccades and flickers during active scene perception. Vis. Res. 2008, 48, 16–29. [Google Scholar] [CrossRef]
- Wang, F.; Tian, H.; Sheng, J. Scene Perception and Its Research Paradigms. Adv. Psychol. Sci. 2009, 17, 268–277. [Google Scholar]
- Hao, J.; Du, J.; Huo, S. Using event-related potentials to explore processing mechanism of three auditory Oddball paradigms in the brain. Chin. J. Rehabil. Med. 2017, 32, 613–617+666. [Google Scholar]
- Zhou, L.; Du, Y.; Duan, D. Research on Weak EEG Signal Extraction Method. Tech. Autom. Appl. 2022, 41, 97–100. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, M.; Gao, N.; Zhu, S.; Qu, J. Human-computer interaction: Intention recognition based on EEG and eye tracking. Acta Aeronaut. Astronaut. Sin. 2021, 42, 292–302. [Google Scholar]
- Zhou, F.; Yao, L.; Qian, Z. Research on EEG’s Multi-parameter Visualization System. Life Sci. Instrum. 2019, 17, 73–76. [Google Scholar]
- Liu, H.; Wang, F.; Zhang, D. Inspiring Real-Time Evaluation and Optimization of Human-Robot Interaction with Psychological Findings from Human-Human Interaction. Appl. Sci. 2023, 13, 676. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, B.; Zhang, T. Aesthetic study of patterns based on event-related potential and eye-tracking: Taking the decorative patterns of the Tang dynasty as an example. J. Soc. Inf. Disp. 2021, 29, 119–129. [Google Scholar] [CrossRef]
- Wu, W.; Sun, Y.; Zhang, X. Design of Cockpit Warning Information Based on EEG. Avion. Technol. 2022, 53, 17–23. [Google Scholar]
- Zhang, Y.; Luo, M.; Luo, Y.; Xu, X. Intelligent wheelchair human-machine interaction using a/β wave of EEG. J. Huazhong Univ. Sci. Technol. Nat. Sci. Ed. 2013, 41, 109–114. [Google Scholar] [CrossRef]
- Yang, D.; Jiang, R.; Zhang, J.; Wang, P.; Wang, Z. User Perception-oriented Interactive Experience of Children’s Rehabil litation Products. Packag. Eng. 2022, 43, 150–159. [Google Scholar] [CrossRef]
- Ma, J.; Zhang, Y.; Cichocki, A.; Matsuno, F. A Novel EOG/EEG Hybrid Human-Machine Interface Adopting Eye Movements and ERPs: Application to Robot Control. IEEE Trans. Biomed. Eng. 2015, 62, 876–889. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Shen, L. Analysis of the cognitive of southern official hat chair styling features based on eye tracking. J. Cent. South Univ. For. Technol. 2017, 37, 146–152. [Google Scholar] [CrossRef]
- Huang, Y.; Ma, W.; Yang, Y. Eye Movement Experiment Research on Users’ Aesthetic Preferences of Car Seats. In Proceedings of the 13th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 12–13 December 2020; pp. 310–313. [Google Scholar]
- Ding, Y.; Guo, F.; Zhang, X.; Qu, Q.; Liu, W. Using event related potentials to identify a user’s behavioural intention aroused by product form design. Appl. Ergon. 2016, 55, 117–123. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.P.; Peng, Y.B.; Wan, X.A. The color-flavor incongruency effect in visual search for food labels: An eye-tracking study. Food Qual. Prefer. 2021, 88, 104078. [Google Scholar] [CrossRef]
- Chassy, P.; Lindell, T.A.E.; Jones, J.A.; Paramei, G.V. A Relationship Between Visual Complexity and Aesthetic Appraisal of Car Front Images: An Eye-Tracker Study. Perception 2015, 44, 1085–1097. [Google Scholar] [CrossRef]
