Preliminary Analysis of the Water Quality Status in an Urban Mediterranean River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sample Collection
2.2. Statistical Analysis
3. Results
3.1. Correlations between the Examined Water Quality Parameters along Kifisos River
3.2. Nutrients’ Statistics per Site
3.3. Physicochemical Fluctuations Analysis per Site
3.4. Variations of E. coli Concentrations per Site
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Dimitriou, E.; Markogianni, V.; Mentzafou, A.; Karaouzas, I.; Zogaris, S. Ecological status assessment of Pikrodafni stream (Attica, Greece), restoration and management measures. Desalin. Water Treat. 2015, 56, 1248–1255. [Google Scholar] [CrossRef]
- Yang, L.; Li, J.; Zhou, K.; Feng, P.; Dong, L. The effects of surface pollution on urban river water quality under rainfall events in Wuqing district, Tianjin, China. J. Clean. Prod. 2021, 293, 126136. [Google Scholar] [CrossRef]
- McGrane, S.J. Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: A review. Hydrol. Sci. J. 2016, 61, 2295–2311. [Google Scholar] [CrossRef]
- Papadaki, C.; Dimitriou, E. River Flow Alterations Caused by Intense Anthropogenic Uses and Future Climate Variability Implications in the Balkans. Hydrology 2021, 8, 7. [Google Scholar] [CrossRef]
- Tomczyk, P.; Wiatkowski, M.; Kuriqi, A. Small Hydropower Plants’ Impacts on the Ecological Status Indicators of Urban Rivers. Appl. Sci. 2022, 12, 12882. [Google Scholar] [CrossRef]
- Patil, P.N. Physico-Chemical Parameters for Testing of Water-A Review IPA-Under Creative Commons License 3.0 Physico-chemical Parameters for Testing of Water—A Review. 2012. Available online: https://www.chemijournal.com/vol3Issue4/pdf/3-3-8.1.pdf (accessed on 27 April 2023).
- Davis, L.J.; Milligan, R.; Stauber, C.E.; Jelks, N.O.; Casanova, L.; Ledford, S.H. Environmental injustice and Escherichia coli in urban streams: Potential for community-led response. Wiley Interdiscip. Rev. Water 2022, 9, e1583. [Google Scholar] [CrossRef]
- Fewtrell, L.; Kay, D. Recreational Water and Infection: A Review of Recent Findings. Curr. Environ. Health Rep. 2015, 2, 85–94. [Google Scholar] [CrossRef]
- Manoli, E.; Samara, C. Polycyclic aromatic hydrocarbons in natural waters: Sources, occurrence and analysis. TrAC Trends Anal. Chem. 1999, 18, 417–428. [Google Scholar] [CrossRef]
- Whitehead, A.; Fraser, C.; Snelder, T.; Walter, K.; Woodward, S.; Zammit, C. Water Quality State and Trends in New Zealand Rivers: Analyses of National Data Ending in 2020; 2021296CH; National Institute of Water & Atmospheric Research Ltd.: Auckland, New Zealand, 2022. Available online: https://environment.govt.nz/publications/water-quality-state-and-trends-in-new-zealand-rivers-analyses-of-national-data-ending-in-2020/ (accessed on 17 March 2023).
