Antibacterial Activity of Lysimachia nummularia L. in Oro-Dental Diseases
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Characterisation and Standardization of the Extracts
2.2.1. Determination of Organoleptic Characteristics
2.2.2. Preliminary Research on the Standardization of Extracts
2.3. Determination of Content in Active Principles
2.3.1. Total Polyphenol Content
2.3.2. Chromatographic Analyses
2.4. Pathological Products Analyzed
2.5. Selected Microorganism
2.6. Determination of Bacterial Species Isolated from Pathological Products Taken in the Study
2.7. Testing the Bacterial Sensitivity to the Extracts Taken in the Study Compared to the Antibiotics
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ciavoi, G.; Dobjanschi, L.; Jurca, T.; Osser, G.; Scrobota, I.; Pallag, A.; Muresan, M.E.; Vicas, L.G.; Marian, E.; Bechir, F.; et al. Comparative Effectiveness of a Commercial Mouthwash and an Herbal Infusion in Oral Health Care. Appl. Sci. 2021, 11, 3008. [Google Scholar] [CrossRef]
- Lugo-Flores, M.A.; Quintero-Cabello, K.P.; Palafox-Rivera, P.; Silva-Espinoza, B.A.; Cruz-Valenzuela, M.R.; Ortega-Ramirez, L.A.; Gonzalez-Aguilar, G.A.; Ayala-Zavala, J.F. Plant-Derived Substances with Antibacterial, Antioxidant, and Flavoring Potential to Formulate Oral Health Care Products. Biomedicines 2021, 9, 1669. [Google Scholar] [CrossRef] [PubMed]
- Saliasi, I.; Llodra, J.C.; Bravo, M.; Tramini, P.; Dussart, C.; Viennot, S.; Carrouel, F. Effect of a Toothpaste/Mouthwash Containing Carica papaya Leaf Extract on Interdental Gingival Bleeding: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2018, 15, 2660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braga, A.S.; Abdelbary, M.M.H.; Kim, R.R.; Melo, F.P.d.S.R.d.; Saldanha, L.L.; Dokkedal, A.L.; Conrads, G.; Esteves-Oliveira, M.; Magalhães, A.C. The Effect of Toothpastes Containing Natural Extracts on Bacterial Species of a Microcosm Biofilm and on Enamel Caries Development. Antibiotics 2022, 11, 414. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Luorong, Q.; Hu, K.; Cao, W.; Tao, W.; Liu, H.; Zhang, D. Aqueous Extract of Lysimachia christinae Hance Prevents Cholesterol Gallstone in Mice by Affecting the Intestinal Microflora. J. Microbiol. Biotechnol. 2021, 31, 1272–1280. [Google Scholar] [CrossRef]
- Toth, A.; Riethmuller, E.; Alberti, A.; Vegh, K.; Kery, A. Comparative phytochemical screening of phenoloids in Lysimachia Species. Eur. Chem. Bull. 2012, 1, 27–30. [Google Scholar] [CrossRef]
- Bowles, D. Lysimachia nummularia (Primulaceae): A non-native plant in Ozark springs. Missouriensis 2017, 34, 27–33. [Google Scholar]
- Hanganu, D.; Olah, N.K.; Mocan, A.; Vlase, L.; Benedec, D.; Raita, O.; Toma, C.C. Comparative polyphenolic content and antioxidant activities of two Romanian Lysimachia species. Stud. Rev. Chim. 2016, 67, 227–231. [Google Scholar]
- Pandey, P.; Khan, F.; Qari, H.A.; Oves, M. Rutin (Bioflavonoid) as Cell Signaling Pathway Modulator: Prospects in Treatment and Chemoprevention. Pharmaceuticals 2021, 14, 1069. [Google Scholar] [CrossRef]