- Barros, R.Q.; Tavares, A.S.; Albuquerque, W.; da Silva, J.C.; de Lemos, I.A.; Siqueira de Albuquerque Cardoso, R.L.; Soares, M.M.; Cairrao, M.R. Analysis of Product Use by Means of Eye Tracking and EEG: A Study of Neuroergonomics. In Proceedings of the 5th International Conference on Design, User Experience, and Usability (DUXU) held as part of 18th International Conference on Human-Computer Interaction (HCI International), Toronto, ON, Canada, 17–22 July 2016; pp. 539–548. [Google Scholar]
- Moridis, C.N.; Terzis, V.; Economides, A.A.; Karlovasitou, A.; Karabatakis, V.E. Using EEG Frontal Asymmetry to Predict IT User’s Perceptions Regarding Usefulness, Ease of Use and Playfulness. Appl. Psychophysiol. Biofeedback 2018, 43, 1–11. [Google Scholar] [CrossRef]
- Arapakis, I.; Barreda-Angeles, M.; Pereda-Banos, A. Interest as a Proxy of Engagement in News Reading: Spectral and Entropy Analyses of EEG Activity Patterns. IEEE Trans. Affect. Comput. 2019, 10, 100–114. [Google Scholar] [CrossRef]
- Gollan, J.K.; Hoxha, D.; Chihade, D.; Pflieger, M.E.; Rosebrock, L.; Cacioppo, J. Frontal alpha EEG asymmetry before and after behavioral activation treatment for depression. Biol. Psychol. 2014, 99, 198–208. [Google Scholar] [CrossRef]
- Stergiadis, C.; Kostaridou, V.D.; Veloudis, S.; Kazis, D.; Klados, M.A. A Personalized User Authentication System Based on EEG Signals. Sensors 2022, 22, 6929. [Google Scholar] [CrossRef]
- Deng, L.; Chen, B.; Pang, Q.; Wen, R.; Xie, B. Application of EEG Technology in Emotional Design of Cultural and Creative Products. J. Graph. 2018, 39, 327–332. [Google Scholar]
- Wang, Y.H.; Yu, S.H.; Ma, N.; Wang, J.L.; Hu, Z.G.; Liu, Z.; He, J.B. Prediction of product design decision Making: An investigation of eye movements and EEG features. Adv. Eng. Inform. 2020, 45, 101095. [Google Scholar] [CrossRef]
- Ashraf, J.; Hussain, O.K.; Hussain, F.K. Empirical analysis of domain ontology usage on the Web: eCommerce domain in focus. Concurr. Comput. Pract. Exp. 2014, 26, 1157–1184. [Google Scholar] [CrossRef]
- Wu, O.; Chen, Y.; Li, B.; Hu, W. Evaluating the visual quality of web pages using a computational aesthetic approach. In Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, Hong Kong, China, 9–12 February 2011; pp. 337–346. [Google Scholar]
- Diego-Mas, J.A.; Garzon-Leal, D.; Poveda-Bautista, R.; Alcaide-Marzal, J. User-interfaces layout optimization using eye-tracking, mouse movements and genetic algorithms. Appl. Ergon. 2019, 78, 197–209. [Google Scholar] [CrossRef]
- Guo, F.; Jiang, J.-Y.; Tian, X.-H.; Chen, J.-H. Applying Event-Related Potentials to Measure Perceptual Experience toward the Navigation Interface of a Mobile Game for Improving the Design. Symmetry 2019, 11, 710. [Google Scholar] [CrossRef]
- Wang, S.; Xu, C.H.; Xiao, L.; Ding, A.S. The Implicit Aesthetic Preference for Mobile Marketing Interface Layout-An ERP Study. Front. Hum. Neurosci. 2021, 15, 728895. [Google Scholar] [CrossRef]
- Hou, W.; Qin, Y. Mobile Typical Interface Structure Based on Eye-Tracking Browsing Rules. J. Beijing Univ. Posts Telecommun. Soc. Sci. Ed. 2014, 16, 25–30. [Google Scholar]
- An, L. Research on human-computer interaction experiment of university library WeChat public platform. Sci. Technol. Innov. 2022, 22, 19–21+28. [Google Scholar] [CrossRef]
- Hou, K.-C.; Ho, C.-H. A preliminary study on aesthetic of apps icon design. In Proceedings of the IASDR 2013 5th International Congress of International Association of Societies of Design Research, Tokyo, Japan, 26–30 August 2013; pp. 1–12. [Google Scholar]
- Pan, L. Research on Cognitive Performance and EEG Index Evaluation Method of Digital Interface Graphics and Text. Master’s Thesis, Southeast University, Nanjing, China, 2018. [Google Scholar]
