Associations between Genetic Variants in DAB, PRKAG, and DACH Genes and Gender in Chronic Kidney Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Biochemical Analyses
2.3. Genotyping
2.4. Sequencing
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boger, C.A.; Gorski, M.; Li, M.; Hoffmann, M.M.; Huang, C.; Yang, Q.; Teumer, A.; Krane, V.; O’Seaghdha, C.M.; Kutalik, Z.; et al. Association of egfr-related loci identified by gwas with incident ckd and esrd. PLoS Genet. 2011, 7, e1002292. [Google Scholar] [CrossRef] [PubMed]
- Kovesdy, C.P. Epidemiology of chronic kidney disease: An update 2022. Kidney Int. Suppl. 2022, 12, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Bash, L.D.; Coresh, J.; Kottgen, A.; Parekh, R.S.; Fulop, T.; Wang, Y.; Astor, B.C. Defining incident chronic kidney disease in the research setting: The aric study. Am. J. Epidemiol. 2009, 170, 414–424. [Google Scholar] [CrossRef]
- Ricardo, A.C.; Yang, W.; Sha, D.; Appel, L.J.; Chen, J.; Krousel-Wood, M.; Manoharan, A.; Steigerwalt, S.; Wright, J.; Rahman, M.; et al. Sex-related disparities in ckd progression. J. Am. Soc. Nephrol. 2019, 30, 137–146. [Google Scholar] [CrossRef]
- Nagamani, S.; Perumal, M.S.; Perumal, R.S.L.; Kesavan, C.; Muthusamy, K. ACE DD genotype associated with the female chronic kidney disease patients of tamilnadu population. Egypt. J. Med. Hum. Genet. 2015, 16, 29–33. [Google Scholar] [CrossRef]
- Qiu, C.; Huang, S.; Park, J.; Park, Y.; Ko, Y.A.; Seasock, M.J.; Bryer, J.S.; Xu, X.X.; Song, W.C.; Palmer, M.; et al. Renal compartment-specific genetic variation analyses identify new pathways in chronic kidney disease. Nat. Med. 2018, 24, 1721–1731. [Google Scholar] [CrossRef]
- Endlich, N.; Kliewe, F.; Kindt, F.; Schmidt, K.; Kotb, A.M.; Artelt, N.; Lindenmeyer, M.T.; Cohen, C.D.; Doring, F.; Kuss, A.W.; et al. The transcription factor dach1 is essential for podocyte function. J. Cell. Mol. Med. 2018, 22, 2656–2669. [Google Scholar] [CrossRef]
- Wu, K.; Yuan, X.; Pestell, R. Endogenous Dach1 in cancer. Oncoscience 2015, 2, 803–804. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, Y.; Zhang, W.; Popov, V.M.; Wang, M.; Pattabiraman, N.; Suñé, C.; Cvekl, A.; Wu, K.; Jiang, J.; et al. Transcription elongation regulator 1 is a co-integrator of the cell fate determination factor Dachshund homolog 1. J. Biol. Chem. 2010, 285, 40342–40350. [Google Scholar] [CrossRef]
- Wu, K.; Li, A.; Rao, M.; Liu, M.; Dailey, V.; Yang, Y.; Di Vizio, D.; Wang, C.; Lisanti, M.P.; Sauter, G.; et al. DACH1 is a cell fate determination factor that inhibits cyclin D1 and breast tumor growth. Mol. Cell. Biol. 2006, 26, 7116–7129. [Google Scholar] [CrossRef]
- Cao, A.; Li, J.; Asadi, M.; Basgen, J.M.; Zhu, B.; Yi, Z.; Jiang, S.; Doke, T.; El Shamy, O.; Patel, P.; et al. DACH1 protects podocytes from experimental diabetic injury and modulates PTIP-H3K4Me3 activity. J. Clin. Investig. 2021, 131, e141279. [Google Scholar] [CrossRef]
