Application of Wood Composites III
Funding
Acknowledgments
Conflicts of Interest
References
- Grebner, D.L.; Bettinger, P.; Siry, J.; Boston, K. Forest products. In Introduction to Forestry and Natural Resources, 2nd ed.; Grebner, D.L., Bettinger, P., Siry, J., Boston, K., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 101–129. [Google Scholar]
- Antov, P.; Lee, S.H.; Lubis, M.A.R.; Kristak, L.; Réh, R. Advanced Eco-Friendly Wood-Based Composites II. Forests 2023, 14, 826. [Google Scholar] [CrossRef]
- Teischinger, A.; Muszynski, L.; Niemz, P.; Ross, R.J.; Sandberg, D. Glossary of Wood Science and Technology Terms. In Springer Handbook of Wood Science and Technology, 1st ed.; Niemz, P., Teischinger, A., Sandberg, D., Eds.; Springer: Cham, Switzerland, 2023; pp. 2005–2026. [Google Scholar]
- Barbu, M.C.; Reh, R.; Irle, M. Wood-based composites. In Research Developments in Wood Engineering and Technology; Aguilera, A., Davim, J.P., Eds.; IGI Global: Hershey, PA, USA, 2014; Chapter 1; pp. 1–45. [Google Scholar]
- Pizzi, A.; Papadopoulos, A.N.; Policardi, F. Wood composites and their polymer binders. Polymers 2020, 12, 1115. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Lum, W.C.; Antov, P.; Kristak, L.; Md Tahir, P. Engineering wood products from Eucalyptus spp. Adv. Mater. Sci. Eng. 2022, 2002, 8000780. [Google Scholar]
- Sandberg, D.; Gorbacheva, G.; Lichtenegger, H.; Niemz, P.; Teischinger, A. Advanced Engineered Wood-Material Concepts. In Springer Handbook of Wood Science and Technology; Niemz, P., Teischinger, A., Sandberg, D., Eds.; Springer Handbooks; Springer: Cham, Switzerland, 2023; pp. 1835–1888. [Google Scholar]
- Grigorov, R.; Mihajlova, J.; Savov, V. Physical and Mechanical Properties of Combined Wood-Bases Panels with Participation of Particles from Vine Sticks in Core Layer. Innov. Wood. Ind. Eng. Des. 2020, 1, 42–52. [Google Scholar]
- Khalaf, Y.; El Hage, P.; Mihajlova, J.; Bergeret, A.; Lacroix, P.; El Hage, R. Influence of agricultural fibers size on mechanical and insulating properties of innovative chitosan-based insulators. Constr. Build. Mater. 2021, 287, 123071. [Google Scholar] [CrossRef]
- Pędzik, M.; Kwidzínski, Z.; Rogozínski, T. Particles from Residue Wood-Based Materials from Door Production as an Alternative Raw Material for Production of Particleboard. Drv. Ind. 2022, 73, 351–357. [Google Scholar] [CrossRef]
- Lee, S.H.; Lum, W.C.; Geng, B.J.; Kristak, L.; Antov, P.; Pędzik, M.; Rogoziński, T.; Taghiyari, H.R.; Lubis, M.A.R.; Fatriasari, W.; et al. Particleboard from agricultural biomass and recycled wood waste: A review. J. Mater. Res. Technol. 2022, 20, 4630–4658. [Google Scholar] [CrossRef]
- Savov, V.; Antov, P.; Zhou, Y.; Bekhta, P. Eco-Friendly Wood Composites: Design, Characterization and Applications. Polymers 2023, 15, 892. [Google Scholar] [CrossRef]
- Koynov, D.; Valyova, M.; Parzhov, E.; Lee, S.H. Utilization of Scots Pine (Pinus sylvestris L.) Timber with Defects in Production of Engineered Wood Products. Drv. Ind. 2023, 74, 71–79. [Google Scholar] [CrossRef]
- Adhikari, S.; Quesada, H.; Bond, B.; Hammett, T. Potential of Hardwood Lumber in Cross Laminated Timber in North America: A CLT Manufacturer’s Perspective. Mass Timber Constr. J. 2020, 3, 1–9. [Google Scholar]
- Heräjärvi, H.; Jouhiaho, A.; Tammiruusu, V.; Verkasalo, E. Small-diameter Scots pine and birch timber as raw materials for engineered wood products. Int. J. For. Eng. 2004, 15, 23–34. [Google Scholar] [CrossRef]
- Papadopoulos, A.N. Advances in Wood Composites III. Polymers 2021, 13, 163. [Google Scholar] [CrossRef]