- Liu, J.; Ji, J.; Zhu, T.; Wang, Y.; Chan, L. APP Usability of Terminal Communication Operators Based on Eye-Tracking Technology. Packag. Eng. 2022, 43, 87–94. [Google Scholar] [CrossRef]
- Niu, Y.F.; Shi, B.Z.; Qiu, L.C.; Li, B.; Shen, Q.Y.; Xue, C.Q. Research on Binding Memory of Icon Features Based on Event-related Potential. In Proceedings of the 9th Asia Conference on Mechanical and Aerospace Engineering (ACMAE), Singapore, 29–31 December 2018. [Google Scholar]
- Fang, Q. Research on ERP Visual Cognition and Graphic Feature Measurement of Icon Aesthetics. Master’s Thesis, Huaqiao University, Quanzhou, China, 2022. [Google Scholar]
- Carmel, D.; Bentin, S. Domain specificity versus expertise: Factors influencing distinct processing of faces. Cognition 2002, 83, 1–29. [Google Scholar] [CrossRef]
- Wu, Z.; Jin, T.; Gu, H.; Ming, C. Effects of Luminance Contrast and Combinations on IVIS Inter face Cognition. Packag. Eng. 2022, 43, 108–114. [Google Scholar] [CrossRef]
- Wu, Q.; Tan, Z.; Liu, J. Experimental study on the relationship between the harmony and cognitive load of business intelligence dashboard color combinations. Color Res. Appl. 2022, 47, 920–941. [Google Scholar] [CrossRef]
- Liu, Z.; Lv, Y.; Xiao, Y. Research on the Exhibition Mode of Airport Cultural Space Based on Visual Attraction in Interest Area: Take Guangzhou Baiyun International Airport as an Example. In Proceedings of the 2022 National Conference on Teaching and Research of Architectural Digital Technology and DADA2022 Conference on Digital Architecture, Xiamen, China, Nanjing, China, 16–18 September 2022; p. 5. [Google Scholar]
- Tang, S.; He, G.; Ma, Z. Research of Spatial Cognition Based on the Synchronous Detection of EEG and Eye Movement in the Underground Public Space. Huazhong Archit. 2023, 41, 56–59. [Google Scholar] [CrossRef]
- Ahn, S.; Nguyen, T.; Jang, H.; Kim, J.G.; Jun, S.C. Exploring Neuro-Physiological Correlates of Drivers’ Mental Fatigue Caused by Sleep Deprivation Using Simultaneous EEG, ECG, and fNIRS Data. Front. Hum. Neurosci. 2016, 10, 219. [Google Scholar] [CrossRef] [PubMed]
- Ohkubo, T.; Yamamaru, K.; Koshimizu, S. Development of the impression detection system by using a portable EEG device for tourist impression analysis. In Proceedings of the Joint 10th International Conference on Soft Computing and Intelligent Systems (SCIS)/19th International Symposium on Advanced Intelligent Systems (ISIS), Toyama, Japan, 5–8 December 2018; pp. 1277–1282. [Google Scholar]
- Leng, J.; Xing, Y. Spatial Quality Analysis of Traditional Villages Based on Eye Tracking Technology. World Archit. 2022, 2022, 38–39. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Wang, M. Optimization Design of Urban Tunnel Lighting. J. Chongqing Jiaotong Univ. Nat. Sci. 2020, 39, 76–80+91. [Google Scholar]
- Guo, Y.; Fu, R.; Zhang, J.; Yuan, W. Fixation distribution of driver while driving through passageways with different widths. J. Traffic Transp. Eng. 2006, 6, 51–54. [Google Scholar]
- Jagerbrand, A.K.; Antonson, H.; Ahlstrom, C. Speed reduction effects over distance of animal-vehicle collision countermeasures—A driving simulator study. Eur. Transp. Res. Rev. 2018, 10, 40. [Google Scholar] [CrossRef]
- Qi, C.; Wang, X.; Zhu, S.; Li, H. Traffic Engineering Facility Information Threshold Based on Driver’s Visual Area of Interest. J. Chongqing Jiaotong Univ. Nat. Sci. 2021, 40, 53–60. [Google Scholar]