- Wiedenmann, A.; Krüger, P.; Dietz, K.; López-Pila, J.M.; Szewzyk, R.; Botzenhart, K. A Randomized Controlled Trial Assessing Infectious Disease Risks from Bathing in Fresh Recreational Waters in Relation to the Concentration of Escherichia coli, Intestinal Enterococci, Clostridium perfringens, and Somatic Coliphages. Environ. Health Perspect. 2006, 114, 228–236. Available online: http://www.jstor.org/stable/3436514 (accessed on 30 May 2023). [CrossRef]
- Bartram, J.; Rees, G. (Eds.) Monitoring Bathing Waters: A Practical Guide to the Design and Implementation of Assessments and Monitoring Programmes, 1st ed.; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar] [CrossRef]
- Mojiri, A.; Zhou, J.L.; Ohashi, A.; Ozaki, N.; Kindaichi, T. Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments. Sci. Total Environ. 2019, 696, 133971. [Google Scholar] [CrossRef]
- Zhang, Y.; Tao, S. Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmospheric Environ. 2009, 43, 812–819. [Google Scholar] [CrossRef]
- Panagopoulos, Y.; Alexakis, D.E.; Skoulikidis, N.T.; Laschou, S.; Papadopoulos, A.; Dimitriou, E. Implementing the CCME Water Quality Index for the Evaluation of the Physicochemical Quality of Greek Rivers. Water 2022, 14, 2738. [Google Scholar] [CrossRef]
- Markogianni, V.; Anastasopoulou, E.; Tsoupras, A.; Dimitriou, E. Identification of Pollution Patterns and Sources in a Semi-Arid Urban Stream. J. Ecol. Eng. 2018, 19, 99–113. [Google Scholar] [CrossRef]
- Mentzafou, A.; Panagopoulos, Y.; Dimitriou, E. Designing the National Network for Automatic Monitoring of Water Quality Parameters in Greece. Water 2019, 11, 1310. [Google Scholar] [CrossRef]
- Skoulikidis, N.; Amaxidis, Y.; Bertahas, I.; Laschou, S.; Gritzalis, K. Analysis of factors driving stream water composition and synthesis of management tools—A case study on small/medium Greek catchments. Sci. Total Environ. 2006, 362, 205–241. [Google Scholar] [CrossRef]
- Skoulikidis, N.T. Defining chemical status of a temporary Mediterranean River. J. Environ. Monit. 2008, 10, 842–852. [Google Scholar] [CrossRef]
- Zeri, C.; Adamopoulou, A.; Koi, A.; Koutsikos, N.; Lytras, E.; Dimitriou, E. Rivers and Wastewater-Treatment Plants as Microplastic Pathways to Eastern Mediterranean Waters: First Records for the Aegean Sea, Greece. Sustainability 2021, 13, 5328. [Google Scholar] [CrossRef]
- Diakakis, M. An inventory of flood events in Athens, Greece, during the last 130 years. Seasonality and spatial distribution. J. Flood Risk Manag. 2013, 7, 332–343. [Google Scholar] [CrossRef]
- Panagiotopoulos, I.; Kapsimalis, V.; Hatzianestis, I.; Kanellopoulos, T.D.; Kyriakidou, C. Environmental status of the metropolitan river (Kifissos) of Athens, Greece. Environ. Earth Sci. 2010, 61, 983–993. [Google Scholar] [CrossRef]
- Koutsoyiannis, D.; Markonis, Y.; Koukouvinos, A.; Papalexiou, S.M.; Mamassis, N.; Dimitriadis, P. Hydrological study of severe rainfall in the Kephisos basin, Greece. In Study of the Management of Kephisos, Commissioner: General Secretariat of Public Works–Ministry of Environment, Planning and Public Works, Contractors; Bensasson, E.N., Karavokiris, D.G., Eds.; Kallipos Open Academic: Athens, Greece, 2010; 154p, Available online: https://www.itia.ntua.gr/en/docinfo/970/ (accessed on 27 April 2023).
- Amirat, L.; Wildeboer, D.; Abuknesha, R.A.; Price, R.G. Escherichia coli contamination of the river Thames. Water Environ. J. 2012, 26, 482–489. [Google Scholar] [CrossRef]
- Mackowiak, M.; Leifels, M.; Hamza, I.; Jurzik, L.; Wingender, J. Distribution of Escherichia coli, coliphages and enteric viruses in water, epilithic biofilms and sediments of an urban river in Germany. Sci. Total Environ. 2018, 626, 650–659. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Liu, Q.; Luo, X.; Zheng, Z. Spatial Regression and Prediction of Water Quality in a Watershed with Complex Pollution Sources. Sci. Rep. 2017, 7, 8318. [Google Scholar] [CrossRef] [PubMed]
- Grzyb, T.; Kulczyk, S. How do ephemeral factors shape recreation along the urban river? A social media perspective. Landsc. Urban Plan. 2023, 230, 104638. [Google Scholar] [CrossRef]
- Argyraki, A.; Paraskos, F.; Marmara, M.; Papadopoulou, K.; Maglaropoulou, A. Comparative geochemistry of three urban streams in Athens: Kifissos-Podoniftis-Pikrodafni. In Proceedings of the 13th International Congress of the Geological Society of Greece, Chania, Greece, 5–8 September 2013; Available online: http://geolib.geo.auth.gr/digeo/index.php/bgsg/article/view/10693 (accessed on 27 April 2023).
