Parallel-Coupled-Line Bandpass Filter with Notch for Ultra-Wideband (UWB) Applications
Abstract
:1. Introduction
2. UWB Filter Design and Analysis
3. Implementation of Notched Filter
4. Fabrication and Measurements
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FCC. Revision of Part 15 of the Commission’s Rules Regarding Ultra-Wide-Band Transmission System; First Note and Order Federal Communication Commission, ET-Docket 98-153; FCC: Washington, DC, USA, 2002. [Google Scholar]
- Hameed, M.; Xiao, G.; Qiu, L.; Xiong, C.; Hameed, T. Multiple-Mode Wideband Bandpass Filter Using Split Ring Resonators in a Rectangular Waveguide Cavity. Electronics 2018, 7, 356. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Sun, S.; Menzel, W. Ultra-wideband (UWB) bandpass filters using multiple-mode resonator. IEEE Microw. Wirel. Compon. Lett. 2005, 15, 796–798. [Google Scholar]
- Li, R.; Zhu, L. Compact UWB bandpass filter using stub-loaded multiple-mode resonator. IEEE Microw. Wirel. Compon. Lett. 2007, 17, 40–42. [Google Scholar] [CrossRef]
- Wong, S.; Zhu, L. Quadruple-mode UWB bandpass filter with improved out-of-band rejection. IEEE Microw. Wirel. Compon. Lett. 2009, 19, 152–154. [Google Scholar] [CrossRef]
- Deng, H.; Zhao, Y.; Zhang, L.; Zhang, X.; Gao, S. Compact quintuple-mode stub-loaded resonator and UWB filter. IEEE Microw. Wirel. Compon. Lett. 2010, 20, 438–440. [Google Scholar] [CrossRef]
- Chu, Q.; Tian, X. Novel UWB bandpass filters using stub-loaded multiple-mode resonator. IEEE Microw. Wirel. Compon. Lett. 2011, 21, 403–405. [Google Scholar] [CrossRef]
- Qian, K.W.; Tang, X.H. Compact Ultra-Wideband Low-Temperature Co-Fired Ceramic Bandstop Filter Using Semi-Lumped Resonators. Electromagnetics 2012, 32, 193–199. [Google Scholar] [CrossRef]
- Shaman, H.; Almorqi, S.; AlAmoudi, A. Ultra-wideband (UWB) Bandpass Filter with Cascaded Lowpass Filter on Multilayer Liquid-Crystal Polymer (LCP) Substrate. IETE J. Res. 2016, 62, 63–67. [Google Scholar] [CrossRef]
- Li, C.; Ma, Z.; Chen, J.; Wang, M.; Huang, J. Design of a Compact Ultra-Wideband Microstrip Bandpass Filter. Electronics 2023, 12, 1728. [Google Scholar] [CrossRef]
- Jamsai, M.; Angkawisittpan, N.; Nuan-On, A. Design of a Compact Ultra-Wideband Bandpass Filter Using Inductively Compensated Parallel-Coupled Lines. Electronics 2021, 10, 2575. [Google Scholar] [CrossRef]
- La, D.-S.; Guan, X.; Chen, S.-M.; Li, Y.-Y.; Guo, J.-W. Wideband Band-Pass Filter Design Using Coupled Line Cross-Shaped Resonator. Electronics 2020, 9, 2173. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, S. Ultra-Wideband Ridged Half-Mode Folded Substrate-Integrated Waveguide Filters. IEEE Microw. Wirel. Compon. Lett. 2016, 28, 579–581. [Google Scholar] [CrossRef]
- Razzaz, F.; Saeed, S.; Alkanhal, M. Ultra-Wideband Bandpass Filters Using Tapered Resonators. Appl. Sci. 2022, 12, 3699. [Google Scholar] [CrossRef]
- Liu, L.-Q.; Lai, H.-S.; Hu, H.-M.; Chen, J.-J.; Weng, M.-H.; Yang, R.-Y. A Simple Method to Design a UWB Filter with a Notched Band Using Short-Circuit Step Impedance Stubs. Electronics 2022, 11, 1124. [Google Scholar] [CrossRef]
- Shaman, H.; Hong, J.-S. Ultra-Wideband (UWB) bandpass filter with embedded band notch structures. IEEE Microw. Wirel. Compon. Lett. 2007, 17, 193–195. [Google Scholar] [CrossRef]
- Zheng, X.; Pan, Y.; Jiang, T. UWB Bandpass Filter with Dual Notched Bands Using T-Shaped Resonator and L-Shaped Defected Microstrip Structure. Micromachines 2018, 9, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavlidis, D.; Hartnagel, H. The design and performance of three-line microstrip couplers. IEEE Trans. Microw. Theory Tech. 1976, 24, 631–640. [Google Scholar] [CrossRef]
- Tripathi, V. On the analysis of symmetrical three-line microstrip circuits. IEEE Trans. Microw. Theory Tech. 1977, 25, 726–729. [Google Scholar] [CrossRef]
- Pozar, D.M. Microwave Engineering, 2nd ed.; John Wiley: New York, NY, USA, 1998. [Google Scholar]
- Makimoto, M.; Yamashita, S. Bandpass filters using parallel coupled stripline stepped impedance resonators. IEEE Trans. Microw. Theory Tech. 1980, 28, 1413–1417. [Google Scholar] [CrossRef]
Ref. | Passband (GHz) | FBW (%) | S11 (dB) | S21 (dB) | ) |
---|---|---|---|---|---|
[2] | 1.83–3.16 | 53 | >14 | ≤1.0 | 0.62 × 0.25 |
[3] | 2.96–10.67 | 113 | >10 | ≤2.0 | 0.35 × 0.05 |
[4] | 2.8–10.27 | 112 | >14 | ≤1.4 | 0.32 × 0.07 |
[5] | 2.8–11.0 | 119 | >10 | ≤1.1 | 0.22 × 0.16 |
[6] | 2.8–11.2 | 120 | >12 | ≤2.0 | 0.61 × 0.23 |
[7] | 3.1–11.1 | 117 | >10 | ≤1.5 | 0.51 × 0.34 |
[8] | 1.0–20.0 | 180 | >10 | ≤0.6 | 0.8 × 0.22 |
This work | 3.1–10.7 | 110 | >12 | ≤0.9 | 0.096 × 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almansour, F.H.; Alyami, G.H.; Shaman, H.N. Parallel-Coupled-Line Bandpass Filter with Notch for Ultra-Wideband (UWB) Applications. Appl. Sci. 2023, 13, 6834. https://doi.org/10.3390/app13116834
Almansour FH, Alyami GH, Shaman HN. Parallel-Coupled-Line Bandpass Filter with Notch for Ultra-Wideband (UWB) Applications. Applied Sciences. 2023; 13(11):6834. https://doi.org/10.3390/app13116834
Chicago/Turabian StyleAlmansour, Faris H., Geamel H. Alyami, and Hussein N. Shaman. 2023. "Parallel-Coupled-Line Bandpass Filter with Notch for Ultra-Wideband (UWB) Applications" Applied Sciences 13, no. 11: 6834. https://doi.org/10.3390/app13116834
APA StyleAlmansour, F. H., Alyami, G. H., & Shaman, H. N. (2023). Parallel-Coupled-Line Bandpass Filter with Notch for Ultra-Wideband (UWB) Applications. Applied Sciences, 13(11), 6834. https://doi.org/10.3390/app13116834