Multidisciplinary Study of Mud Emissions Following the 2016 Norcia Earthquake
Abstract
:1. Introduction
2. Geological Setting and Sampling
3. Methodology
3.1. Loss on Ignition (LOI)
3.2. SEM Image Analysis
3.3. Mud Chemical Analysis
3.4. Rheology
4. Results
4.1. Mud Chemistry
4.2. Rheological Behavior
5. Discussion
Modeling Mudflow
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Livio, F.; Michetti, A.M.; Vittori, E.; Gregory, L.; Wedmore, L.; Piccardi, L. Central Italy earthquake working group. Surface faulting during the August 24, 2016, central Italy earthquake (Mw = 6.0): Preliminary results. Ann. Geophys. 2016, 59, 1–8. [Google Scholar]
- Tinti, E.; Scognamiglio, L.; Michelini, A.; Cocco, M. Slip heterogeneity and directivity of the ML 6.0, 2016, Amatrice earthquake estimated with rapid finite-fault inversion. Geophys. Res. Lett. 2016, 43, 10745–10752. [Google Scholar] [CrossRef]
- Chiaraluce, L.; Di Stefano, R.; Tinti, E.; Scognamiglio, L.; Michele, M.; Casarotti, E.; Lombardi, A. The 2016 Central Italy seismic sequence: A first look at the mainshocks, aftershocks, and source models. Seismol. Res. Lett. 2017, 88, 757–771. [Google Scholar] [CrossRef]
- Cheloni, D.; De Novellis, V.; Albano, M.; Antonioli, A.; Anzidei, M.; Atzori, S.; Doglioni, C. Geodetic model of the 2016 Central Italy seismic sequence: A first look at the mainshocks, aftershocks, and source models. Seismol. Res. Lett. 2017, 88, 757–771. [Google Scholar]
- Pucci, S.; De Martini, P.M.; Civico, R.; Villani, F.; Nappi, R.; Ricci, T.; Azzaro, R.; Brunori, C.A.; Caciagli, M.; Cinti, F.R.; et al. Coseismic ruptures of the 24 August 2016, Mw 6.0 Amatrice earthquake (central Italy). Geophys. Res. Lett. 2017, 44, 2138–2147. [Google Scholar] [CrossRef]
- Civico, R.; Pucci, S.; Villani, F.; Pizzimenti, L.; De Martini, P.M.; Nappi, R.; the Open EMERGEO Working Group. Surface ruptures following the 30 October 2016 Mw 6.5 Norcia earthquake, central Italy. J. Maps 2018, 14, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Villani, F.; Civico, R.; Pucci, S.; Pizzimenti, L.; Nappi, R.; De Martini, P.M.; the Open EMERGEO Working Group. A database of the post-30 October 2016 Norcia earthquake coseismic effects in Central Italy, Scientific Data. Nature 2018, 5, 180049. [Google Scholar] [CrossRef] [Green Version]
- Improta, L.; Latorre, D.; Margheriti, L.; Nardi, A.; Marchetti, A.; Lombardi, A.M.; Castello, B.; Villani, F.; Ciaccio, M.G.; Mele, F.M.; et al. Multi-segment rupture of the 2016 Amatrice-Visso-Norcia seismic sequence (central Italy) constrained by the first high-quality catalog of Early Aftershocks. Sci. Rep. 2019, 9, 6921. [Google Scholar] [CrossRef] [Green Version]
- Moschella, M.; Ciaccio, M.G.; Latorre, D. Minor earthquake sequences in the Amatrice-Norcia epicentral area (Central Italy). Tectonophysics 2021, 809, 228858. [Google Scholar] [CrossRef]
- Ojeda, J.; Akinci, A.; Tinti, E.; Arriola, S.; Ruiz, S. Hybrid broadband strong-motion simulation to investigate the near-source characteristics of the M6.5, 30 October 2016 Norcia, Italy earthquake. Soil Dyn. Earthq. Eng. 2021, 149, 106866. [Google Scholar] [CrossRef]
- Maslovaric, G.; Zaccagnino, M.; Mezzaluna, C.; Perilli, S.; Trivellato, D.; Longo, V.; Civilotti, C. The Effectiveness of Eye Movement Desensitization and Reprocessing Integrative Group Protocol with Adolescent Survivors of the Central Italy Earthquake. Front. Phychol. Sec. Phychol. Clin. Settings 2017, 8, 1826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farabollini, P.; Angelini, S.; Fazzini, M.; Lugeri, F.R.; Scalella, G.; GeomorphoLab. Earthquakes and Society: The 2016 central Italy reverse seismic sequence. In Earthquake Risk Perception, Communication and Mitigation Strategies across Europe; Geographies of the Anthropocene (Il Sileno Edizioni); Farabollini, P., Lugeri, F.R., Mugnano, S., Eds.; Il Sileno Edizioni: Lago, Italy, 2019; Volume 2, pp. 249–266. ISSN 2611-3171. Available online: http://www.ilsileno.it/geographiesoftheanthropocene/e-book-releases/ (accessed on 2 June 2023).