- Doke, T.; Huang, S.; Qiu, C.; Liu, H.; Guan, Y.; Hu, H.; Ma, Z.; Wu, J.; Miao, Z.; Sheng, X.; et al. Transcriptome-wide association analysis identifies dach1 as a kidney disease risk gene that contributes to fibrosis. J. Clin. Investig. 2021, 131, e141801. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Zhao, H.; Zhao, D.; Li, L.; Du, L. Functional prediction of chronic kidney disease susceptibility gene prkag2 by comprehensively bioinformatics analysis. Front. Genet. 2018, 9, 573. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- National Kidney, F. K/doqi clinical practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Am. J. Kidney Dis. 2002, 39, S1–S266. [Google Scholar]
- Liew, M.; Pryor, R.; Palais, R.; Meadows, C.; Erali, M.; Lyon, E.; Wittwer, C. Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clin. Chem. 2004, 50, 1156–1164. [Google Scholar] [CrossRef] [PubMed]
- Er, T.K.; Chang, J.G. High-resolution melting: Applications in genetic disorders. Clin. Chim. Acta 2012, 414, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Hosaka, K.; Takeda, T.; Iino, N.; Hosojima, M.; Sato, H.; Kaseda, R.; Yamamoto, K.; Kobayashi, A.; Gejyo, F.; Saito, A. Megalin and nonmuscle myosin heavy chain iia interact with the adaptor protein disabled-2 in proximal tubule cells. Kidney Int. 2009, 75, 1308–1315. [Google Scholar] [CrossRef]
- Kottgen, A.; Pattaro, C.; Boger, C.A.; Fuchsberger, C.; Olden, M.; Glazer, N.L.; Parsa, A.; Gao, X.; Yang, Q.; Smith, A.V.; et al. New loci associated with kidney function and chronic kidney disease. Nat. Genet. 2010, 42, 376–384. [Google Scholar] [CrossRef]
- Ko, Y.A.; Yi, H.; Qiu, C.; Huang, S.; Park, J.; Ledo, N.; Kottgen, A.; Li, H.; Rader, D.J.; Pack, M.A.; et al. Genetic-variation-driven gene-expression changes highlight genes with important functions for kidney disease. Am. J. Hum. Genet. 2017, 100, 940–953. [Google Scholar] [CrossRef]
- Burwinkel, B.; Scott, J.W.; Buhrer, C.; van Landeghem, F.K.; Cox, G.F.; Wilson, C.J.; Grahame Hardie, D.; Kilimann, M.W. Fatal congenital heart glycogenosis caused by a recurrent activating r531q mutation in the gamma 2-subunit of amp-activated protein kinase (prkag2), not by phosphorylase kinase deficiency. Am. J. Hum. Genet. 2005, 76, 1034–1049. [Google Scholar] [CrossRef] [PubMed]
- Chambers, J.C.; Zhang, W.; Lord, G.M.; van der Harst, P.; Lawlor, D.A.; Sehmi, J.S.; Gale, D.P.; Wass, M.N.; Ahmadi, K.R.; Bakker, S.J.; et al. Genetic loci influencing kidney function and chronic kidney disease. Nat. Genet. 2010, 42, 373–375. [Google Scholar] [CrossRef] [PubMed]
- Hinson, J.T.; Chopra, A.; Lowe, A.; Sheng, C.C.; Gupta, R.M.; Kuppusamy, R.; O’Sullivan, J.; Rowe, G.; Wakimoto, H.; Gorham, J.; et al. Integrative analysis of prkag2 cardiomyopathy ips and microtissue models identifies ampk as a regulator of metabolism, survival, and fibrosis. Cell. Rep. 2017, 19, 2410. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Gray, A.; Hardie, D.G.; Uzun, A.; Shaw, S.; Padbury, J.; Phornphutkul, C.; Tseng, Y.T. A novel, de novo mutation in the prkag2 gene: Infantile-onset phenotype and the signaling pathway involved. Am. J. Physiol. Heart Circ. Physiol. 2017, 313, H283–H292. [Google Scholar] [CrossRef] [PubMed]