- Liu, B.L.; Wang, Z.N.; Song, G.J.; Wu, G.N. Cognitive processing of traffic signs in immersive virtual reality environment: An ERP study. Neurosci. Lett. 2010, 485, 43–48. [Google Scholar] [CrossRef]
- Hou, G.H.; Lu, G.Y. Semantic processing and emotional evaluation in the traffic sign understanding process: Evidence from an event-related potential study. Transp. Res. Part F Traffic Psychol. Behav. 2018, 59, 236–243. [Google Scholar] [CrossRef]
- Zhu, Q.; Wu, F.; Bai, H.; Li, Y. Influence of Visual Stimuli on Driving Behavior in the form of Linear Spatial Layout of Urban Expressway Median Strip. China J. Highw. Transp. 2022, 35, 239–251. [Google Scholar] [CrossRef]
- Ma, Y.; Zhao, J. Influences of Spatial Physical Order on Badminton Players’ Sports Moral Judgement Based on ERP. J. Wuhan Sport. Univ. 2023, 57, 77–84. [Google Scholar] [CrossRef]
- Shan, Z.; Wei, T.; Yang, Y. An image segmentation compression method based on visual entropy. Chin. J. Eng. 2000, 22, 185–189. [Google Scholar] [CrossRef]
- Devlin, S.P.; Brown, N.L.; Drollinger, S.; Sibley, C.; Alami, J.; Riggs, S.L. Scan-based eye tracking measures are predictive of workload transition performance. Appl. Ergon. 2022, 105, 103829. [Google Scholar] [CrossRef]
- Zhao, X.; Du, H.; Rong, J. An ldentification Method of Fatigue Driving Based on ROC Curves. J. Transp. Inf. Saf. 2014, 32, 88–94. [Google Scholar]
- Guo, F.; Chen, J.H.; Li, M.M.; Ye, G.Q.; Li, J.Y. How Do Expert Reviews and Consumer Reviews Affect Purchasing Decisions? An Event-Related Potential Study. J. Neurosci. Psychol. Econ. 2022, 15, 101–118. [Google Scholar] [CrossRef]
- Behe, B.K.; Fernandez, R.T.; Huddleston, P.T.; Minahan, S.; Getter, K.L.; Sage, L.; Jones, A.M. Practical Field Use of Eye-tracking Devices for Consumer Research in the Retail Environment. Horttechnology 2013, 23, 517–524. [Google Scholar] [CrossRef]
- Bialkova, S.; Grunert, K.G.; van Trijp, H. From desktop to supermarket shelf: Eye-tracking exploration on consumer attention and choice. Food Qual. Prefer. 2020, 81, 103839. [Google Scholar] [CrossRef]
- Khushaba, R.N.; Wise, C.; Kodagoda, S.; Louviere, J.; Kahn, B.E.; Townsend, C. Consumer neuroscience: Assessing the brain response to marketing stimuli using electroencephalogram (EEG) and eye tracking. Expert Syst. Appl. 2013, 40, 3803–3812. [Google Scholar] [CrossRef]
- Jones, W.J.; Childers, T.L.; Jiang, Y. The shopping brain: Math anxiety modulates brain responses to buying decisions. Biol. Psychol. 2012, 89, 201–213. [Google Scholar] [CrossRef]
- Cherubino, P.; Caratu, M.; Modica, E.; Rossi, D.; Trettel, A.; Maglione, A.G.; Della Casa, R.; Dall’Olio, M.; Quadretti, R.; Babiloni, F. Assessing Cerebral and Emotional Activity During the Purchase of Fruit and Vegetable Products in the Supermarkets. In Proceedings of the Conference on Computational Methods in Experimental Economics (CMEE), Szczecin, Poland, 30 November–1 December 2016; pp. 293–307. [Google Scholar]
- Etienne, A.; Laroia, T.; Weigle, H.; Afelin, A.; Kelly, S.K.; Krishnan, A.; Grover, P. Novel Electrodes for Reliable EEG Recordings on Coarse and Curly Hair. In Proceedings of the 42nd Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (EMBC), Montreal, QC, Canada, 20–24 July 2020; pp. 6151–6154. [Google Scholar]
- Pugach, C.; Leder, H.; Graham, D.J. How Stable Are Human Aesthetic Preferences Across the Lifespan? Front. Hum. Neurosci. 2017, 11, 289. [Google Scholar] [CrossRef]