- EMERGEO Working Group. A new photographic dataset of the coseismic geological effects originated by the Mw 5.9 Visso and Mw 6.5 Norcia earthquakes (26th and 30th October 2016, central Italy). Misc. INGV 2017, 38, 1–114. [Google Scholar]
- Martinelli, G.; Judd, A. Mud volcanoes of Italy. Geol. J. 2004, 39, 49–61. [Google Scholar] [CrossRef]
- Mazzini, A.; Etiope, G. Mud volcanism: An updated review. Earth-Sci. Rev. 2017, 168, 81–112. [Google Scholar] [CrossRef] [Green Version]
- Kopf, A.J. Significance of mud volcanism. Rev. Geophys. 2002, 40, 1005. [Google Scholar] [CrossRef] [Green Version]
- Planke, S.; Svensen, H.; Hovland, M.; Banks, D.A.; Jamtveit, B. Mud and fluid migration in active mud volcanoes in Azerbaijan. Geo-Mar. Lett. 2003, 23, 258–268. [Google Scholar] [CrossRef]
- Bonini, M. Elliptical mud volcano caldera as stress indicator in an active compressional setting (Nirano, Pede-Apennine margin. northern Italy). Geology 2008, 36, 131–134. [Google Scholar] [CrossRef]
- Capozzi, R.; Picotti, V. Fluid migration and origin of a mud volcano in the Northern Apennine (Italy): The role of deeply rooted normal faults. Terra Nova 2002, 14, 363–370. [Google Scholar] [CrossRef]
- Capozzi, R.; Picotti, V. Spontaneous fluid emissions in the Northern Apennines: Geochemistry, structures and implications for the petroleum system. Geol. Soc. Lond. Spec. Publ. 2010, 348, 115–135. [Google Scholar] [CrossRef]
- Lupi, M.; Ricci, B.S.; Kenkel, J.; Ricci, T.; Fuchs, F.; Miller, S.A.; Kemna, A. Subsurface fluid distribution and possible seismic precursory signal at the Salse di Nirano mud volcanic field, Italy. Geophys. J. Int. 2015, 204, 907–917. [Google Scholar] [CrossRef] [Green Version]
- Oppo, D.; Capozzi, R.; Picotti, V. A new model of the petroleum system in the Northern Apennines, Italy. Mar. Pet. Geol. 2013, 48, 57–76. [Google Scholar] [CrossRef]
- Sciarra, A.; Cantucci, B.; Ricci, T.; Tomonaga, Y.; Mazzini, A. Geochemical characterization of the Nirano mud volcano, Italy. Appl. Geochem. 2019, 102, 77–87. [Google Scholar] [CrossRef]
- Bonasera, F. I vulcanelli di fango del Preappennino Marchigiano. Riv. Geogr. Ital. 1952, 59, 16–26. [Google Scholar]
- Bonasera, F. I vulcanelli di fango dell’Abruzzo orientale. Riv. Geogr. Ital. 1954, 61, 217–223. [Google Scholar]
- Damiani, A.V. Studio della Salsa di Offida (Ascoli Piceno, Marche). L’Universo 1964, 3, 473–487. [Google Scholar]
- Etiope, G.; Martinelli, G. ‘‘Pieve Santo Stefano’’ is not a mud volcano: Comment on ‘‘Structural controls on a carbon dioxide-driven mud volcano field in the Northern Apennines’’ (by Bonini, 2009). J. Struct. Geol. 2009, 31, 1270–1271. [Google Scholar] [CrossRef]
- Etiope, G.; Milkov, A.V. A new estimate of global methane flux from onshore and shallow submarine mud volcanoes to the atmosphere. Environ. Geol. 2004, 46, 997–1002. [Google Scholar] [CrossRef]
- Etiope, G. Natural gas seepage. In Earth’s Hydrocarbon Degassing; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Mazzini, A.; Nermoen, A.; Krotkiewski, M.; Podladchikov, Y.; Planke, S.; Svensen, H. Strike-slip faulting as a trigger mechanism for overpressure release through piercement. Mar. Pet. Geol. 2009, 26, 1751–1765. [Google Scholar] [CrossRef]