- Podolak, I.; Koczurkiewicz, P.; Michalik, M.; Galanty, A.; Zajdel, P.; Janeczko, Z. A new cytotoxic triterpene saponin from Lysimachia nummularia L. Carbohydr. Res. 2013, 375, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Suciu, F.; Stoicescu, I.; Lupu, E.C.; Musuc, A.M.; Popescu, A.; Mititelu, M.; Rosca, A.C.; Dumitrescu, D.E.; Badea, F.C.; Caraiane, A.; et al. HPLC Analysis of Polyphenolic Compounds in Lysimachia nummularia L. and Comparative Determination of Antioxidant Capacity. Appl. Sci. 2023, 13, 2159. [Google Scholar] [CrossRef]
- Deo, P.N.; Deshmukh, R. Oral microbiome: Unveiling the fundamentals. J. Oral Maxillofac. Pathol. 2019, 23, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Jadimurthy, R.; Jagadish, S.; Nayak, S.C.; Kumar, S.; Mohan, C.D.; Rangappa, K.S. Phytochemicals as Invaluable Sources of Potent Antimicrobial Agents to Combat Antibiotic Resistance. Life 2023, 13, 948. [Google Scholar] [CrossRef] [PubMed]
- Kharouf, N.; Sauro, S.; Hardan, L.; Fawzi, A.; Suhanda, I.E.; Zghal, J.; Mancino, D. Impacts of Resveratrol and Pyrogallol on Physicochemical, Mechanical and Biological Properties of Epoxy-Resin Sealers. Bioengineering 2022, 9, 85. [Google Scholar] [CrossRef]
- Migliaccio, A.; Stabile, M.; Bagattini, M.; Triassi, M.; Berisio, R.; De Gregorio, E.; Zarrilli, R. Resveratrol Reverts Tolerance and Restores Susceptibility to Chlorhexidine and Benzalkonium in Gram-Negative Bacteria, Gram-Positive Bacteria and Yeasts. Antibiotics 2022, 11, 961. [Google Scholar] [CrossRef]
- European Pharmacopoeia. Methods in Pharmacognosy, 10th ed.; Council of Europe: Strasbourg, France, 2019. [Google Scholar]
- Stoicescu, I.; Lupu, E.C.; Radu, M.D.; Popescu, A.; Mihai, S. High-Performance Liquid Chromatography—Diode Array Detection (HPLC-DAD) Method for the Determination of Phenolic Compounds of Water Chestnut (Trapa natans L.). Anal. Lett 2022, 55, 2147–2159. [Google Scholar] [CrossRef]
- Crunaire, S.; Marcoux, P.R.; Ngo, K.Q.; Moy, J.P.; Mallard, F.; Tran-Thi, T.H. Discriminating Bacteria with Optical Sensors Based on Functionalized Nanoporous Xerogels. Chemosensors 2014, 2, 171–181. [Google Scholar] [CrossRef] [Green Version]
- Kučić Grgić, D.; Miloloža, M.; Ocelić Bulatović, V.; Ukić, Š.; Slouf, M.; Gajdosova, V. Screening the Efficacy of a Microbial Consortium of Bacteria and Fungi Isolated from Different Environmental Samples for the Degradation of LDPE/TPS Films. Separations 2023, 10, 79. [Google Scholar] [CrossRef]
- Klinker, K.P.; Hidayat, L.K.; Wenzler, E.; Balada-Llasat, J.M.; Motyl, M.; DeRyke, C.A.; Bauer, K.A. Use of Novel Antibiograms to Determine the Need for Earlier Susceptibility Testing and Administration for New β-Lactam/β-Lactamase Inhibitors in the United States. Antibiotics 2022, 11, 660. [Google Scholar] [CrossRef]
- Majeed, Z.; Qudir Javid, M.; Nawazish, S.; Ahmed, B.; Hassan Faiz, A.; Baig, A.; Baig, S.; Mahnashi, M.H.; Jalal, N.A.; Asiri, A.; et al. Clinical Prevalence, Antibiogram Profiling and Gompertz Growth Kinetics of Resistant Staphylococcus epidermidis Treated with Nanoparticles of Rosin Extracted from Pinus roxburghii. Antibiotics 2022, 11, 1270. [Google Scholar] [CrossRef]