- Martinka, J.; Mantanis, G.I.; Lykidis, C.; Antov, P.; Rantuch, P. The effect of partial substitution of polyphosphates by aluminium hydroxide and borates on the technological and fire properties of medium density fibreboard. Wood Mater. Sci. Eng. 2021, 17, 720–726. [Google Scholar] [CrossRef]
- Reh, R.; Kristak, L.; Antov, P. Advanced Eco-Friendly Wood-Based Composites. Materials 2022, 15, 8651. [Google Scholar] [CrossRef]
- Savov, V. Nanomaterials to Improve Properties in Wood-Based Composite Panels. In Emerging Nanomaterials; Taghiyari, H.R., Morrell, J.J., Husen, A., Eds.; Springer: Cham, Switzerland, 2023; pp. 135–153. [Google Scholar]
- Kristak, L.; Antov, P.; Bekhta, P.; Lubis, M.A.R.; Iswanto, A.H.; Reh, R.; Sedliacik, J.; Savov, V.; Taghiayri, H.; Papadopoulos, A.N.; et al. Recent Progress in Ultra-Low Formaldehyde Emitting Adhesive Systems and Formaldehyde Scavengers in Wood-Based Panels: A Review. Wood Mater. Sci. Eng. 2023, 18, 763–782. [Google Scholar] [CrossRef]
- Kumar, C.; Leggate, W. An overview of bio-adhesives for engineered wood products. Int. J. Adhes. Adhes. 2022, 118, 103187. [Google Scholar] [CrossRef]
- Lykidis, C. Formaldehyde Emissions from Wood-Based Composites: Effects of Nanomaterials. In Emerging Nanomaterials; Taghiyari, H.R., Morrell, J.J., Husen, A., Eds.; Springer: Cham, Switzerland, 2023; pp. 337–360. [Google Scholar]
- Irle, M.A.; Barbu, M.C.; Réh, R.; Bergland, L.; Rowell, R.M. Wood Composites. In Handbook of Wood Chemistry and Wood Composites; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Sihag, K.; Yadav, S.M.; Lubis, M.A.R.; Poonia, P.K.; Negi, A.; Khali, D.P. Influence of needle-punching treatment and pressure on selected properties of medium density fiberboard made of bamboo (Dendrocalamus strictus Roxb. Nees). Wood Mater. Sci. Eng. 2022, 17, 712–719. [Google Scholar] [CrossRef]
- Nkeuwa, W.N.; Zhang, J.; Semple, K.E.; Chen, M.; Xia, Y.; Dai, C. Bamboo-based composites: A review on fundamentals and processes of bamboo bonding. Compos. Part B Eng. 2022, 235, 109776. [Google Scholar] [CrossRef]
- Yadav, M.; Mathur, A. Bamboo as a sustainable material in the construction industry: An overview. Mater. Today Proc. 2021, 43, 2872–2876. [Google Scholar] [CrossRef]
- Li, H.T.; Zhang, Q.S.; Huang, D.S.; Deeks, A.J. Compressive performance of laminated bamboo. Compos. Part B Eng. 2013, 54, 319–328. [Google Scholar] [CrossRef]
- Xing, W.; Hao, J.; Sikora, K.S. Shear performance of adhesive bonding of cross-laminated bamboo. J. Mater. Civ. Eng. 2019, 31, 04019201. [Google Scholar] [CrossRef]
- Abidin, W.N.S.N.Z.; Al-Edrus, S.S.O.; Hua, L.S.; Ghani, M.A.A.; Bakar, B.F.A.; Ishak, R.; Hiziroglu, S. Properties of Phenol Formaldehyde-Bonded Layered Laminated Woven Bamboo Mat Boards Made from Gigantochloa scortechinii. Appl. Sci. 2022, 13, 47. [Google Scholar] [CrossRef]
- Renner, J.S.; Mensah, R.A.; Jiang, L.; Xu, Q.; Das, O.; Berto, F. Fire behavior of wood-based composite materials. Polymers 2021, 13, 4352. [Google Scholar] [CrossRef] [PubMed]
- Taib, M.N.A.M.; Antov, P.; Savov, V.; Fatriasari, W.; Madyaratri, E.W.; Wirawan, R.; Makovická Osvaldová, L.; Hua, L.S.; Ghani, M.A.A.; Al Edrus, S.S.A.O.; et al. Current progress of biopolymer-based flame retardant. Polym. Degrad. Stabil. 2022, 205, 110153. [Google Scholar] [CrossRef]
- Lian, M.; Huang, Y.; Liu, Y.; Jiang, D.; Wu, Z.; Li, B.; Xu, Q.; Murugadoss, V.; Jiang, Q.; Huang, M.; et al. An overview of regenerable wood-based composites: Preparation and applications for flame retardancy, enhanced mechanical properties, biomimicry, and transparency energy saving. Adv. Compos. Hybrid Mater. 2022, 5, 1612–1657. [Google Scholar] [CrossRef]
- Marková, I.; Ivaničová, M.; Osvaldová, L.M.; Harangózo, J.; Tureková, I. Ignition of Wood-Based Boards by Radiant Heat. Forests 2022, 13, 1738. [Google Scholar] [CrossRef]