- Hedberg, H.D. Relation of methane generation to undercompacted shales, sale diapirs, and mud volcanoes. AAPG Bull. 1974, 58, 661–673. [Google Scholar]
- Reed, D.L.; Silver, E.A.; Tagudin, J.E.; Shipley, T.H.; Vrolijk, P. Relations between mud volcanoes, thrust deformation, slope sedimentation, and gas hydrate, offshore north Panama. Mar. Pet. Geol. 1990, 7, 44–54. [Google Scholar] [CrossRef]
- Kopf, A.J. Making calderas from mud. Nat. Geosci. 2008, 1, 500–501. [Google Scholar] [CrossRef]
- Lynch, D.K.; Hudnut, K.W. The Wister mud pot lineament: Southeastward extension or abandoned strand of the San Andreas fault? Bull. Seismol. Soc. Am. 2008, 98, 1720–1729. [Google Scholar] [CrossRef]
- Manga, M.; Brumm, M.; Rudolph, M.L. Earthquake triggering of mud Volcanoes. Mar. Pet. Geol. 2009, 26, 1785–1798. [Google Scholar] [CrossRef]
- Hanotinm, C.; Kiesgen de Richterm, S.; Marchalm, P.; Michotm, L.J.; Baravianm, C. Vibration-induced Liquefaction of Granular Suspensions. Phys. Rev. Lett. 2012, 108, 198301. [Google Scholar] [CrossRef] [PubMed]
- Lanzo, G.; Tommasi, P.; Ausilio, E.; Aversa, S.; Bozzoni, F.; Cairo, R.; d’Onofrio, A.; Durante, M.G.; Foti, S.; Giallini, S.; et al. Reconnaissance of geotechnical aspects of the 2016 Central Italy earthquakes. Bull. Earthq. Eng. 2019, 17, 5495–5532. [Google Scholar] [CrossRef]
- Maestrelli, D.; Bonini, M.; Delle Donne, D.; Manga, M.; Piccardi, L.; Sani, F. Dynamic triggering of mud volcano eruptions during the 2016–2017 Central Italy seismic sequence. J. Geophys. Res. Solid Earth 2017, 122, 9149–9165. [Google Scholar] [CrossRef] [Green Version]
- Bigi, S.; Calamita, F.; Cello, G.; Centamore, E.; Deiana, G.; Paltrinieri, W.; Ridolfi, M. Tectonics and sedimentation within a Messinian foredeep in the Central Apennines, Italy. J. Pet. Geol. 1999, 22, 5–18. [Google Scholar] [CrossRef]
- Centamore, E.; Cantalamessa, G.; Micarelli, A.; Potetti, M.; Berti, D.; Bigi, S.; Ridolfi, M. Stratigrafia e analisi di facies dei depositi del Miocene e del Pliocene inferiore dell’avanfossa marchigiano-abruzzese e delle zone limitrofe. Studi Geol. Camerti 1991, 2, 125–131. [Google Scholar]
- Carafa, M.M.C.; Galvani, A.; Di Naccio, D.; Kastelic, V.; Di Lorenzo, C.; Miccolis, S.; Sepe, V.; Pietrantonio, G.; Gizzi, C.; Massucci, A.; et al. Partitioning the ongoing extension of the central Apennines (Italy): Fault slip rates and bulk deformation rates from geodetic and stress data. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018956. [Google Scholar] [CrossRef]
- Boncio, P.; Lavecchia, G.; Milana, G.; Rozzi, B. Seismogenesis in Central Apennines, Italy: An integrated analysis of minor earthquake sequences and structural data in the Amatrice-Campotosto area. Ann. Geophys. 2004, 47, 1723–1742. [Google Scholar] [CrossRef]
- Galadini, F.; Galli, P. Active tectonics in the Central Apennines (Italy)—Input data for Seismic Hazard Assessment. Nat. Hazards 2000, 22, 225–270. [Google Scholar] [CrossRef]