- Boccia, M.; Barbetti, S.; Piccardi, L.; Guariglia, C.; Ferlazzo, F.; Giannini, A.M.; Zaidel, D.W. Where does brain neural activation in aesthetic responses to visual art occur? Meta-analytic evidence from neuroimaging studies. Neurosci. Biobehav. Rev. 2016, 60, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, V.U.; Adachi, I.; Matsuzawa, T. Visuoauditory mappings between high luminance and high pitch are shared by chimpanzees (Pan troglodytes) and humans. Proc. Natl. Acad. Sci. USA 2011, 108, 20661–20665. [Google Scholar] [CrossRef] [PubMed]
- Simner, J.; Cuskley, C.; Kirby, S. What sound does that taste? Cross-modal mappings across gustation and audition. Perception 2010, 39, 553–569. [Google Scholar] [CrossRef] [PubMed]
- Maurer, D.; Pathman, T.; Mondloch, C.J. The shape of boubas: Sound-shape correspondences in toddlers and adults. Dev. Sci. 2006, 9, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Oberfeld, D.; Hecht, H.; Allendorf, U.; Wickelmaier, F. Ambient Lighting Modifies the Flavor of Wine. J. Sens. Stud. 2009, 24, 797–832. [Google Scholar] [CrossRef]
- Krishna, A. An integrative review of sensory marketing: Engaging the senses to affect perception, judgment and behavior. J. Consum. Psychol. 2012, 22, 332–351. [Google Scholar] [CrossRef]
- Guéguen, N. The effect of glass colour on the evaluation of a beverage’s thirst-quenching quality. Curr. Psychol. Lett. Behav. Brain Cogn. 2003, 2, 11. [Google Scholar] [CrossRef]
- Iigaya, K.; O’Doherty, J.P.; Starr, G.G. Progress and Promise in Neuroaesthetics. Neuron 2020, 108, 594–596. [Google Scholar] [CrossRef]
- Ramirez-Zamora, A.; Giordano, J.; Gunduz, A.; Alcantara, J.; Cagle, J.N.; Cernera, S.; Difuntorum, P.; Eisinger, R.S.; Gomez, J.; Long, S.; et al. Proceedings of the Seventh Annual Deep Brain Stimulation Think Tank: Advances in Neurophysiology, Adaptive DBS, Virtual Reality, Neuroethics and Technology. Front. Hum. Neurosci. 2020, 14, 54. [Google Scholar] [CrossRef]
- Yu, J.; Zhao, L. A novel deep CNN method based on aesthetic rule for user preferential images recommendation. J. Appl. Sci. Eng. 2021, 24, 49–55. [Google Scholar]
- van Houdt, P.J.; Ossenblok, P.P.W.; Colon, A.J.; Boon, P.A.J.M.; de Munck, J.C. A framework to integrate EEG-correlated fMRI and intracerebral recordings. Neuroimage 2012, 60, 2042–2053. [Google Scholar] [CrossRef]
- Hussain, I.; Park, S.J. Big-ECG: Cardiographic Predictive Cyber-Physical System for Stroke Management. IEEE Access 2021, 9, 123146–123164. [Google Scholar] [CrossRef]
- Hussain, I.; Young, S.; Park, S.-J. Driving-Induced Neurological Biomarkers in an Advanced Driver-Assistance System. Sensors 2021, 21, 6985. [Google Scholar] [CrossRef]
- Zhao, M.; Gao, H.; Wang, W.; Qu, J. Research on Human-Computer Interaction Intention Recognition Based on EEG and Eye Movement. IEEE Access 2020, 8, 145824–145832. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Lv, J. Review of Studies on User Research Based on EEG and Eye Tracking. Appl. Sci. 2023, 13, 6502. https://doi.org/10.3390/app13116502
Zhu L, Lv J. Review of Studies on User Research Based on EEG and Eye Tracking. Applied Sciences. 2023; 13(11):6502. https://doi.org/10.3390/app13116502
Chicago/Turabian StyleZhu, Ling, and Jiufang Lv. 2023. "Review of Studies on User Research Based on EEG and Eye Tracking" Applied Sciences 13, no. 11: 6502. https://doi.org/10.3390/app13116502
APA StyleZhu, L., & Lv, J. (2023). Review of Studies on User Research Based on EEG and Eye Tracking. Applied Sciences, 13(11), 6502. https://doi.org/10.3390/app13116502