- Okada, Y.; Sim, X.; Go, M.J.; Wu, J.Y.; Gu, D.; Takeuchi, F.; Takahashi, A.; Maeda, S.; Tsunoda, T.; Chen, P.; et al. Meta-analysis identifies multiple loci associated with kidney function-related traits in east asian populations. Nat. Genet. 2012, 44, 904–909. [Google Scholar] [CrossRef]
- Cheema, A.K.; Li, T.; Liuzzi, J.P.; Zarini, G.G.; Dorak, M.T.; Huffman, F.G. Genetic associations of ppargc1a with type 2 diabetes: Differences among populations with african origins. J. Diabetes Res. 2015, 2015, 921274. [Google Scholar] [CrossRef]
Target Gene | NCBI SNP | Primer | Sequence (5′ to 3′) |
---|---|---|---|
PRKAG2 | rs7805747 | Forward | CTAAGAGGGCACCGCTCAC |
Reverse | GACATCTCCATGTGTGTATCTGG | ||
DAB2 | rs11959928 | Forward | CATGTTGGCTCTGCCAGTAA |
Reverse | ACATGTCCGAGTCCCTTCAC | ||
DACH1 | rs626277 | Forward | GACTTTTTAAACCAAAGCACCAA |
Reverse | GGTTGAAAGTACTATGAGATCATTACA |
Controls | Patients | |||||
---|---|---|---|---|---|---|
Total | Female | Male | Total | Female | Male | |
No. of subjects | 218 | 129 | 89 | 163 | 95 | 68 |
Age (years) | 49 ± 12.2 | 52 (42.5–56.5) | 46.3 ± 13.3 | 69 ± 11.4 * | 50 ± 11.2 * | 69.1 ± 11.7 |
Hyperlipidemia, n (%) | 155 (71.1) | 100 (77.5) | 56 (62.9) | 103 (63.2) | 64 (67.4) | 42 (61.8) |
Smoking, n (%) | 67 (30.7) | 33 (25.6) | 43 (48.3) | 19 (9.2) * | 5 (5.2) * | 14 (20.6) * |
Hypertension, n (%) | 72 (33) | 62 (48) | 13 (14.6) | 80 (52.1) | 54 (56.8) | 26 (38.2) * |
Diabetes mellitus, n (%) | 21 (9.6) | 15 (11.6) | 10 (11.2) | 61 (37.4) * | 30 (31.6) * | 32 (47) * |
hs-CRP (mg/L) | 2.2 (1.3–3.4) | 2.7 (1.3–5.5) | 1.5 (0.7–3.4) | 3.6 (1.9–6.9) * | 3.5 (1.5–7.6) | 3.9 (1.8–8.7) |
Creatinine (µmol/L) | 72 ± 14.6 | 65.6 ± 12.5 | 82.3 ± 11.6 | 142 (122–163) * | 132 (102–172) * | 161 (128–213) |
eGFR (mL/min/1.73 m2) | 85 (78–91.5) | 83 (71.5–93.5) | 90 ± 17 | 36 ± 13.7 * | 35 ± 14 * | 37.5 ± 13.4 |
BMI (kg/m2) | 27.2 ± 6.4 | 27.4 ± 7.1 | 26.9 ± 5.2 | 30 ± 6.5 * | 30 ± 6.6 * | 30 ± 6.2 |
Gene Symbol (Locus) and Gender | Groups | Wild-Type | Heterozygous | Homozygous | Carrier F | Allele F |
---|---|---|---|---|---|---|
DACH1 (rs626277) | ||||||
Female, n (%) | Patient | 37 (38.9) | 45 (47.4) | 13 (13.7) | 61.4% | 30.2% |
Control | 48 (37.2) | 56 (43.4) | 25 (19.4) | 62.8% | 41.1% | |
p value, OR | 0.9, 1.0 (0.6–1.9) | 0.3, 0.7 (0.3–1.5) | 0.8, 0.9 (0.5–1.6) | 0.4, 0.9 (0.6–1.3) | ||
Male, n (%) | Patient | 27 (39.7) | 31 (45.6) | 10 (14.7) | 60.3% | 37.5% |
Control | 36 (40.4) | 36 (40.4) | 17 (19.1) | 59.5% | 39.3% | |
p value, OR | 0.7, 1.1 (0.6–2.3) | 0.6, 0.8 (0.3–1.98) | 0.9, 1.0 (0.5–1.96) | 0.5, 0.9 (0.6–1.5) | ||
PRKAG2 (rs7805747) | ||||||
Female, n (%) | Patient | 43 (45.3) | 45 (47.4) | 7 (7.4) | 54.8% | 31.1% |
Control | 67 (51.9) | 30 (23.3) | 32 (24.8) | 48.1% | 36.4% | |
p value, OR | 0.006, 2.3 (1.3–4.3) * | 0.019, 0.3 (0.1–0.8) * | 0.3, 1.3 (0.8–2.2) | 0.2, 0.8 (0.5–1.2) | ||
Male, n (%) | Patient | 26 (38.2) | 29 (42.6) | 13 (19.1) | 61.7% | 40.4% |
Control | 49 (55.1) | 26 (29.2) | 14 (15.7) | 44.9% | 30.3% | |