- Lavecchia, G.; Ferrarini, F.; Brozzetti, F.; De Nardis, R.; Boncio, P.; Chiaraluce, L. From surface geology to aftershock analysis: Constraints on the geometry of the L’Aquila 2009 seismogenic fault system. Ital. J. Geosci. (Boll. Soc. Geol. Ital.) 2012, 131, 330–347. [Google Scholar] [CrossRef]
- Galadini, F.; Galli, P.; Leschiutta, I.; Monachesi, G.; Stucchi, M. Active tectonics and seismicity in the area of the 1997 earthquake sequence in Central Italy: A. short review. J. Seismol. 1999, 3, 165–175. [Google Scholar] [CrossRef]
- Rovida, A.; Locati, M.; Camassi, R.; Lolli, B.; Gasperini, P. (Eds.) CPTI15, the 2015 Version of the Parametric Catalogue of Italian Earthquakes; Istituto Nazionale di Geofisica e Vulcanologia: Bologna, Italy, 2016. [Google Scholar] [CrossRef]
- Chiaraluce, L. Unravelling the complexity of Apenninic extensional fault systems: A review of the 2009 L’Aquila earthquake (Central Apennines, Italy). J. Struct. Geol. 2012, 42, 2–18. [Google Scholar] [CrossRef]
- Cox, M.R.; Budhu, B.A. practical approach to grain shape quantification. Eng. Geol. 2008, 96, 1–16. [Google Scholar] [CrossRef]
- Prano, V.; Liotta, M. Precisione e accuratezza nella determinazione dei costituenti maggiori in soluzione acquosa mediante cromatografia ionica: Stime per i cromatografi Dionex ICS-1100 utilizzati presso la Sezione INGV di Palermo. Rapp. Tec. INGV 2017, 390, 1–22. [Google Scholar] [CrossRef]
- Barnesm, H.A.; Nguyenm, Q.D. Rotating vane rheometry—A review. J. Non-Newton. Fluid Mech. 2001, 98, 1–14. [Google Scholar] [CrossRef]
- Scotto di Santolo, A.; Pellegrino, A.M.; Evangelista, A. Experimental study on the rheological behavior of debris flow. Nat. Hazards Earth Syst. Sci. 2010, 10, 2507–2514. [Google Scholar] [CrossRef]
- Del Gaudio, P.; Ventura, G. Flow Behavior of Clay-Silt to Sand-Silt Water-Rich Suspensions at Low to High Shear Rates: Implications for Slurries, Transitional Flows, and Submarine Debris-Flows. Acta Geol. Sin. 2018, 92, 2395–2404. [Google Scholar] [CrossRef]
- Rudolph, M.L.; Manga, M. Mud volcano response to the 4 April 2010 El Mayor-Cucapah earthquake. J. Geophys. Res. 2010, 115, B12211. [Google Scholar] [CrossRef] [Green Version]
- U.S. Salinity Laboratory Staff. Diagnosis and improvement of saline and alkali soils. In US Department of Agriculture Handbook 60; U.S. Salinity Laboratory Staff: Washington, DC, USA, 1954. [Google Scholar]
- Bombik, E.; Bombik, A.; Górski, K.; Saba, L.; Bombik, T.; Rymuza, K. The Effect of Environmental Contamination by Fluorine Compounds on Selected Horse Tissues. Pol. J. Environ. Stud. 2011, 20, 37–43. [Google Scholar]
- Jolly, R.J.H.; Lonergan, L. Mechanisms and controls on the formation of sand intrusions. J. Geol. Soc. Lond. 2002, 159, 605–617. [Google Scholar] [CrossRef] [Green Version]
- Kaitna, R.; Rickenmann, D.; Schatzmann, M. Experimental study on rheological behaviour of debris flow material. Acta Geotech. 2007, 2, 71–85. [Google Scholar] [CrossRef]
- Coussotm, P.; Piaum, J.M. On the behavior of fine mud suspensions. Rheol. Acta 1994, 33, 175–184. [Google Scholar] [CrossRef]
Emission Point | Sample | Water Content (LOI) (wt.%) | Grain Size Distribution (Determined Using Gradistat v9.1) | ||