- Koutsomitrou, D.; Detsis, V.; Efthimiou, G.; Economou-Amilli, A. Water quality and condition of riverbanks of Kifisos River, Attica, Greece. J. Int. Sci. Publ. Ecol. Saf. 2014, 8, 249–258. Available online: https://www.scientific-publications.net/en/article/1000095/ (accessed on 30 May 2023).
- Adeniji, A.O.; Okoh, O.O.; Okoh, A.I. Levels of Polycyclic Aromatic Hydrocarbons in the Water and Sediment of Buffalo River Estuary, South Africa and Their Health Risk Assessment. Arch. Environ. Contam. Toxicol. 2019, 76, 657–669. [Google Scholar] [CrossRef]
- Piniewski, M.; Marcinkowski, P.; Koskiaho, J.; Tattari, S. The effect of sampling frequency and strategy on water quality modelling driven by high-frequency monitoring data in a boreal catchment. J. Hydrol. 2019, 579, 124186. [Google Scholar] [CrossRef]
- Panagopoulos, Y.; Papadopoulos, A.; Poulis, G.; Nikiforakis, E.; Dimitriou, E. Assessment of an Ultrasonic Water Stage Monitoring Sensor Operating in an Urban Stream. Sensors 2021, 21, 4689. [Google Scholar] [CrossRef]
- Papadaki, C. Chapter 7-Sustainable use of mountain water resources. In Environmental Water Requirements in Mountainous Areas; Dimitriou, E., Papadaki, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 281–292. [Google Scholar] [CrossRef]
- Dimitriou, E. Chapter 8-Technological innovations for the estimation of environmental water requirements. In Environmental Water Requirements in Mountainous Areas; Dimitriou, E., Papadaki, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 293–307. [Google Scholar] [CrossRef]
- Coraggio, E.; Han, D.; Gronow, C.; Tryfonas, T. Water Quality Sampling Frequency Analysis of Surface Freshwater: A Case Study on Bristol Floating Harbour. Front. Sustain. Cities 2022, 3, 791595. [Google Scholar] [CrossRef]
No | Parameter (Unit) | Statistic | p Value * |
---|---|---|---|
1 | pH | 0.972 | 0.182 |
2 | DO (mg/L) | 0.971 | 0.160 |
3 | DIN (mg/L) | 0.961 | 0.054 |
4 | Salinity (ppt) | 0.524 | <0.001 |
5 | TN (mg/L) | 0.953 | 0.027 |
6 | TP (mg/L) | 0.917 | <0.001 |
7 | T (°C) | 0.952 | 0.019 |
8 | EC (μS/cm) | 0.539 | <0.001 |
9 | NO3−-N (mg/L) | 0.944 | 0.006 |
10 | NO2−-N (mg/L) | 0.508 | <0.001 |
11 | NH4+-N (mg/L) | 0.551 | <0.001 |
12 | PO4-P (mg/L) | 0.460 | <0.001 |
13 | E. coli (cfu/100 mL) | 0.604 | <0.001 |
pH | DO | DIN | Salinity | TN | TP | T | EC | NO3−-N | NO2−-N | NH4+-N | PO4-P | E coli | HWQI | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1.00 | |||||||||||||
DO | 0.61 | 1.00 | ||||||||||||
DIN | −0.06 | −0.31 | 1.00 | |||||||||||