p value, OR | 0.041, 2.1 (1.03–4.3) * | 0.22, 1.7 (0.7–4.3) | 0.038, 1.98 (1.0–3.8) * | 0.06, 1.6 (0.98–2.5) | ||
DAB2 (rs11959928) | ||||||
Female, n (%) | Patient | 16 (16.8) | 48 (50.5) | 31 (32.6) | 83.1% | 57.9% |
Control | 30 (23.3) | 66 (51.2) | 33 (25.6) | 76.8% | 52.7% | |
p value, OR | 0.4, 1.4 (0.7–2.8) | 0.1, 1.8 (0.8–3.8) | 0.2, 1.5 (0.8–2.9) | 0.1, 1.3 (0.9–1.96) | ||
Male, n (%) | Patient | 10 (14.7) | 28 (41.2) | 30 (44.1) | 85.3% | 64.7% |
Control | 25 (28.1) | 47 (52.8) | 17 (19.1) | 71.9% | 45.5% | |
p value, OR | 0.37, 1.5 (0.6–3.55) | 0.002, 4.4 (1.7–11.3) * | 0.049, 2.3 (1.0–5.1) * | 0.001, 2.1 (1.3–3.4) * |
Gene | SNP | Adjustment a | Additive Model | Dominant Model | Recessive Model | |
---|---|---|---|---|---|---|
Group | p-Value, OR (95% CI) | p-Value, OR (95% CI) | p-Value, OR (95% CI) | |||
Females | DACH1 | rs626277 | A | 0.332, 0.821 (0.552–1.223) | 0.264, 0.66 (0.318–1.369) | 0.791, 0.929 (0.538–1.603) |
B | 0.853, 0.944 (0.515–1.73) | 0.837, 1.116 (0.392–3.175) | 0.472, 1.344 (0.601–3.004) | |||
PRKAG2 | rs7805747 | A | 0.019, 0.584 (0.372–0.917) * | 0.001, 0.241 (0.101–0.574) * | 0.324, 1.307 (0.768–2.224) | |
B | 0.382, 0.743 (0.381–1.447) | 0.039, 0.299 (0.095–0.939) * | 0.391, 1.41 (0.644–3.088) | |||
DAB2 | rs11959928 | A | 0.155, 1.327 (0.899–1.96) | 0.249, 1.409 (0.786–2.525) | 0.242, 1.496 (0.762–2.938) | |
B | 0.444, 1.272 (0.687–2.355) | 0.539, 1.317 (0.547–3.173) | 0.485, 1.417 (0.533–3.765) | |||
Males | DACH1 | rs626277 | A | 0.607, 0.886 (0.557–1.408) | 0.471, 0.73 (0.311–1.716) | 0.925, 1.031 (0.542–1.965) |
B | 0.607, 1.211 (0.584–2.508) | 0.927, 1.059 (0.311–3.603) | 0.627, 1.262 (0.494–3.224) | |||
PRKAG2 | rs7805747 | A | 0.219, 1.323 (0.847–2.067) | 0.578, 1.266 (0.551–2.907) | 0.038, 1.979 (1.04–3.765) * | |
B | 0.211, 1.558 (0.777–3.125) | 0.384, 1.758 (0.494–6.264) | 0.014, 3.477 (1.287–9.391) * | |||
DAB2 | rs11959928 | A | 0.002, 2.1 (1.31–3.368) * | 0.001, 3.344 (1.639–6.822) * | 0.049, 2.266 (1.003–5.118) * | |
B | 0.04, 2.125 (1.036–4.356) * | 0.009, 4.199 (1.437–12.27) * | 0.079, 2.8 (0.888–8.828) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kecskemétiné, G.; Zsóri, K.S.; Kőmives, S.; Sohajda, M.; Csiki, Z.; Mátyus, J.; Újhelyi, L.; Balla, J.; Nagy, A.; Shemirani, A.H. Associations between Genetic Variants in DAB, PRKAG, and DACH Genes and Gender in Chronic Kidney Disease. Appl. Sci. 2023, 13, 6633. https://doi.org/10.3390/app13116633
Kecskemétiné G, Zsóri KS, Kőmives S, Sohajda M, Csiki Z, Mátyus J, Újhelyi L, Balla J, Nagy A, Shemirani AH. Associations between Genetic Variants in DAB, PRKAG, and DACH Genes and Gender in Chronic Kidney Disease. Applied Sciences. 2023; 13(11):6633. https://doi.org/10.3390/app13116633
Chicago/Turabian StyleKecskemétiné, Gabriella, Katalin Szilvia Zsóri, Sándor Kőmives, Mária Sohajda, Zoltán Csiki, János Mátyus, László Újhelyi, József Balla, Attila Nagy, and Amir Houshang Shemirani. 2023. "Associations between Genetic Variants in DAB, PRKAG, and DACH Genes and Gender in Chronic Kidney Disease" Applied Sciences 13, no. 11: 6633. https://doi.org/10.3390/app13116633