---|---|---|---|---|---|
% Sand (250 μm–1 mm) | % Silt (2–8 μm) | Sand/Silt Ratio | |||
1 | AM1 | 30.59 | 26.2 | 73.8 | 0.4 |
3 | AM2 | 26.10 | 18.5 | 81.5 | 0.2 |
ML1-A | AM3 | 19.97 | 34.1 | 65.9 | 0.5 |
ML2-A | AM4 | 21.32 | 31.3 | 68.7 | 0.5 |
ML3-A | AM5 | 38.51 | 13.8 | 86.2 | 0.2 |
SV1-A | AM6 | 13.50 | 33.4 | 66.6 | 0.5 |
SV3-B | AM7 | 29.53 | 39.2 | 60.7 | 0.6 |
EM | EC | pHCa | F− | Cl− | Br− | NO3− | SO42− | Alkalinity | Na+ | K+ | Mg2+ | Ca2+ |
---|---|---|---|---|---|---|---|---|---|---|---|---|
mS/cm | (meq/L) | (meq/L) | (meq/L) | (meq/L) | (meq/L) | (meq/L) | (meq/L) | (meq/L) | (meq/L) | (meq/L) | ||
1 | 2.23 | 8.1 | 0.061 | 0.76 | - | - | 8.03 | 11.5 | 18.96 | 1.06 | 0.16 | 0.29 |
3 | 2.45 | 8.1 | 0.102 | 0.5 | - | 0.797 | 9.67 | 10.65 | 20.104 | 1.1 | 0.23 | 0.45 |
ML1-A | 1.61 | 7.8 | 0.137 | 0.213 | - | 0.140 | 5.81 | 8.2 | 9.175 | 1.93 | 1.08 | 2.32 |
ML2-A | 1.95 | 8.2 | 0.095 | 0.36 | - | 0.111 | 7.89 | 12.2 | 19.22 | 0.99 | 0.14 | 0.50 |
ML3-A | 3.52 | 8.3 | 0.326 | 1.57 | - | 0.076 | 13.42 | 18.0 | 31.41 | 1.13 | 0.27 | 0.89 |
SV1-A | 2.87 | 8.3 | 0.15 | 0.81 | - | 0.774 | 8.52 | 16.40 | 25.38 | 1.03 | 0.09 | 0.28 |
SV3-B | 1.82 | 8.0 | 0.16 | 0.56 | - | 0.17 | 13.01 | 10.85 | 20.65 | 1.72 | 1.44 | 3.24 |
Rheometer Geometry | Sample | Water Content LOI w (wt.%) | Yield Stress τb (Pa) | Std. Error | Bingham Viscosity η (Pa∙s) | Std. Error |
---|---|---|---|---|---|---|
Vane rotor | AM1 | 30.59 | 36.82 | 10.11 | 9.84 × 105 | 9.09 × 104 |
Vane rotor | AM2 | 26.10 | 151.01 | 34.19 | 3.46 × 107 | 2.35 × 106 |
Parallel plate | AM3 | 19.97 | 404.01 | 141.78 | 3.73 × 107 | 4.53 × 106 |
Vane rotor | AM4 | 21.32 | 1.32 | 0.78 | 7.19 × 106 | 4.57 × 105 |
Vane rotor | AM5 | 38.51 | 115.84 | 15.26 | 8.90 × 105 | 1.26 × 105 |
Vane rotor | AM6 | 13.50 | 13.70 | 4.06 | 6.31 × 107 | 1.29 × 106 |
Vane rotor | AM7 | 29.53 | 50.04 | 12.66 | 6.93 × 105 | 8.55 × 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Gaudio, P.; Misiti, V.; Cantucci, B.; Liotta, M.; Ventura, G.; Ricci, T.; Sciarra, A.; Di Naccio, D.; Amoroso, S.; Monaco, P. Multidisciplinary Study of Mud Emissions Following the 2016 Norcia Earthquake. Appl. Sci. 2023, 13, 6968. https://doi.org/10.3390/app13126968
Del Gaudio P, Misiti V, Cantucci B, Liotta M, Ventura G, Ricci T, Sciarra A, Di Naccio D, Amoroso S, Monaco P. Multidisciplinary Study of Mud Emissions Following the 2016 Norcia Earthquake. Applied Sciences. 2023; 13(12):6968. https://doi.org/10.3390/app13126968
Chicago/Turabian StyleDel Gaudio, Pierdomenico, Valeria Misiti, Barbara Cantucci, Marcello Liotta, Guido Ventura, Tullio Ricci, Alessandra Sciarra, Deborah Di Naccio, Sara Amoroso, and Paola Monaco. 2023. "Multidisciplinary Study of Mud Emissions Following the 2016 Norcia Earthquake" Applied Sciences 13, no. 12: 6968. https://doi.org/10.3390/app13126968
APA StyleDel Gaudio, P., Misiti, V., Cantucci, B., Liotta, M., Ventura, G., Ricci, T., Sciarra, A., Di Naccio, D., Amoroso, S., & Monaco, P. (2023). Multidisciplinary Study of Mud Emissions Following the 2016 Norcia Earthquake. Applied Sciences, 13(12), 6968. https://doi.org/10.3390/app13126968