- Khan, Z.A.; Siddiqui, M.F.; Park, S. Current and Emerging Methods of Antibiotic Susceptibility Testing. Diagnostics 2019, 9, 49. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, CLSI document M100, 30th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- AlBalawi, A.N.; Elmetwalli, A.; Baraka, D.M.; Alnagar, H.A.; Alamri, E.S.; Hassan, M.G. Chemical Constituents, Antioxidant Potential, and Antimicrobial Efficacy of Pimpinella anisum Extracts against Multidrug-Resistant Bacteria. Microorganisms 2023, 11, 1024. [Google Scholar] [CrossRef]
- Alibi, S.; Crespo, D.; Navas, J. Plant-derivatives small molecules with antibacterial activity. Antibiotics 2021, 10, 231. [Google Scholar] [CrossRef]
- Cortez Nunes, F.; Taillieu, E.; Letra Mateus, T.; Teixeira, S.; Haesebrouck, F.; Amorim, I. Molecular Detection of Metronidazole and Tetracycline Resistance Genes in Helicobacter pylori-Like Positive Gastric Samples from Pigs. Antibiotics 2023, 12, 906. [Google Scholar] [CrossRef] [PubMed]
- Wink, M. Medicinal Plants: A Source of Anti-Parasitic Secondary Metabolites. Molecules 2012, 17, 12771–12791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Ma, W.; Zhou, S.; Liu, K. Lysimachia tianmaensis (Primulaceae), a new species from Anhui, China. PhytoKeys 2018, 98, 117–124. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Camele, I.; Mohamed, A.A. A Comprehensive Review on the Biological, Agricultural and Pharmaceutical Properties of Secondary Metabolites Based-Plant Origin. Int. J. Mol. Sci. 2023, 24, 3266. [Google Scholar] [CrossRef] [PubMed]
- Ionus, E.; Bucur, L.A.; Lupu, C.E.; Gird, C.E. Evaluation of the chemical composition of Ajuga Chamaepitys (L.) schreb. From the spontaneous flora of Romania. Farmacia 2021, 69, 461–466. [Google Scholar] [CrossRef]
- Merlani, M.; Barbakadze, V.; Amiranashvili, L.; Gogilashvili, L.; Poroikov, V.; Petrou, A.; Sokovic, M. New caffeic acid derivatives as antimicrobial agents: Design, synthesis, evaluation and docking. Curr. Top. Med. Chem. 2019, 19, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Pavlíková, N. Caffeic Acid and Diseases—Mechanisms of Action. Int. J. Mol. Sci. 2023, 24, 588. [Google Scholar] [CrossRef]
- Kępa, M.; Miklasińska-Majdanik, M.; Wojtyczka, R.D.; Idzik, D.; Korzeniowski, K.; Smoleń-Dzirba, J.; Wąsik, T.J. Antimicrobial Potential of Caffeic Acid against Staphylococcus aureus Clinical Strains. Biomed Res Int. 2018, 2018, 7413504. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Lyu, X.; Zhang, J.; Shui, Y.; Yang, R.; Xu, X. The Application of Small Molecules to the Control of Typical Species Associated With Oral Infectious Diseases. Front. Cell. Infect. Microbiol. 2022, 12, 816386. [Google Scholar] [CrossRef]
- Li, Z.; Chen, K.; Peng, C.; Chi, F.; Yu, C.; Yang, Q. Antibacterial and antibiofilm activities of chlorogenic acid against Yersinia enterocolitica. Front. Microbiol. 2022, 13, 1178. [Google Scholar]
- Yadav, M.; Kaushik, M.; Roshni, R.; Reddy, P.; Mehra, N.; Jain, V.; Rana, R. Effect of Green Coffee Bean Extract on Streptococcus mutans Count: A Randomised Control Trial. J. Clin. Diagn. Res. 2017, 11, ZC68–ZC71. [Google Scholar] [CrossRef]
- Wan, F.; Zhong, R.; Wang, M.; Zhou, Y.; Chen, Y.; Yi, B.; Hou, F.; Liu, L.; Zhao, Y.; Chen, L.; et al. Caffeic Acid Supplement Alleviates Colonic Inflammation and Oxidative Stress Potentially Through Improved Gut Microbiota Community in Mice. Front Microbiol. 2021, 16, 784211. [Google Scholar] [CrossRef] [PubMed]