Salinity | −0.42 | −0.31 | 0.07 | 1.00 | ||||||||||
TN | −0.04 | −0.29 | −0.01 | 0.03 | 1.00 | |||||||||
TP | −0.07 | −0.31 | 0.49 | −0.12 | 0.49 | −0.23 | ||||||||
T | −0.25 | −0.49 | 0.27 | 0.09 | 0.28 | 0.54 | 1.00 | |||||||
EC | −0.39 | −0.30 | 0.06 | 0.96 | 0.03 | −0.07 | 0.14 | 1.00 | ||||||
NO3−-N | 0.03 | 0.01 | 0.56 | 0.38 | 0.54 | 0.11 | 0.04 | 0.40 | 1.00 | |||||
NO2−-N | −0.17 | −0.43 | 0.59 | 0.10 | 0.60 | 0.33 | 0.27 | 0.10 | 0.06 | 1.00 | ||||
NH4+-N | −0.12 | −0.32 | 0.40 | −0.10 | 0.42 | 0.20 | 0.10 | −0.11 | −0.23 | 0.81 | 1.00 | |||
PO4-P | −0.08 | −0.32 | 0.46 | −0.10 | 0.46 | 0.99 | 0.53 | −0.05 | 0.11 | 0.30 | 0.18 | 1.00 | ||
E coli | 0.00 | −0.35 | 0.16 | −0.18 | 0.19 | −0.03 | 0.16 | −0.19 | −0.17 | 0.45 | 0.48 | −0.06 | 1.00 | |
HWQI | 0.05 | 0.57 | −0.52 | −0.01 | −0.54 | −0.57 | −0.44 | −0.07 | −0.09 | −0.76 | −0.69 | −0.55 | −0.29 | 1.00 |
Site | K EKV | K 5 | K 12 | K 17 | K MD |
---|---|---|---|---|---|
Percentile | 95 | 95 | 95 | 95 | 95 |
Data minimum | 700 | 1640 | 500 | 200 | 100 |
Data maximum | 34,400 | 120,000 | 100,000 | 98,000 | 2700 |
Hazen result | 34,060 | 117,200 | 95,400 | 93,100 | 2616 |
Site/r | T (°C) | EC (μS/cm) | pH | DO (mg/L) |
---|---|---|---|---|
K Ekv | 0.1 | 0.1 | 0.2 | 0.0 |
K 5 | −0.2 | −0.2 | 0.1 | −0.2 |
K 12 | −0.3 | −0.8 | 0.0 | −0.1 |
K 17 | −0.3 | −0.1 | 0.1 | 0.2 |
K MD | −0.1 | −0.8 | −0.3 | 0.0 |
TPAHs (ng/L) | THs (μg/L) | |||
---|---|---|---|---|
Site | September 2021 | February 2022 | September 2021 | February 2022 |
K Εkv | 1272.0 | 112.7 | 382.8 | 20.4 |
K 5 | 4541.6 | 402.8 | 1050 | 84.2 |
K 12 | 147.5 | 168.9 | 91.2 | 54.1 |
K 17 | 106.8 | 728.0 | 924 | 468.0 |
K MD | 145.7 | 17.2 | 55.2 | 8.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadaki, C.; Lagogiannis, S.; Dimitriou, E. Preliminary Analysis of the Water Quality Status in an Urban Mediterranean River. Appl. Sci. 2023, 13, 6698. https://doi.org/10.3390/app13116698
Papadaki C, Lagogiannis S, Dimitriou E. Preliminary Analysis of the Water Quality Status in an Urban Mediterranean River. Applied Sciences. 2023; 13(11):6698. https://doi.org/10.3390/app13116698
Chicago/Turabian StylePapadaki, Christina, Sergios Lagogiannis, and Elias Dimitriou. 2023. "Preliminary Analysis of the Water Quality Status in an Urban Mediterranean River" Applied Sciences 13, no. 11: 6698. https://doi.org/10.3390/app13116698
APA StylePapadaki, C., Lagogiannis, S., & Dimitriou, E. (2023). Preliminary Analysis of the Water Quality Status in an Urban Mediterranean River. Applied Sciences, 13(11), 6698. https://doi.org/10.3390/app13116698