- Gašpercová, S.; Marková, I.; Vandlíčková, M.; Osvaldová, L.M.; Svetlík, J. Effect of Protective Coatings on Wooden Elements Exposed to a Small Ignition Initiator. Appl. Sci. 2023, 13, 3371. [Google Scholar] [CrossRef]
- Mitrenga, P.; Vandlíčková, M.; Konárik, M.; Košútová, K. Impact of Heat Treatment of Spruce Wood on Its Fire-Technical Characteristics Based on Density and the Side Exposed to Fire. Appl. Sci. 2022, 12, 6452. [Google Scholar] [CrossRef]
- Atanasov, V.; Kovatchev, G.; Todorov, T. Study of the influence of basic process parameters on the roughness of surfaces during wood milling. In Proceedings of the 10th Hardwood Conference, Sopron, Hungary, 12–14 October 2022; pp. 242–250. [Google Scholar]
- Kminiak, R.; Němec, M.; Igaz, R.; Gejdoš, M. Advisability-Selected Parameters of Woodworking with a CNC Machine as a Tool for Adaptive Control of the Cutting Process. Forests 2023, 14, 173. [Google Scholar] [CrossRef]
- Hortobágyi, Á.; Koleda, P.; Koleda, P.; Kminiak, R. Effect of Milling Parameters on Amplitude Spectrum of Vibrations during Milling Materials Based on Wood. Appl. Sci. 2023, 13, 5061. [Google Scholar] [CrossRef]
- Wilkowski, J.; Barlak, M.; Kwidziński, Z.; Wilczyński, A.; Filipczuk, P.; Pędzik, M.; Drewczyński, M.; Zagórski, J.; Staszkiewicz, B.; Rogoziński, T. Influence of ion implantation on the wear and lifetime of circular saw blades in industrial production of wooden door frames. Appl. Sci. 2022, 12, 10211. [Google Scholar] [CrossRef]
- Antov, P.; Neykov, N.; Savov, V. Effect of Occupational Safety and Health Risk Management on the Rate of Work–Related Accidents in the Bulgarian Furniture Industry. Wood Des. Technol. 2018, 7, 1–9. [Google Scholar]
- Girma, B.; Ejeso, A.; Ashuro, Z.; Birhanie Aregu, M. Occupational Injuries and Associated Factors Among Small-Scale Woodwork Industry Workers in Hawassa, Southern Ethiopia: A Cross-Sectional Study. Environ. Health Insights 2022, 16, 11786302221080829. [Google Scholar] [CrossRef]
- Júda, M.; Sydor, M.; Rogoziński, T.; Kučerka, M.; Pędzik, M.; Kminiak, R. Effect of Low-Thermal Treatment on the Particle Size Distribution in Wood Dust after Milling. Polymers 2023, 15, 1059. [Google Scholar] [CrossRef] [PubMed]
- Kminiak, R.; Kučerka, M.; Kristak, L.; Reh, R.; Antov, P.; Očkajová, A.; Rogoziński, T.; Pędzik, M. Granulometric Characterization of Wood Dust Emission from CNC Machining of Natural Wood and Medium Density Fiberboard. Forests 2021, 12, 1039. [Google Scholar] [CrossRef]
- Dembiński, C.; Potok, Z.; Kučerka, M.; Kminiak, R.; Očkajová, A.; Rogoziński, T. The Flow Resistance of the Filter Bags in the Dust Collector Operating in the Line of Wood-Based Furniture Panels Edge Banding. Appl. Sci. 2022, 12, 5580. [Google Scholar] [CrossRef]
- Dembiński, C.; Potok, Z.; Kučerka, M.; Kminiak, R.; Očkajová, A.; Rogoziński, T. The Dust Separation Efficiency of Filter Bags Used in the Wood-Based Panels Furniture Factory. Materials 2022, 15, 3232. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.H.; Antov, P.; Kristak, L.; Reh, R.; Lubis, M.A.R. Application of Wood Composites III. Appl. Sci. 2023, 13, 6712. https://doi.org/10.3390/app13116712
Lee SH, Antov P, Kristak L, Reh R, Lubis MAR. Application of Wood Composites III. Applied Sciences. 2023; 13(11):6712. https://doi.org/10.3390/app13116712
Chicago/Turabian StyleLee, Seng Hua, Petar Antov, Lubos Kristak, Roman Reh, and Muhammad Adly Rahandi Lubis. 2023. "Application of Wood Composites III" Applied Sciences 13, no. 11: 6712. https://doi.org/10.3390/app13116712
APA StyleLee, S. H., Antov, P., Kristak, L., Reh, R., & Lubis, M. A. R. (2023). Application of Wood Composites III. Applied Sciences, 13(11), 6712. https://doi.org/10.3390/app13116712