- Abedini, E.; Khodadadi, E.; Zeinalzadeh, E.; Moaddab, S.R.; Asgharzadeh, M.; Mehramouz, B.; Dao, S.; Samadi Kafil, H. A Comprehensive Study on the Antimicrobial Properties of Resveratrol as an Alternative Therapy. Evid. Based Complement. Alternat. Med. 2021, 16, 8866311. [Google Scholar] [CrossRef]
- Kang, J.E.; Yoo, N.; Jeon, B.J.; Kim, B.S.; Chung, E.-H. Resveratrol Oligomers, Plant-Produced Natural Products With Anti-virulence and Plant Immune-Priming Roles. Front. Plant Sci. 2022, 13, 885625. [Google Scholar] [CrossRef]
- Duke, S.O. Benefits of Resveratrol and Pterostilbene to Crops and Their Potential Nutraceutical Value to Mammals. Agriculture 2022, 12, 368. [Google Scholar] [CrossRef]
- Al Azzaz, J.; Al Tarraf, A.; Heumann, A.; Da Silva Barreira, D.; Laurent, J.; Assifaoui, A.; Rieu, A.; Guzzo, J.; Lapaquette, P. Resveratrol Favors Adhesion and Biofilm Formation of Lacticaseibacillus paracasei subsp. paracasei Strain ATCC334. Int. J. Mol. Sci. 2020, 21, 5423. [Google Scholar] [CrossRef] [PubMed]
- Hachem, C.E.; Chedid, J.C.A.; Nehme, W.; Kaloustian, M.K.; Ghosn, N.; Sahnouni, H.; Mancino, D.; Haikel, Y.; Kharouf, N. Physicochemical and Antibacterial Properties of Conventional and Two Premixed Root Canal Filling Materials in Primary Teeth. J. Funct. Biomater. 2022, 13, 177. [Google Scholar] [CrossRef] [PubMed]
- El-Telbany, M.; El-Didamony, G.; Askora, A.; Ariny, E.; Abdallah, D.; Connerton, I.F.; El-Shibiny, A. Bacteriophages to Control Multi-Drug Resistant Enterococcus faecalis Infection of Dental Root Canals. Microorganisms 2021, 9, 517. [Google Scholar] [CrossRef] [PubMed]
- Chidambar, C.K.; Shankar, S.M.; Raghu, P.; Gururaj, S.B.; Bushan, K.S. Detection of Enterococcus faecalis in subgingival biofilms of healthy, gingivitis, and chronic periodontitis subjects. J. Indian Soc. Periodontol. 2019, 23, 416–418. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, A.B.; Guner, B.; Karakas, F.P.; Turker, A.U. Evaluation of antibacterial, antitumor, antioxidant activities and phenolic constituents of field-grown and in vitro-grown Lysimachia vulgaris L. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 177–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Wild Bacterial Species | Test Environment | Positive Control—Antibiotics/Antimycotics | Negative Witness |
---|---|---|---|
Streptococcus mitis | Blood agar | Penicillin G (P) | Distilled water |
Staphylococcus aureus | Blood agar | Penicillin G (P) | Distilled water |
Enterococcus | Mueller–Hinton | Ampicillin (AMP) | Distilled water |
Escherichia coli | Mueller–Hinton | Gentamicin (CN) | Distilled water |
Pseudomonas aeruginosa | Mueller–Hinton | Gentamicin (CN) | Distilled water |
Candida albicans | Sabouraud | Fluconazole (FCA), Voriconazole (VOR) | Distilled water |
Parts of Plant | g% Dry Extract ± SD | Organoleptic Characters of the Extracts | |||
---|---|---|---|---|---|
Aspect | Color | Smell | Taste | ||
Lysimachiae herba | 10.0021 ± 0.0421 | powders | reddish-brown | pleasant | pleasant |
Lysimachiae radix | 9.4144 ± 0.0176 | powders | reddish-brown | pleasant | pleasant |
Lysimachiae flores | 7.2132 ± 0.0352 | powders | brown with golden reflexes | pleasant | pleasant |
Species of Bacteria | Reference Source | The Diameter of Inhibition Area of Tested Samples (mm) Mean ± SD | Positive Control—Antibiotic Antifungal | Positive Control—Antibiotic Antifungal | Negative Witness | ||
---|---|---|---|---|---|---|---|
L. herba | L. flores | L. radix | |||||
Streptococcus pyogenes | ATCC 19615 | 5 ± 0.02 | 7 ± 0.03 | 8 ± 0.07, with resistant mutants | Penicillin S ≥ 24 | Erythromycin S ≥ 21 I:16–20 R ≤ 15 | R |
Streptococcus pneumoniae | ATCC 46619 | 5 ± 0.01 | 12 ± 0.03 | 8 ± 0.02 | Amoxicillin S ≥ 20 | Ampicillin S ≥ 24 | R |
Enterococcus sp. | ATCC 23212 | - | - | 17 ± 0.01 with resistant mutants | Amoxicillin S ≥ 17 R ≤ 16 | Ampicillin S ≥ 17 R ≤ 16 | R |
Staphylococcus aureus | ATCC 29213 | 5 ± 0.01 | - | - | Gentamicin S ≥ 15; I:13–14 R ≤ 12 | Erythromycin S ≥ 23 I:14–22 R ≤ 13 | R |
Escherichia coli | ATCC 25922 | 5 ± 0.02 | - | - | Gentamicin S ≥ 15; I:13–14 R ≤ 12 | Ciprofloxacin S ≥ 25 I:19–24 R ≤ 18 | R |
Klebsiella pneumoniae | ATCC 13883 | - | - | - | Gentamicin S ≥ 15; I:13–14 R ≤ 12 | Ciprofloxacin S ≥ 25 I:19–24 R ≤ 18 | R |
Pseudomonas aeruginosa | ATCC 27853 | 7 ± 0.02 with resistant mutants | 7 ± 0.02 | 7 ± 0.02 | Gentamicin S ≥ 15; I:13–14 R ≤ 12 | Ciprofloxacin S ≥ 25 I:19–24 R ≤ 18 | R |
Candida albicans | ATCC 10231 | - | - | - | Fluconazole S ≥ 19; I:15–18 R ≤ 14 | Voriconazole S ≥ 19; I:15–18 R ≤ 14 | R |
Species of Bacteria | The Diameter of Inhibition Area of Tested Samples (mm) Mean ± SD | Positive Control—Antibiotic Diameter (mm) Standards NCCLS | Negative Witness | ||
---|---|---|---|---|---|
L. herba | L. flores | L. radix | |||
Streptococcus mitis | 6 ± 0.02 | 6 ± 0.01 | 6 ± 0.01 | Penicillin S ≥ 24 | Distilled water |
Enterococcus faecalis | 8 ± 0.02 | - | 17 ± 0.01 | Ampicillin S ≥ 17 R ≤ 16 | Distilled water |
Staphylococcus aureus | 8 ± 0.01 with resistant mutants | 8 ± 0.01 with resistant mutants | 8 ± 0.01 with resistant mutants | Gentamicin S ≥ 15; I:13–14 R ≤ 12 | Distilled water |
Escherichia coli | 10 ± 0.01 | - | - | Gentamicin S ≥ 15; I:13–14 R ≤ 12 | Distilled water |
Pseudomonas aeruginosa | 6 ± 0.02 | - | - | Gentamicin S ≥ 15; I:13–14 R ≤ 12 | Distilled water |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suciu, F.; Stoicescu, I.; Lupu, E.C.; Popescu, A.; Roșca, A.C.; Roncea, F.N.; Dumitrescu, D.-E.; Badea, V.; Badea, F.C. Antibacterial Activity of Lysimachia nummularia L. in Oro-Dental Diseases. Appl. Sci. 2023, 13, 6830. https://doi.org/10.3390/app13116830
Suciu F, Stoicescu I, Lupu EC, Popescu A, Roșca AC, Roncea FN, Dumitrescu D-E, Badea V, Badea FC. Antibacterial Activity of Lysimachia nummularia L. in Oro-Dental Diseases. Applied Sciences. 2023; 13(11):6830. https://doi.org/10.3390/app13116830
Chicago/Turabian StyleSuciu, Felicia, Iuliana Stoicescu, Elena Carmen Lupu, Antoanela Popescu, Adrian Cosmin Roșca, Florentina Nicoleta Roncea, Denisa-Elena Dumitrescu, Victoria Badea, and Florin Ciprian Badea. 2023. "Antibacterial Activity of Lysimachia nummularia L. in Oro-Dental Diseases" Applied Sciences 13, no. 11: 6830. https://doi.org/10.3390/app13116830
APA StyleSuciu, F., Stoicescu, I., Lupu, E. C., Popescu, A., Roșca, A. C., Roncea, F. N., Dumitrescu, D.-E., Badea, V., & Badea, F. C. (2023). Antibacterial Activity of Lysimachia nummularia L. in Oro-Dental Diseases. Applied Sciences, 13(11), 6830. https://doi.org/10.3390/app13116830